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Abstract: In this paper, an SIRI epidemic model with age of infection and the proliferation of
susceptible individuals with logistic growth is investigated. By using the theory of integral semigroup
and Hopf bifurcation theory for semilinear equations with non-dense domain, it is shown that if the
threshold parameter is greater than unity, sufficient condition is derived for the occurrence of the Hopf
bifurcation. Numerical simulations are carried out to illustrate the theoretical results.
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1. Introduction

In the past decades, great attention has been paid by many researchers to SIR epidemic models
[1–7], in which total host population is divided into three classes called susceptible (S ), infective (I)
and removed (R), and the immunity that is obtained upon recovery is assumed to be permanent. In [8],
for herpes viral infections, considering the fact of recovered individuals may relapse with reactivation
of latent infection and reenter the infective class, Tudor proposed the following SIRI epidemic model:

Ṡ (t) = A − µS (t) − βS (t)I(t),
İ(t) = βS (t)I(t) − (µ + γ)I(t) + δR(t),
Ṙ(t) = γI(t) − (µ + δ)R(t),

(1.1)

where S (t), I(t) and R(t) represent the number of susceptible individuals, infectious individuals and
recovered individuals at time t, respectively. Assumptions made in the system (1.1) are homogeneous
mixing and constant population size. The parameter A is the constant birth rate, µ is the natural death
rate, β is the contact rate, and γ is the recovery rate from the infective class. It is assumed that an
individual in the recovered class can revert to the infective class with a constant rate δ. Here δ > 0
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implies that the recovered individuals would lose the immunity, and δ = 0 implies that the recovered
individuals acquire permanent immunity.

We note that in system (1.1), the total population size is assumed to be constant. In reality,
demographic features which allow the population size to vary should be incorporated into
epidemiological models in some cases. For a relatively long-lasting disease or a disease with high
death rate, the assumption of logistic growth input of the susceptible seems more reasonable [9].
In [10], Gao and Hethcote investigated a SIRS model with the standard incidence rate, and considered
a demographic structure with density-dependent restricted population growth by the logistic equation.
In [11], Li et al. studied a SIR epidemic model with logistic growth and saturated treatment, and the
existence of the stable limit cycles was obtained. Rencently, there are growing interests in
epidemiological models with demographic structures of logistic type [12–16].

It is worth noting that in the above models, the transmission coefficient is assumed to be constant,
and the infected person has the same infectivity during their periodic infection. However, laboratory
studies suggest that the infectivity of infectious individuals be different at the differential age of
infection [17, 18]. Further, it was reported in [19, 20] that, age-structure of a population is an
important factor which affects the dynamics of disease transmission. In [21], Magal et al. discussed
an infection-age model of disease transmission, where both the infectiousness and the removal rate
depend on the infection age. In [22], an age structured SIRS epidemic model with age of recovery is
studied, and the existence of a local Hopf bifurcation is proved under certain conditions. In [23], Chen
et al. considered an SIR epidemic model with infection age and saturated incidence, and established a
threshold dynamics by applying the fluctuation lemma and Lyapunov functional.

Motivated by the works of Chen et al. [23], Gao and Hethcote [10], and Tudor [8], in the present
paper, we are concerned with the effects of logistic growth and age of infection on the transmission
dynamics of infectious diseases. To this end, we consider the following differential equation system:

Ṡ (t) = rS (t)
(
1 −

S (t)
K

)
− S (t)

∫ ∞

0
β(a)i(a, t)da,

∂i(a, t)
∂t

+
∂i(a, t)
∂a

= −(µ + γ)i(a, t),

Ṙ(t) = γ

∫ ∞

0
i(a, t)da − (µ + δ)R(t),

(1.2)

with the boundary condition

i(0, t) = S (t)
∫ ∞

0
β(a)i(a, t)da + δR(t), (1.3)

and the initial condition

X0 := (S (0), i(·, 0),R(0)) =
(
S 0, i0(·),R0

)
∈X , (1.4)

where X = R+ × L1
+(0,∞) × R+, L1

+(0,∞) is the set of all integrable functions from (0,∞) into
R+ = [0,∞). In system (1.2), S (t) represents the number of susceptible individuals at time t, i(a, t)
represents the density of infected individuals with infection age a at time t, and R(t) is the number of
individuals who have been infected and temporarily recovered at time t. All parameters in system (1.2)
are positive constants, and their definitions are listed in Table 1.
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Table 1. The definitions of the parameters in system (1.2).

Parameter Description
Λ The constant recruitment rate for susceptible populations

r = Λ − µ The intrinsic growth rate of susceptible populations
K The carrying capacity of susceptible population
µ The rate of natural death
γ The recovery rate of the infective individuals
δ The rate at which recovered individuals lose immunity and return

to the infective class
a Age of infection, i.e., the time that has lapsed since the individual

became infected
β(a) Transmission coefficient of the infected individuals at age of infection a

In the sequel, we further make the following assumption:
Assumption 1.1 β(a) ∈ L∞+ ((0,+∞),R), moreover

β(a) :=
{
β∗, a ≥ τ,
0, a ∈ (0, τ).

For convenience, we assume that∫ +∞

0
β(a)e−(µ+γ)ada = 1⇔ β∗ = (µ + γ)e(µ+γ)τ,

where e−(µ+γ)a is the probability of infected individual to survive to age a and τ > 0, β∗ > 0.
The organization of this paper is as follows. In Section 2, we formulate system (1.2) as an abstract

non-densely defined Cauchy problem. In Section 3, we study the existence of feasible equilibria of
system (1.2). In Section 4, the linearized equation and the characteristic equation of system (1.2) at
the interior equilibrium are investigated, respectively. In Section 5, by analyzing corresponding
characteristic equation, we discuss the existence of Hopf bifurcation. In Section 6, numerical
examples are carried out to illustrate the theoretical results, and sensitivity analysis on several
important parameters is carried out.

2. Transformation of the Cauchy problem

In this section, we formulate system (1.2) as an abstract non-densely defined Cauchy problem.
Firstly, we normalize τ in (1.2) by the timescaling and age-scaling

â =
a
τ
, t̂ =

t
τ

and consider the following distribution

Ŝ (t̂) = S (τt̂), R̂(t̂) = R(τt̂), î(â, t̂) = τi(τt̂, τî).
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Dropping the hat notation, system (1.2) becomes

Ṡ (t) = τ

[
(Λ − µ)S (t)

(
1 −

S (t)
K

)
− S (t)

∫ ∞

0
β(a)i(a, t)da

]
,

∂i(a, t)
∂t

+
∂i(a, t)
∂a

= −τ(µ + γ)i(a, t),

Ṙ(t) = τ

[
γ

∫ ∞

0
i(a, t)da − (µ + δ)R(t)

]
,

(2.1)

with the boundary condition i(0, t) = τ
[
S (t)

∫ ∞
0
β(a)i(a, t)da + δR(t)

]
, and the initial condition S (0) =

S 0 ≥ 0, i(0, ·) = i0(a) ∈ L1((0,+∞),R),R(0) = R0 ≥ 0, where the new function β(a) is defined by

β(a) :=
{
β∗, a ≥ 1,
0, otherwise,

and ∫ +∞

τ

β∗e−(µ+γ)ada = 1⇔ β∗ = (µ + γ)e(µ+γ)τ,

here τ ≥ 0, β∗ > 0.
Define

U(t) :=
∫ +∞

0
u(a, t)da,

where

U(t) =

(
S (t)
R(t)

)
and u(t, a) =

(
u1(a, t)
u2(a, t)

)
,

then the first and the third equations of system (2.1) can be rewritten as follows
∂u(a, t)
∂t

+
∂u(a, t)
∂a

= −τCu(a, t),

u(0, t) = τG(u1(a, t), u2(a, t)),
u(a, 0) = u0(a) ∈ L1((0,+∞),R2),

(2.2)

where

C =

(
µ 0
0 µ + δ

)
,

and

G(u1(a, t), u2(a, t)) =

(
G1(u1(a, t), u2(a, t))
γ
∫ +∞

0
i(a, t)da

)
,

here

G1(u1(a, t), u2(a, t)) =Λ

∫ +∞

0
u1(a, t)da

1 −
∫ +∞

0
u1(a, t)da

K

 +
µ(

∫ +∞

0
u1(a, t)da)2

K

−

∫ +∞

0
u1(a, t)da

∫ +∞

0
β(a)i(a, t)da.
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Let

w(a, t) =

(
u(a, t)
i(a, t)

)
.

Accordingly, system (2.1) is equivalent to the following system:
∂w(a, t)
∂t

+
∂w(a, t)
∂a

= −τQw(a, t),

w(0, t) = τB(w(a, t)),
w(a, 0) = w0 ∈ L1

+((0,+∞),R3),

(2.3)

where

Q =


µ 0 0
0 µ + δ 0
0 0 µ + γ

 ,
and

B(w(a, t)) =

(
G(u1(a, t), u2(a, t))∫ +∞

0
u1(a, t)da

∫ +∞

0
β(a)i(a, t)da + δ

∫ +∞

0
u2(a, t)da

)
.

We now consider the following Banach space

X = R3 × L1((0,+∞),R3)

with the norm ∥∥∥∥∥∥
(
α

ϕ

)∥∥∥∥∥∥ =‖ α ‖R3 + ‖ ϕ ‖L1((0,+∞),R3).

Define the linear operator Lτ : D(Lτ)→ X by

Lτ

(
0R3

ϕ

)
=

(
−ϕ(0)

−ϕ′ − τQϕ

)
,

with D(Lτ) = {0R3} ×W1,1((0,+∞),R3) ⊂ X, and the operator F : D(Lτ)→ X by

F
((

0R3

ϕ

))
=

(
B(ϕ)

0L1((0,+∞),R3)

)
.

Therefore, the linear operator Lτ is non-densely defined due to

X0 := D(Lτ) = {0R3} × L1((0,+∞),R3) , X.

Letting x(t) =

(
0R3

w(·, t)

)
, system (2.3) is transformed into the following non-densely defined abstract

Cauchy problem 
dx(t)

dt
= Lτx(t) + τF(x(t)), t ≥ 0,

x(0) =

(
0R3

w0

)
∈ D(Lτ),

(2.4)

Based on the results in [24] and [25], the global existence, uniqueness and positivity of solutions of
system (2.4) are obtained.
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3. Existence of feasible equilibria

In this section, we study the existence of feasible equilibria of system (2.4).
Define the threshold parameter R0 by

R0 =
K(µ + δ)(µ + γ)
µ(µ + γ + δ)

.

Suppose that x̄(a) =

(
0R3

w̄(a)

)
∈ X0 is a equilibrium of system (2.4). Then we have

Lτ

(
0R3

w̄(a)

)
+ τF

((
0R3

w̄(a)

))
= 0,

(
0R3

w̄(a)

)
∈ D(Lτ),

which is equivalent to  − w̄(0) + τB(w̄(a)) = 0,
− w̄′(a) − τQw̄(a) = 0.

By direct calculation, we obtain

w̄(a) =


ū1(a)
ū2(a)
ī(a)

 =


τ

[
ΛS̄

(
1 −

S̄
K

)
+
µS̄ 2

K
− S̄

∫ +∞

0
β(a)ī(a)da

]
e−τµa

τγ
∫ +∞

0
ī(a)dae−τ(µ+δ)a

τ
[
S̄

∫ +∞

0
β(a)ī(a)da + δR̄

]
e−τ(µ+γ)a

 , (3.1)

where S̄ =
∫ +∞

0
u1(a, t)da, R̄ =

∫ +∞

0
u2(a, t)da. From (3.1), it is easy to show that

ī(a) = τ

[
S̄

∫ +∞

0
β(a)ī(a)da + δR̄

]
e−τ(µ+γ)a. (3.2)

Integrating Eq (3.2), we get ∫ +∞

0
β(a)ī(a)da = S̄

∫ +∞

0
β(a)ī(a)da + δR̄ (3.3)

and ∫ +∞

0
ī(a)da =

1
µ + γ

∫ +∞

0
β(a)ī(a)da. (3.4)

We derive from the first and second equations of Eq (3.1) that

rS̄
(
1 −

S̄
K

)
− S̄

∫ +∞

0
β(a)ī(a)da = 0,

R̄ =
γ

µ + δ

∫ +∞

0
ī(a)da.

(3.5)

This, together with (3.4), yields

R̄ =
γ

µ + δ

1
µ + γ

∫ +∞

0
β(a)ī(a)da. (3.6)
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On substituting (3.6) into (3.3), we obtain that

S̄ =
µ(µ + γ + δ)

(µ + δ)(µ + γ)
. (3.7)

It follows from (3.5) that ∫ +∞

0
β(a)ī(a)da =

rµ(µ + γ + δ)
K(µ + δ)(µ + γ)

(R0 − 1). (3.8)

We therefore follows from (3.6) and (3.8) that

R̄ =
rγµ(µ + γ + δ)

K(µ + δ)2(µ + γ)2 (R0 − 1). (3.9)

On substituting (3.7)–(3.9) into (3.2), we get

ī(a) = τ
rµ(µ + γ + δ)

K(µ + δ)(µ + γ)
(R0 − 1)e−τ(µ+γ)a.

Based on the discussions above, we have the following result.

Lemma 3.1. System (2.4) always has the equilibrium

x̄0(a) =


0R3

τµKe−τµa

0L1((0,∞),R)

0L1((0,∞),R)


 .

In addition, if R0 > 1, there exists a unique positive equilibrium

x̄∗(a) =

(
0R3

w̄∗(a)

)
=



0R3
τ
µ2(µ + γ + δ)
(µ + δ)(µ + γ)

e−τµa

τ
rγµ(µ + γ + δ)

K(µ + δ)(µ + γ)2 (R0 − 1)e−τ(µ+δ)a

τ
rµ(µ + γ + δ)

K(µ + δ)(µ + γ)
(R0 − 1)e−τ(µ+γ)a




.

Correspondingly, for system (1.2), we have the following result.

Theorem 3.1. System (1.2) always has a disease-free steady state E0(K, 0, 0). If R0 > 1, system (1.2)
has a unique endemic steady state E∗(S ∗, i∗(a),R∗), where

S ∗ =
µ(µ + γ + δ)

(µ + δ)(µ + γ)
,

i∗(a) = τ
rµ(µ + γ + δ)

K(µ + δ)(µ + γ)
(R0 − 1)e−τ(µ+γ)a,

R∗ =
rγµ(µ + γ + δ)

K(µ + δ)2(µ + γ)2 (R0 − 1).
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4. Characteristic equation

In this section, we investivate the linearized equation of (2.4) around the positive equilibrium x̄∗(a),
and the characteristic equation of (2.4) at x̄∗(a), respectively.

Making the change of variable y(t) := x(t) − x̄∗(a), system (2.4) becomes
dy(t)

dt
= Lτy(t) + τF(y(t) + x̄∗(a)) − τF(x̄∗(a)), t ≥ 0,

y(0) =

(
0R3

w0 − w̄∗(a)

)
:= y0 ∈ D(Lτ).

(4.1)

Accordingly, the linearized equation of system (4.1) around the origin is

dy(t)
dt

= Lτy(t) + τDF(x̄∗(a))y(t), t ≥ 0, y(t) ∈ X0,

where

τDF(x̄∗(a))
(

0R3

ϕ

)
=

(
τDB(w̄∗(a))(ϕ)

0L1((0,+∞),R3)

)
,

(
0R3

ϕ

)
∈ D(Lτ),

with

DB(w̄∗(a))(ϕ) =


Λ −

2rS̄
K
−

∫ +∞

0
β(a)ī(a)da 0 0

0 0 γ∫ +∞

0
β(a)ī(a)da δ 0

 ×
∫ +∞

0
ϕ(a)da

+


0 0 −S̄
0 0 0
0 0 S̄

 ×
∫ +∞

0
β(a)ϕ(a)da.

After that, system (4.1) can be rewritten as

dy(t)
dt

= Lτy(t) + F (y(t)), t ≥ 0, (4.2)

where the linear operator L := Lτ + τDF(x̄∗(a)) and

F (y(t)) = τF(y(t) + x̄∗(a)) − τF(x̄∗(a)) − τDF(x̄∗(a))y(t)

satisfying F (0) = 0,DF (0) = 0.
In the following, we give the characteristic equation of (2.4) at the positive equilibrium. By means

of the method used in [26], we obtain the following lemma.

Lemma 4.1. Let λ ∈ Ω = {λ ∈ C : Re(λ) > −µτ}, λ ∈ ρ(Lτ) and

(λI − Lτ)−1
(
α

ψ

)
=

(
0R3

ϕ

)
⇔ ϕ(a) = e−

∫ a
0 (λI+τQ)dlα +

∫ a

0
e−

∫ a
s (λI+τQ)dlψ(s)ds (4.3)

with
(
α

ψ

)
∈ X and

(
0R3

ϕ

)
∈ D(Lτ), where Lτ is a Hille-Yosida operator and

‖(λI − Lτ)−n‖ ≤
1

(Re(λ) + µτ)n , ∀λ ∈ Ω, n ≥ 1. (4.4)
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Let L0 be the part of Lτ in D(Lτ), that is L0 := D(L0) ⊂ X → X. For
(

0R3

ϕ

)
∈ D(L0), we have

L0

(
0R3

ϕ

)
=

(
0R3

L̂0(ϕ)

)
,

where L̂0(ϕ) = −ϕ′ − τQϕ with D(L̂0) = {ϕ ∈ W1,1((0,+∞),R3) : ϕ(0) = 0}.
Note that τDF(x̄∗) : D(Lτ) ⊂ X → X is a compact bounded linear operator. It follows from (4.4)

that
‖TL0(t)‖ ≤ e−µτt, t ≥ 0.

Therefore
ω0,ess(L0) ≤ ω0(L0) ≤ −µτ.

By using the perturbation results of [35], we get

ω0,ess((Lτ + τDF(x̄∗))0) ≤ −µτ < 0.

Hence, we have the following result.

Lemma 4.2. The linear operator Lτ is a Hille-Yosida operator, and its part (Lτ)0 in D(Lτ) satisfies

ω0,ess((Lτ)0) < 0.

Set λ ∈ Ω. Since λI − Lτ is invertible, it follows that λI − Lτ is invertible if and only if I −
τDF(x̄∗)(λI − Lτ)−1 is invertible, and

(λI −Lτ)−1 = (λI − (Lτ + τDF(x̄∗)))−1

= (λI − Lτ)−1(I − τDF(x̄∗)(λI − Lτ)−1)−1.

We now consider

(I − τDF(x̄∗)(λI − Lτ)−1)
(
α

ϕ

)
=

(
ξ

ψ

)
,

which yields (
α

ϕ

)
− τDF(x̄∗)(λI − Lτ)−1

(
α

ϕ

)
=

(
ξ

ψ

)
.

It is easy to show thatα − τDB(w̄∗)
(
e−

∫ a
0 (λI+τQ)dlα

)
= ξ + τDB(w̄∗)

(∫ a

0
e−

∫ a
s (λI+τQ)dlϕ(s)ds

)
,

ϕ = ψ.

Taking the formula of DB(w̄∗) into consideration, we obtain∆(λ)α = ξ +K(λ, ψ),
ϕ = ψ,

(4.5)
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where

K(λ, ψ) = τDB(w̄∗)
(∫ a

0
e−

∫ a
s (λI+τQ)dlψ(s)ds

)
, (4.6)

and
∆(λ) =I − τDB(w̄∗)

(
e−

∫ a
0 (λI+τQ)dlα

)
=I − τ


Λ −

2rS̄
K
−

∫ +∞

0
β(a)ī(a)da 0 0

0 0 γ∫ +∞

0
β(a)ī(a)da δ 0


∫ +∞

0
e−

∫ a
0 (λI+τQ)dlda

− τ


0 0 −S̄
0 0 0
0 0 S̄


∫ +∞

0
β(a)e−

∫ a
0 (λI+τQ)dlda.

(4.7)

From (4.5), whenever ∆(λ) is invertible, we have

α = (∆(λ))−1(ξ +K(λ, ψ)).

Using a similar argument as in [27], it is easy to verify the following result.

Lemma 4.3. The following results hold

(i) σ(Lτ) ∩Ω = σp(Lτ) ∩Ω = {λ ∈ Ω : det(∆(λ)) = 0};
(ii) If λ ∈ ρ(Lτ) ∩Ω, we have the formula for resolvent

(λI −Lτ)−1
(
α

ψ

)
=

(
0R3

ϕ

)
, (4.8)

where

ϕ(a) = e−
∫ a

0 (λI+τQ)dl(∆(λ))−1[ξ +K(λ, ψ)] +

∫ a

0
e−

∫ a
s (λI+τQ)dlψ(s)ds,

with ∆(λ) and K(λ, ψ) given by (4.6) and (4.7).

Under Assumption 1.1, it therefore follows from (4.7) that

∆(λ) =


1 −

(
Λ −

2rS̄
K
−

∫ +∞

0
β(a)ī(a)da

)
τ

λ + τµ
0 S̄ τ

β∗e−(λ+τ(µ+γ))

λ + τ(µ + γ)
0 1 −

γτ

λ + τ(µ + γ)

−
∫ +∞

0
β(a)ī(a)da

τ

λ + τµ
−

δτ

λ + τ(µ + δ)
1 − S̄ τ

β∗e−(λ+τ(µ+γ))

λ + τ(µ + γ)


(4.9)

From (4.6), we obtain the characteristic equation of system (2.4) at the positive equilibrium x̄∗(a) as
follows:

det(∆(λ)) =
λ3 + τp2λ

2 + τ2 p1λ + τ3 p0 + (τq2λ
2 + τ2q1λ + τ3q0)e−λ

(λ + τµ)(λ + τ(µ + γ))(λ + τ(µ + δ))
,

f (λ)
g(λ)

= 0, (4.10)

where
f (λ) = λ3 + τp2λ

2 + τ2 p1λ + τ3 p0 + (τq2λ
2 + τ2q1λ + τ3q0)e−λ,

g(λ) = (λ + τµ)(λ + τ(µ + γ))(λ + τ(µ + δ)),
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here

p0 = µ(µ + δ + γ)
rS̄
K
,

p1 = µ(µ + δ + γ) + (2µ + δ + γ)
rS̄
K
,

p2 = 2µ + δ + γ +
rS̄
K
,

q0 = S̄ (µ + γ)(µ + δ)
(
r −

2rS̄
K

)
,

q1 = −S̄ (µ + γ)(µ + δ) + S̄ (µ + γ)
(
r −

2rS̄
K

)
,

q2 = −S̄ (µ + γ).
Letting λ = τζ, then

f (λ) = f (τζ)
= τ3g(ζ)

= τ3
[
ζ3 + p2ζ

2 + p1ζ + p0 + (q2ζ
2 + q1ζ + q0)e−τζ

]
.

(4.11)

It is easy to show that
{λ ∈ Ω : det(∆(λ)) = 0} = {τζ ∈ Ω : g(ζ) = 0}.

5. Existence of Hopf bifurcation

In this section, by applying Hopf bifurcation theory [26], we are concerned with the existence of
Hopf bifurcation for the Cauchy problem (2.4) by regarding τ as the bifurcation parameter.

From (4.11), we have

g(ζ) = ζ3 + p2ζ
2 + p1ζ + p0 + (q2ζ

2 + q1ζ + q0)e−τζ . (5.1)

For any τ ≥ 0, if R0 > 1, it is easy to show that

g(0) = p0 + q0 = µ(µ + δ + γ)
(
r −

rS̄
K

)
> 0.

Therefore, ζ = 0 is not an eigenvalue of Eq (5.1). Furthermore, when τ = 0, Eq (5.1) reduces to

ζ3 + (p2 + q2)ζ2 + (p1 + q1)ζ + p0 + q0 = 0. (5.2)

A direct calculation shows that

p2 + q2 =
(µ + δ)2 + δγ

µ + δ
+

rS̄
K

> 0,

and
(p2 + q2)(p1 + q1) − (p0 + q0)

=
rS̄
K

( (µ + δ)2 + γδ

µ + δ

)2

+
rS̄
K

(
(µ + δ)2 + γδ

µ + δ

)
+ S̄ (µ + γ)

(
r −

rS̄
K

)
+
µδγ(µ + δ + γ)

(µ + δ)2

(
r −

rS̄
K

)
> 0.
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Hence, by Routh-Hurwitz criterion, when τ = 0, we see that the equilibrium x̄∗(a) is locally
asymptotically stable if R0 > 1; and x̄∗(a) is unstable if R0 < 1.

Substituting ζ = iω(ω > 0) into Eq (5.1) and separating the real and imaginary parts, one obtains
that

ω3 − p1ω =(q2ω
2 − q0) sinωτ + q1ω cosωτ,

p2ω
2 − p0 = − (q2ω

2 − q0) cosωτ + q1ω sinωτ.
(5.3)

Squaring and adding the two equations of (5.3), it follows that

ω6 + h2ω
4 + h1ω

2 + h0 = 0, (5.4)

where
h0 = p2

0 − q2
0, h1 = p2

1 − q2
1 + 2q0q2 − 2p0 p2, h2 = p2

2 − q2
2 − 2p1. (5.5)

Letting z = ω2, Eq (5.4) can be written as

z3 + h2z2 + h1z + h0 = 0. (5.6)

Denote
h(z) = z3 + h2z2 + h1z + h0 = 0, ∆ = h2

2 − 3h1,

and define

z∗1 =
−h2 +

√
∆

3
, z∗2 =

−h2 −
√

∆

3
.

By a similar argument as in [28], we have the following result.

Lemma 5.1. [28]. For the polynomial equation (5.6), the following results hold true:

(i) If h0 < 0, then Eq (5.6) has at least one positive root.
(ii) If h0 ≥ 0 and ∆ < 0, then Eq (5.6) has no positive root.

(iii) If h0 ≥ 0 and ∆ ≥ 0, then Eq (5.6) has at least one positive root if one of z∗1 > 0 and h(z∗1) ≤ 0.

Noting that

h2 = µ2 +

(
rS̄
K

)2

+
(µ + δ + γ)2(2µδ + δ2)

(µ + δ)2 > 0,

without loss of generality, we may assume that Eq (5.6) has two positive roots denoted respectively as
z1 and z2. Then Eq (5.4) has two positive roots ωk =

√
zk(k = 1, 2). Further, from (5.3), we have

τ
( j)
k =


1
ωk

{
arccos

(
(q1 − p2q2)ω4

k + (p2q0 + p0q2 − p1q1)ω2
k − p0q0

q2
1ω

2
k + (q2ω

2
k − q0)2

)
+ 2 jπ

}
, Θ ≥ 0,

1
ωk

{
2π − arccos

(
(q1 − p2q2)ω4

k + (p2q0 + p0q2 − p1q1)ω2
k − p0q0

q2
1ω

2
k + (q2ω

2
k − q0)2

)
+ 2 jπ

}
, Θ < 0,

(5.7)

where k = 1, 2; j = 0, 1, · · · , and

Θ =
q2ω

5
k + (p2q1 − q0 − p1q2)ω3

k + (p1q0 − p0q1)ωk

q2
1ω

2
k + (q2ω

2
k − q0)2

.

Based on the above discussion, we have the following result.
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Theorem 5.1. Let Assumption 1.1 and R0 > 1 hold. If ωk is a positive root of Eq (5.4) and q1 , 0,
then

dg(ζ)
dζ

∣∣∣∣
ζ=iωk
, 0.

Therefore ζ = iωk is a simple root of Eq (5.1).

Proof. It follows from (5.1) that

dg(ζ)
dζ

∣∣∣∣
ζ=iωk

= −3ω2
k + i2p2ωk + p1 + (i2q2ωk + q1 − τ

( j)
k (−q2ω

2
k + iq1ωk + q0))e−iωkτ

( j)
k

and [
3ζ2 + 2p2ζ + p1 + (2q2ζ + q1 − τ(q2ζ

2 + q1ζ + q0))e−τζ
] dζ(τ)

dτ
= ζ(q2ζ

2 + q1ζ + q0)e−τζ .

Suppose that dg(ζ)
dζ

∣∣∣∣
ζ=iωk

= 0, then

iωk(−q2ω
2
k + iq1ωk + q0)e−iωkτ

( j)
k = 0. (5.8)

Separating the real and imaginary parts in Eq (5.8), we obtain

(q0ωk − q2ω
3
k) sinωkτ

( j)
k − q1ω

2
k cosωkτ

( j)
k = 0,

(q0ωk − q2ω
3
k) cosωkτ

( j)
k + q1ω

2
k sinωkτ

( j)
k = 0.

(5.9)

Squaring and adding the two equations of (5.9), we derive that

(q0ωk − q2ω
3
k)2 + (q1ω

2
k)2 = 0,

which mean that
q0ωk − q2ω

3
k = 0 and q1ω

2
k = 0.

Since ωk > 0, it follows that
q0ωk − q2ω

3
k = 0 and q1 = 0,

which leads to a contradiction. Hence, we have

dg(ζ)
dζ

∣∣∣∣
ζ=iωk
, 0.

Let ζ(τ) = α(τ) + iω(τ) be a root of Eq (5.1) satisfying α(τ( j)
k ) = 0, ω(τ( j)

k ) = ωk, where

τ0 = min
k∈{1,2}

{τ(0)
k }, j = 0, 1, 2, · · · , ω0 = ωk0. (5.10)

Lemma 5.2. Let Assumption 1.1 and R0 > 1 hold. If zk = ω2
k , h

′(zk) , 0 and q1 , 0, then

Re
[
dζ(τ)

dτ

∣∣∣∣
τ=τ

( j)
k

]
, 0,

and dReζ(τ)/dτ and h′(zk) have the same sign.
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Proof. Differentiating the two sides of Eq (5.1) with respect to τ, we get(
dζ
dτ

)−1

= −
3ζ2 + 2p2ζ + p1

ζ(ζ3 + p2ζ2 + p1ζ + p0)
+

2q2ζ + q1

ζ(q2ζ2 + q1ζ + q0)
−
τ

ζ
. (5.11)

On substituting ζ = iωk into Eq (5.1), by calculating, we have

Re
(d(Reζ)

dτ

)−1 ∣∣∣∣
ζ=iωk

 =
3ω4

k + 2(p2
2 − 2p1)ω2

k + p2
1 − 2p0 p2

(ω2
+ − p1)2ω2

k + (p0 − p2ω
2
k)2

−
2q2

2ω
2
k + q2

1 − 2q0q2

q2
1ω

2
k + (q0 − q2ω

2
k)2
.

A direct calculation shows that

sign
{

d(Reζ)
dτ

}
ζ=iωk

=sign

Re
(
dζ
dτ

)−1

ζ=iωk

=sign
[
3ω4

k + 2(p2
2 − 2p1)ω2

k + p2
1 − 2p0 p2

(ω2
k − p1)2ω2

k + (p0 − p2ω
2
k)2

+
−2q2

2ω
2
k − q2

1 + 2q2q0

q2
1ω

2
k + (q0 − q2ω

2
k)2

]
.

From Eq (5.4), we get

(ω2
k − p1)2ω2

k + (p0 − p2ω
2
k)2 = q2

1ω
2
k + (q0 − q2ω

2
k)2.

It therefore follows that

sign
{

d(Reζ)
dτ

}
ζ=iωk

= sign
[

h′(zk)
(q3ω

2
k − q1)2ω2

k + (q0 − q2ω
2
k)2

]
.

Since zk > 0, we conclude that Re[dζ(τ)/dτ] and h′(zk) have the same sign.
Noting that when τ = 0, the equilibrium x∗(a) of (2.4) is locally asymptotically stable if R0 > 1,

from what has been discussed above, we have the following results.

Theorem 5.2. Let τ( j)
k and ω0, τ0 be defined by (5.7) and (5.10), respectively. If Assumption 1.1 and

R0 > 1, q1 , 0 hold.

(i) the endemic steady state E∗ of system (1.2) is locally asymptotically stable for all τ ≥ 0 if h0 ≥ 0
and ∆ ≤ 0.

(ii) the endemic steady state E∗ is asymptotically stable for τ ∈ [0, τ0) if h0 < 0 or h0 ≥ 0,∆ > 0, z∗1 >
0 and h(z∗1) ≤ 0.

(iii) system (1.2) undergoes a Hopf bifurcation at endemic steady state E∗ when
τ = τ

( j)
k ( j = 0, 1, 2, · · · ) if the conditions as stated in (ii) are satisfied and h′(zk) , 0.

6. Numerical simulations

In this section, numerical simulations will be given to illustrate the theoretical results in Section 5.
Further, sensitivity analysis is used to quantify the range of variability in threshold parameter and
to identify the key factors giving rise to threshold parameter, which is helpful to design treatment
strategies.
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6.1. Dynamics of system (1.2)

In this section, we give a numerical example to illustrate the main results in Section 5.

Table 2. Parameter values for the age-structured SIRI epidemic model (1.2).

Parameter Symbol value Source

The carrying capacity of susceptible population K (human) 5 Assumed
The intrinsic growth rate of susceptible populations r (per year) 0.1 Assumed
The rate of natural death µ (per year) 1/70 [29, 30]
The rate at which recovered individuals lose immunity and return to the infective class δ (per year) 0.01 Assumed
The recovery rate of the infective individuals γ (per year) 0.3 [31]
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(c) (d)

Figure 1. Numerical solutions of system (1.2) with τ = 8 < τ0 = 14.3556. (a) the
trajectories of susceptible individuals S (t); (b) the trajectories of infected individuals I(t);
(c) the trajectories of recovered individuals R(t); (d) the dynamical behavior of infected
individuals i(a, t).

Based on the research works of tuberculosis [29, 30, 32], parameter values of system (1.2) are
summarized in Table 2, and the maximum infection age is 60. Denote the numbers of infected
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individuals at time t as I(t) =
∫ 100

0
i(t, a)da, and

β(a) :=
{

11
35e

11
35 τ, a ≥ τ,

0, a ∈ (0, τ).

By calculation, we have R0 = 8.2379 > 1, h0 = −1.1989 × 10−7 < 0 and h′(zk) = 2.7846 × 10−4 > 0.
In this case, system (1.2) has an endemic steady state E∗(0.6070, 0.0879τe−0.3143τa, 3.4534). By
calculation, we obtain ω0 = 0.0565 and τ0 = 14.3556. By Theorem 5.1, we see that the endemic
steady state E∗ is locally asymptotically stable if τ ∈ [0, τ0) and is unstable if τ > τ0. Further,
system (1.2) undergoes a Hopf bifurcation at E∗ when τ = τ0. Numerical simulation illustrates the
result above (see, Figures 1 and 2).
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Figure 2. Numerical solutions of system (1.2) with τ = 16 > τ0 = 14.3556. (a) the
trajectories of susceptible individuals S (t); (b) the trajectories of infected individuals I(t);
(c) the trajectories of recovered individuals R(t); (d) the dynamical behavior of infected
individuals i(a, t).

Remark. From Figure 1, we see that when the bifurcation parameter τ is less than the critical value
τ0, the endemic steady state E∗ of system (1.2) is locally asymptotically stable. From Figure 2, we
observe that E∗ losses its stability and Hopf bifurcation occurs when τ crosses τ0 to the right (τ > τ0).
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This implies that the age, i.e., infection period τ is the key factor that causes the endemic steady state
E∗ to become unstable and the appearance of Hopf bifurcation.

6.2. Sensitivity analysis

Sensitivity analysis is used to quantify the range of variables in threshold parameter and identify the
key factors giving rise to threshold parameter. In [33, 34], Latin hypercube sampling (LHS) is found
to be a more efficient statistical sampling technique which has been introduced to the field of disease
modelling. LHS allows an un-biased estimate of the threshold parameter, with the advantage that it
requires fewer samples than simple random sampling to achieve the same accuracy.

By analysis of the sample derived from Latin hypercube sampling, we can obtain large efficient data
in respect to different parameters of R0. Figure 3 shows the scatter plots of R0 in respect to K, µ, δ and
γ, which implies that δ is a positively correlative variable with R0, while µ is a negatively correlative
variable. But the correlation between K, γ and R0 is not clear. In [34], Marino et al. mentioned that
Partial Rank Correlation Coefficients (PRCCs) provide a measure of the strength of a linear association
between the parameters and the threshold parameter. Furthermore, PRCCs are useful for identifying
the most important parameters. The positive or negative of PRCCs respectively denote the positive or
negative correlation with the threshold parameter, and the sizes of PRCCs measure the strength of the
correlation. As can been seen in Figure 4, K, δ and γ are positively correlative variables with R0 while
µ is negatively correlative variables.
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Figure 3. Scatter plots of R0 in respect to K, µ, δ and γ.
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Value of Correlation Coefficient for outcome R
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Figure 4. Tornado plot of PRCCs in regard to R0.

By selecting different parameter values, we can explore the influence of the parameters µ and δ on
the numbers of infected individuals at time t, which is denoted as I(t). As shown in Figure 5, increasing
the natural death rate µ and decreasing the rate at which recovered individuals return to the infective
class will have a positive impact on I(t) to some extent, which means that the influence of µ and δ on
I(t) is consistent with that on R0.
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Figure 5. The influence of µ and δ on the numbers of infected individuals at time t, where τ =

2 and the values of other parameters are consistent with those in Figure 1. (a) the trajectories
of I(t) corresponding to different values of µ; (b) the trajectories of I(t) corresponding to
different values of δ.
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