Citation: Lifeng Han, Steffen Eikenberry, Changhan He, Lauren Johnson, Mark C. Preul, Eric J. Kostelich, Yang Kuang. Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5307-5323. doi: 10.3934/mbe.2019265
[1] | A. D. Norden and P. Y. Wen, Glioma therapy in adults, The Neurologist, 12 (2006), 279–292, URL http://www.ncbi.nlm.nih.gov/pubmed/17122724. |
[2] | W. B. Pope, J. Sayre, A. Perlina, et al., MR imaging correlates of survival in patients with high-grade gliomas, Am. J. Neuroradiol., 10 (2005), 2644–2474. |
[3] | M. R. J. Carlson, W. B. Pope, S. Horvath, et al., Relationship between survival and edema in malignant gliomas: role of vascular endothelial growth factor and neuronal pentraxin 2, Clin. Cancer Res., 13 (2007), 2592–2598. |
[4] | D. B. Hoelzinger, T. Demuth and M. E. Berens, Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment, J. Natl. Cancer Inst., 99 (2007), 1583–1593. |
[5] | R. Stupp, W. P. Mason, M. J. van den Bent, et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 352 (2005), 987–996, URL http://www. nejm.org/doi/abs/10.1056/NEJMoa043330. |
[6] | M. R. Gilbert, M. Wang, K. D. Aldape, et al., Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial, J. Clin. Oncol., 31 (2013), 4085–4091. |
[7] | Y. Kuang, J. D. Nagy and S. E. Eikenberry, Introduction to Mathematical Oncology, 1st edition, Chapman and Hall/CRC, 2015. |
[8] | N. L. Martirosyan, E. M. Rutter, W. L. Ramey, et al., Mathematically modeling the bi- ological properties of gliomas: A review, Math. Biosci. Eng., 12 (2015), 879–905, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=11020. |
[9] | K. Harley, P. van Heijster, R. Marangell, et al., Existence of traveling wave solutions for a model of tumor invasion, SIAM J. Appl. Dyn. Syst., 13 (2014), 366–396, URL http://epubs.siam. org/doi/10.1137/130923129. |
[10] | P. Gerlee and S. Nelander, Traveling wave analysis of a mathematical model of glioblastoma growth, Math.Biosci., 276(2016), 75–81, URLhttps://www.sciencedirect.com/science/ article/abs/pii/S0025556416000602?via{%}3Dihub. |
[11] | T. L. Stepien, E. M. Rutter and Y. Kuang, Traveling waves of a go-or-grow model of glioma growth, SIAM J. Appl. Math., 78 (2018), 1778–1801, URL https://epubs.siam.org/doi/ 10.1137/17M1146257. |
[12] | R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355–369. |
[13] | P. Tracqui, G. Cruywagen, D. E. Woodward, et al., A mathematical model of glioma growth: The effect of chemotherapy on spatial-temporal growth, Cell Prolif., 28 (1995), 17–31. |
[14] | D. E. Woodward, J. Cook, P. Tracqui, et al., A mathematical model of glioma growth: The effect of extent of surgical resection, Cell Prolif., 29 (1996), 269–288. |
[15] | J. D. Murray, Glioblastoma brain tumors: estimating the time from brain tumor initiation and resolution of a patient survival anomaly after similar treatment protocols, J. Biol. Dyn., 6:sup2 (2012), 118–127. |
[16] | K. R. Swanson, R. C. Rostomily and E. C. Alvord, A mathematical modellng tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle, Br. J. Cancer, 98 (2008), 113–119, URL http://www.nature.com/articles/6604125. |
[17] | M. L. Neal, A. D. Trister, T. Cloke, et al., Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric, PLoS ONE, 8 (2013), e51951, URL https://dx.plos.org/10.1371/journal.pone.0051951. |
[18] | P. R. Jackson, J. Juliano, A. Hawkins-Daarud, et al., Patient-specific mathematical neuro-oncology: Using a simple proliferation and invasion tumor model to inform clinical prac-tice, Bull. Math. Biol., 77 (2015), 846–856, URL http://link.springer.com/10.1007/s11538-015-0067-7. |
[19] | A. van der Hoorn, J. L. Yan, T. J. Larkin, et al., Validation of a semi-automatic co-registration of mri scans in patients with brain tumors during treatment follow-up, NMR Biomed., 2 (2016), 882–889. |
[20] | C. J. Watling, D. H. Lee, D. R. Macdonald, et al., Corticosteroid-induced magn. reson. imaging changes in patients with recurrent malignant glioma, J. Clin. Oncol., 12 (1994), 1886–1889. |
[21] | H. S. Zaki, M. D. Jenkinson, D. G. Du Plessis, et al., Vanishing contrast enhancement in malignant glioma after corticosteroid treatment, Acta Neurochir. (Wien), 146 (2004), 841–845. |
[22] | S. E. Eikenberry, T. Sankar, M. C. Preul, et al., Virtual glioblastoma: Growth, migration and treatment in a three-dimensional mathematical model, Cell Prolif., 42 (2009), 511–528. |
[23] | K. R. Swanson, R. C. Rockne, J. Claridge, et al., Quantifying the role of angiogenesis in malig-nant progression of gliomas: In silico modeling integrates imaging and histology, Cancer Res., 71 (2011), 7366–7375, URL http://www.ncbi.nlm.nih.gov/pubmed/21900399http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3398690http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-11-1399. |
[24] | A. Claes, A. J. Idema and P. Wesseling, Diffuse glioma growth: A guerilla war, Acta Neuropathol. (Berl.), 114 (2007), 443–458. |
[25] | J. A. Sherratt and M. A. Chaplain, A new mathematical model for avascular tumor growth, J. Math. Biol., 43 (2001), 291–312, URL http://link.springer.com/10.1007/s002850100088. |
[26] | J. Canosa, On a nonlinear diffusion equation describing population growth, IBM J. Res. Dev., 17 (1973), 307–313, URL http://ieeexplore.ieee.org/document/5391351/. |
[27] | W. Penny, K. Friston, J. Ashburner, et al., Statistical Parametric Mapping: The Analysis of Functional Brain Images, 1st edition, Academic Press, London, 2007. |
[28] | A. Fedorov, R. Beichel, J. Kalpathy-Cramer, et al., 3D Slicer as an image com-puting platform for the Quantitative Imaging Network, Magn. Reson. Imaging, 30 (2012), 1323–1341, URL https://www.sciencedirect.com/science/article/pii/ S0730725X12001816?via{%}3Dihub. |
[29] | S. Dunbar, Traveling wave solutions of diffusive lotka-volterra equations, J. Math. Biol., 17 (1983), 11–32, URL http://link.springer.com/10.1007/BF00276112. |
[30] | M. C. Eisenberg and H. V. Jain, A confidence building exercise in data and identifiability: Mod-eling cancer chemotherapy as a case study, J. Theor. Biol., 431 (2017), 63–78, URL https://www.sciencedirect.com/science/article/pii/S0022519317303454?via{%}3Dihub. |
[31] | M. Kim, J. Kotas, J. Rockhill, et al., A feasibility study of personalized prescription schemes for glioblastoma patients using a proliferation and invasion glioma model, Cancers, 9 (2017), 51, URL http://www.mdpi.com/2072-6694/9/5/51. |
[32] | A. Madzvamuse, R. Barreira and A. Gerisch, Cross-diffusion in reaction-diffusion models: Anal-ysis, numerics, and applications, in ECMI 2016: Progress in Industrial Mathematics at ECMI 2016 (eds. P. Quintela, P. Barral, D. Gmez, F. J. Pena, J. Rodrguez, P. Salgado and M. E. Vzquez-Mndez), Springer, 2017, 385–392. |
[33] | J. A. Sherratt, Wavefront propagation in a competition equation with a new motility term modeling contact inhibition between cell populations, Proc. Roy. Soc. London Series A Math. Phys. Eng. Sci., 456 (2000), 2365–2386, URL http://www.royalsocietypublishing.org/doi/10.1098/rspa.2000.0616. |
[34] | T. L. Stepien, E. M. Rutter and Y. Kuang, A data-motivated density-dependent diffusion model of in vitro glioblastoma growth, Math. Biosci. Eng., 12 (2015), 1157–1172, URL http://www. ncbi.nlm.nih.gov/pubmed/26775861. |
[35] | E. J. Kostelich, Y. Kuang, J. M. McDaniel, et al., Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors, Biol. Direct, 6 (2011), 64, URL http://biologydirect.biomedcentral.com/articles/10.1186/1745-6150-6-64. |
[36] | J. McDaniel, E. Kostelich, Y. Kuang, et al., Data assimilation in brain tumor models, in Mathemat-ical Methods and Models in Biomedicine (eds. U. Ledzewicz, H. Schttler and A. F. E. Kashdan), Springer, 2013, 233–262. |
[37] | M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001. |
[38] | N. F. Britton, Essential Mathematical Biology, Springer, 2003. |