
Mathematical Biosciences and Engineering, 2019, 16(4): 25622586. doi: 10.3934/mbe.2019129
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A model of HBV infection with intervention strategies: dynamics analysis and numerical simulations
School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, P.R. China
Received: , Accepted: , Published:
References
1. WHO, Hepatitis B, 2014 (revised Agust 2014). Available from: http://www.who.int/meadiacenter /factsheet/fs204/en/index.html.
2. J.Wu, U.Wang, S. Chang, et al., Impacts of a mass vaccination campaign against pandemic H1N1 2009 influenza in Taiwan: a timeseries regression analysis, Int. J. Infect. Dis., 23 (2014), 82–89.
3. Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65–74.
4. Y. Cai, Y. Kang, M. Banerjee, et al., A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463–7502.
5. Q. Wang, L. Zhao, R. Huang, et al., Interaction of media and disease dynamics and its impact on emerging infection management, Discrete Cont. Dyn.B, 20 (2014), 215–230.
6. Y. Xiao, T. Zhao and S. Tang, Dynamics of an infectious diseases with media/psychology induced nonsmooth incidence, Math. Biosci. Eng., 10 (2013), 445–461.
7. M. Brinn, K. Carson, A. Esterman, et al., Mass media interventions for preventing smoking in young people, Cochrane DB Syst. Rev., 11 (2010), CD001006.
8. Q. Li, L. Zhou, M. Zhou, et al, Epidemiology of human infections with avian influenza A(H7N9) virus in China, New Engl. J. Med., 370 (2014), 520–532.
9. WHO, CholeraUnited Republic of Tanzania, 2018. Available from: http://www.who.int/csr/don/ 12january2018choleratanzania/en/.
10. J. Cui, Y. Sun and H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equ., 20 (2018), 31–53.
11. J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage, Rocky MT J. Math., 38 (2008), 1323–1334.
12. L. Zou, W. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis b virus in China, J. Theor. Biol., 262 (2010), 330–338.
13. T. Khan, G. Zaman and M. I. Chohan, The transmission dynamic and optimal control of acute and chronic hepatitis b, J. Biol. Dyn., 11 (2017), 172–189.
14. T. Zhang, K. Wang and X. Zhang, Modeling and analyzing the transmission dynamics of HBV epidemic in Xinjiang, China, PloS One, 10 (2015), e0138765.
15. S. Spencer, Stochastic epidemic models for emerging diseases, PhD thesis, University of Nottingham, 2008.
16. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, 2010.
17. Q. Yang and X. Mao, Extinction and recurrence of multigroup SEIR epidemic models with stochastic perturbations, Nonlinear Anal.Real, 14 (2013), 1434–1456.
18. Q. Liu, D. Jiang, N. Shi, et al., Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay, Discrete Cont. Dyn.  B, 22 (2017), 2479–2500.
19. Y. Cai and W. Wang, Fishhook bifurcation branch in a spatial heterogeneous epidemic model with crossdiffusion, Nonlinear Anal. Real, 30 (2016), 99–125.
20. X. Mao, G. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110.
21. Y. Cai, Y. Kang, M. Banerjee, et al., Complex Dynamics of a hostparasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonlinear Anal. Real, 40 (2018), 444–465.
22. L. Allen, An introduction to stochastic epidemic models, Mathematical Epidemiology, Lect. Notes Math., 1945 (2008), 81–130.
23. K. Bao and Q. Zhang, Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention, Adv. Differ. Equ., 352 (2017), doi:10.1186/s1366201714069.
24. T. Khan, A. Khan and G. Zaman, The extinction and persistence of the stochastic hepatitis B epidemic model, Chaos, Solitons Fract., 108 (2018), 123–128.
25. R. Rudnicki, Longtime behaviour of a stochastic preypredator model, Stoch. Proc. Appl., 108 (2003), 93–107.
26. R. Rudnicki, K. Pichr and M. Tyrankamiska, Markov semigroups and their applications, Lect. Notes Phys., 597 (2002), 215–238.
27. K. Pichr and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668–685.
28. R. Rudnicki, On asymptotic stability and sweeping for Markov operators, B. Pol. Acad. Sci. Math., 43 (1995), 245–262.
29. K. Pichr and R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997), 56–74.
30. R. Rudnicki, Asymptotic properties of the FokkerPlanck equation, Springer Berlin Heidelberg, (1995), 517–521.
31. P. Martin, Statistical physics: Statics, dynamics, and renormalization, World Scientific, 2000.
32. O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, New York, 2000.
33. R. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217–228.
34. F. Baudoin and M. Hairer, A version of Hörmanders theorem for the fractional Brownian motion, Probab. Theory Rel., 139 (2007), 373–395.
35. G. Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Rel., 90 (1991), 377–402.
36. D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)