Research article Special Issues

Sliding mode of compulsory treatment in infectious disease controlling

  • Preventing the infectious disease from breakout and maintaining public health have always been placed at the first place when making public healthy policy. When the epidemic trend of infectious disease arises, compulsory treatment is an efficient pattern to control the rapid spreading. A sliding mode is carried out to evaluate the effect of compulsory treatment in the infectious disease controlling. When the number of infected persons reach a certain level Ic, the policy of compulsory treatment will be carried out at rate f. We analyze the influence of the compulsory treatment rate f and threshold value Ic to commence the control. Finally we investigate the theorems and the existence of the optimality combination.

    Citation: Meng Zhang, Xiaojing Wang, Jingan Cui. Sliding mode of compulsory treatment in infectious disease controlling[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2549-2561. doi: 10.3934/mbe.2019128

    Related Papers:

    [1] Amar Nath Chatterjee, Fahad Al Basir, Yasuhiro Takeuchi . Effect of DAA therapy in hepatitis C treatment — an impulsive control approach. Mathematical Biosciences and Engineering, 2021, 18(2): 1450-1464. doi: 10.3934/mbe.2021075
    [2] Tailei Zhang, Hui Li, Na Xie, Wenhui Fu, Kai Wang, Xiongjie Ding . Mathematical analysis and simulation of a Hepatitis B model with time delay: A case study for Xinjiang, China. Mathematical Biosciences and Engineering, 2020, 17(2): 1757-1775. doi: 10.3934/mbe.2020092
    [3] Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060
    [4] Yuhua Long, Yining Chen . Global stability of a pseudorabies virus model with vertical transmission. Mathematical Biosciences and Engineering, 2020, 17(5): 5234-5249. doi: 10.3934/mbe.2020283
    [5] Xiaowen Xiong, Yanqiu Li, Bingliang Li . Global stability of age-of-infection multiscale HCV model with therapy. Mathematical Biosciences and Engineering, 2021, 18(3): 2182-2205. doi: 10.3934/mbe.2021110
    [6] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019
    [7] Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo . Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level. Mathematical Biosciences and Engineering, 2022, 19(2): 1515-1535. doi: 10.3934/mbe.2022070
    [8] Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483
    [9] Junli Liu . Threshold dynamics of a time-delayed hantavirus infection model in periodic environments. Mathematical Biosciences and Engineering, 2019, 16(5): 4758-4776. doi: 10.3934/mbe.2019239
    [10] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
  • Preventing the infectious disease from breakout and maintaining public health have always been placed at the first place when making public healthy policy. When the epidemic trend of infectious disease arises, compulsory treatment is an efficient pattern to control the rapid spreading. A sliding mode is carried out to evaluate the effect of compulsory treatment in the infectious disease controlling. When the number of infected persons reach a certain level Ic, the policy of compulsory treatment will be carried out at rate f. We analyze the influence of the compulsory treatment rate f and threshold value Ic to commence the control. Finally we investigate the theorems and the existence of the optimality combination.




    [1] A. Schmidt, M. H. Wolff and O. F. Weber, Coronaviruses with Special Emphasis on First Insight Concerning SARS, Birkhäuser Verlag, Basel, Boston, 2005.
    [2] S. Brannan, M. Davies, V. English, et al, Ethics briefings, J. Med. Ethics, 36 (2010), 63.
    [3] S. Cauchemez, C. A. Donnelly, C. Reed, et al, Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States, New Engl. J. Med., 361 (2009), 2619–2627.
    [4] D. Arya, Compulsory treatment and patient responsibility, Australasian Psychiatry, 20 (2012), 472–477.
    [5] K. Neal, Compulsory treatment for infectious disease, The Lancet, 343 (1994), 675.
    [6] T. Day, A. Park, N. Madras, et al, When is quarantine a useful control strategy for emerging infectious diseases?, Am. J. Epidemiol, 163 (2006), 479–485.
    [7] R. M. Anderson, R. M. May, Infectious Diseases of Humans, Dynamics and Control, Oxford University Press, Oxford, 1991.
    [8] O. O'Neill, Informed consent and public health, Philosophical Transactions of the Royal Society of London: Biological Sciences, 359 (2004), 1133–1136.
    [9] G. Richard and T. Cassam, Public health 1: controlling infectious diseaseCthe role of the law, British J. Community Nursing, 10 (2005), 431–435.
    [10] N. Kondo, What has made Japan healthy?–Contributions of local and governmental health policies, Japan Med. Assoc. J., 57 (2014), 24–27.
    [11] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Netherlands, 1988.
    [12] V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems, Mir Publishers, Moscow, 1978.
    [13] V. I. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag Berlin, Heidelberg, 1992.
    [14] C. Edwards and S. K. Spurgeon, Systems and Control Book Series: Vol.7. Sliding Mode Control: Theory and Applications, Taylor and Francis, London, 1998.
    [15] W. J. Chang and F. L. Hsu, Sliding mode fuzzy control for Takagi-Sugeno fuzzy systems with bilinear consequent part subject to multiple constraints, Inform. Sci., 327 (2016), 258–271.
    [16] M. Cui, W. Liu, H. Liu, et al, Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties, Nonlinear Dyn., 82 (2016), 667–683.
    [17] Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model, Nonlinear Anal.-Real, 11 (2010), 4154–4163.
    [18] H. Zhang, M. A. Nussbaum and M. J. Agnew, Development of a sliding mode control model for quiet upright stance, Med. Eng. Phys., 38 (2016), 204–208.
    [19] H. Ren, S. Chen, Y. Zhao, et al., State observer-based sliding mode control for semi-active hydropneumatic suspension, Vehicle Syst. Dyn., 54 (2016), 168–190.
    [20] W. Zhou, Y. Xiao and J. M. Heffernan, A two-thresholds policy to interrupt transmission of West Nile Virus to birds, J. Theor. Biol., 463 (2019), 22–46.
    [21] S. He, S. Tang, Y. Xiao, et al., Stochastic modelling of air pollution impacts on respiratory infection risk, B. Math. Biol., 80 (2018), 3127–3153.
    [22] M. Pournazeri and A. Khajepour, Precise lift control in a new variable valve actuation system using discrete-time sliding mode control, Mech. Mach. Theory, 99 (2016), 217–235.
    [23] Y. Xiao, Y. Zhou and S. Tang, Modelling disease spread in dispersal networks at two levels, Math. Med. Biol., 28 (2011), 227–244.
    [24] Y. Xiao, X. Xu and S. Tang, Sliding mode control of outbreaks of emerging infectious diseases, B. Math. Biol., 74 (2012), 2403–2422.
    [25] A. Handel, I. M. Longini Jr., R. Antia, Neuraminidase inhibitor resistance in influenza: assessing the danger of its generation and spread, PLoS Comput. Biol., 3 (2007), e240. Available from: https://doi.org/10.1371/journal.pcbi.0030240.
    [26] H. W. Hethcote, The mathematics of infectious disease, SIAM Rev., 42 (2000), 599–653.
    [27] B. Pourbohloul, L. A. Meyers, D. M. Skowronski, et al., Modeling control strategies of respiratory pathogens, Emerg. Infect. Dis., 11 (2005), 1249–1256.
    [28] T. C. Germann, K. Kadau, I. M. Longini, et al., Mitigation strategies for pandemic influenza in the United States, Proc. Natl. Acad. Sci. USA., 103 (2006), 5935–5940.
  • This article has been cited by:

    1. F. Nazari, A.B. Gumel, E.H. Elbasha, Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics, 2015, 263, 00255564, 51, 10.1016/j.mbs.2015.02.002
    2. Wei Wang, Wanbiao Ma, Hepatitis C virus infection is blocked by HMGB1: A new nonlocal and time-delayed reaction–diffusion model, 2018, 320, 00963003, 633, 10.1016/j.amc.2017.09.046
    3. A. Cousien, V. C. Tran, S. Deuffic-Burban, M. Jauffret-Roustide, J.-S. Dhersin, Y. Yazdanpanah, Dynamic modelling of hepatitis C virus transmission among people who inject drugs: a methodological review, 2015, 22, 13520504, 213, 10.1111/jvh.12337
    4. David P. Durham, Laura A. Skrip, Robert Douglas Bruce, Silvia Vilarinho, Elamin H. Elbasha, Alison P. Galvani, Jeffrey P. Townsend, The Impact of Enhanced Screening and Treatment on Hepatitis C in the United States, 2016, 62, 1058-4838, 298, 10.1093/cid/civ894
    5. Emily D. Bethea, Qiushi Chen, Chin Hur, Raymond T. Chung, Jagpreet Chhatwal, Should we treat acute hepatitis C? A decision and cost-effectiveness analysis, 2018, 67, 02709139, 837, 10.1002/hep.29611
    6. Lauren E. Cipriano, Jeremy D. Goldhaber-Fiebert, Population Health and Cost-Effectiveness Implications of a “Treat All” Recommendation for HCV: A Review of the Model-Based Evidence, 2018, 3, 2381-4683, 238146831877663, 10.1177/2381468318776634
    7. Wei Wang, Wanbiao Ma, Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling, 2018, 59, 10075704, 488, 10.1016/j.cnsns.2017.11.024
    8. Cheng Ding, Xiaoxiao Liu, Shigui Yang, The value of infectious disease modeling and trend assessment: a public health perspective, 2021, 1478-7210, 1, 10.1080/14787210.2021.1882850
    9. Ignacio Rozada, Daniel Coombs, Viviane D. Lima, Conditions for eradicating hepatitis C in people who inject drugs: A fibrosis aware model of hepatitis C virus transmission, 2016, 395, 00225193, 31, 10.1016/j.jtbi.2016.01.030
    10. Karen Van Nuys, Ronald Brookmeyer, Jacquelyn W. Chou, David Dreyfus, Douglas Dieterich, Dana P. Goldman, Broad Hepatitis C Treatment Scenarios Return Substantial Health Gains, But Capacity Is A Concern, 2015, 34, 0278-2715, 1666, 10.1377/hlthaff.2014.1193
    11. Ashley B Pitcher, Annick Borquez, Britt Skaathun, Natasha K Martin, Mathematical modeling of hepatitis c virus (HCV) prevention among people who inject drugs: A review of the literature and insights for elimination strategies, 2019, 481, 00225193, 194, 10.1016/j.jtbi.2018.11.013
    12. Ruiqing Shi, Yunting Cui, Global analysis of a mathematical model for Hepatitis C virus transmissions, 2016, 217, 01681702, 8, 10.1016/j.virusres.2016.02.006
    13. Mingwang Shen, Yanni Xiao, Weike Zhou, Zhen Li, Global Dynamics and Applications of an Epidemiological Model for Hepatitis C Virus Transmission in China, 2015, 2015, 1026-0226, 1, 10.1155/2015/543029
    14. A. Nwankwo, D. Okuonghae, Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis, 2018, 80, 0092-8240, 437, 10.1007/s11538-017-0384-0
    15. Yao Wang, Zeyu Zhao, Mingzhai Wang, Mikah Ngwanguong Hannah, Qingqing Hu, Jia Rui, Xingchun Liu, Yuanzhao Zhu, Jingwen Xu, Meng Yang, Jing-An Cui, Yanhua Su, Benhua Zhao, Tianmu Chen, The transmissibility of hepatitis C virus: a modelling study in Xiamen City, China, 2020, 148, 0950-2688, 10.1017/S0950268820002885
    16. M. E. Woode, M. Abu‐Zaineh, J. Perriëns, F. Renaud, S. Wiktor, J.‐P. Moatti, Potential market size and impact of hepatitis C treatment in low‐ and middle‐income countries, 2016, 23, 1352-0504, 522, 10.1111/jvh.12516
    17. Oluwasegun M. Ibrahim, Daniel Okuonghae, Monday N.O. Ikhile, Mathematical Modeling of the Population Dynamics of Age-Structured Criminal Gangs with Correctional Intervention Measures, 2022, 107, 0307904X, 39, 10.1016/j.apm.2022.02.005
    18. S. P. Rajasekar, M. Pitchaimani, Quanxin Zhu, Probing a Stochastic Epidemic Hepatitis C Virus Model with a Chronically Infected Treated Population, 2022, 42, 0252-9602, 2087, 10.1007/s10473-022-0521-1
    19. Louiza Tabharit, Maghnia Hamou Maamar, 2021, Mathematical Modeling of Chronic Hepatitis C Treatment’s Effect on the Evolution of its Complications, 978-1-6654-4171-1, 1, 10.1109/ICRAMI52622.2021.9585963
    20. Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.1
    21. Baolin Li, Fengqin Zhang, Xia Wang, A delayed diffusive HBV model with nonlinear incidence and CTL immune response, 2022, 45, 0170-4214, 11930, 10.1002/mma.8547
    22. Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9
    23. Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo, Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level, 2021, 19, 1551-0018, 1515, 10.3934/mbe.2022070
    24. R. Rakkiyappan, V. Preethi Latha, F. A. Rihan, Global Dynamics of a Fractional-order Ebola Model with Delayed Immune Response on Complex Networks, 2021, 91, 0369-8203, 681, 10.1007/s40010-021-00756-7
    25. Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang, A nonlinear HCV model in deterministic and randomly fluctuating environments, 2023, 46, 0170-4214, 4644, 10.1002/mma.8792
    26. Nauman Ahmed, Ali Raza, Ali Akgül, Zafar Iqbal, Muhammad Rafiq, Muhammad Ozair Ahmad, Fahd Jarad, New applications related to hepatitis C model, 2022, 7, 2473-6988, 11362, 10.3934/math.2022634
    27. Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.2
    28. Vuk Vujović, Influence of environmental fluctuations on Hepatitis C transmission, 2022, 191, 03784754, 203, 10.1016/j.matcom.2021.08.008
    29. Robert B Hood, Alison H Norris, Abigail Shoben, William C Miller, Randall E Harris, Laura W Pomeroy, Forecasting Hepatitis C Virus Status for Children in the United States: A Modeling Study, 2024, 1058-4838, 10.1093/cid/ciae157
    30. Parvaiz Ahmad Naik, Mehmet Yavuz, Sania Qureshi, Mehraj-ud-din Naik, Kolade M. Owolabi, Amanullah Soomro, Abdul Hamid Ganie, Memory impacts in hepatitis C: A global analysis of a fractional-order model with an effective treatment, 2024, 01692607, 108306, 10.1016/j.cmpb.2024.108306
    31. Shewafera Wondimagegnhu Teklu, Tsegaye Simon Lachamo, Tibebu Tulu Guya, Analyses of a stage structure hepatitis c virus compartmental model with optimal control theory, 2025, 11, 2363-6203, 10.1007/s40808-025-02288-0
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4826) PDF downloads(749) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog