Mathematical Biosciences and Engineering, 2013, 10(4): 1227-1251. doi: 10.3934/mbe.2013.10.1227.

Primary: 58F15, 58F17; Secondary: 53C35.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mitigation of epidemics in contact networks through optimal contact adaptation

1. K-State Epicenter, Department of Electrical and Computer Engineering, Kansas State University, 2061 Rathbone Hall, Manhattan, KS 66506-5204

   

This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Spread of epidemics; network-based approach; behavioral responses.; adaptive contact networks; optimal control of epidemics

Citation: Mina Youssef, Caterina Scoglio. Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences and Engineering, 2013, 10(4): 1227-1251. doi: 10.3934/mbe.2013.10.1227

References

  • 1. BMC Infectious Diseases, 10 (2010), 190.
  • 2. Emerging Health Threats Journal, 2 (2009), e11.
  • 3. Science, 286 (1999), 509-512.
  • 4. in "Proceedings of SuperComputing 08 International Conference for High Performance Computing," Networking Storage and Analysis. Austin, Texas, November 15-21, (2008).
  • 5. AI Magazine, 31 (2009), 75-87.
  • 6. Optimal Control Applications and Methods, 21 (2000), 269-285.
  • 7. The Society for the Study of Evolution: International Journal of Organic Evolution, 59 (2005).
  • 8. Mathematical Biosciences, 231 (2011), 126-134.
  • 9. Int. J. Bifurcation and Chaos, 17 (2007), 2491-2500.
  • 10. Cambridge, Studies in Mathematical Biology, 1999.
  • 11. Scientific Reports 2, Article number 632, 2012
  • 12. in "Social Computing, Behavioral-Cultural Modeling And Prediction," (Ed. S. Yang), Berlin Heidelberg, Springer, 7227 (2012), 172-179.
  • 13. Nature, 429 (2004), 180-184.
  • 14. Proceedings of the National Academy of Sciences, 108 (2011), 6306-6311.
  • 15. Proceedings of the National Academy of Sciences, 104 (2007), 4984-4989.
  • 16. Mathematical Biosciences, 232 (2011), 110-115.
  • 17. Proceedings of the National Academy of Sciences, 103 (2006), 5935-5940.
  • 18. Journal of the Royal Society Interface, 5 (2010), e11569.
  • 19. Phys. Rev. Lett., 96 (2006), 208701.
  • 20. BMC Medical Informatics and Decision Making, 12 (2012), 132.
  • 21. IEEE Intelligent Control and Automation WCICA, (2006).
  • 22. Proceedings of IEEE INFOCOM 2011, Shanghai, China, (2011).
  • 23. Journal of the Royal Society Interface, 5 (2008), 791-799.
  • 24. Phys. Rev. E, 83 (2011), 026102,.
  • 25. PLoS ONE, 6 (2011), e22461.
  • 26. Phys. Rev. E, 82 (2010), 036116,
  • 27. PLoS ONE, 6 (2011), e24577.
  • 28. Journal of Theoretical Biology, 262 (2010), 757-763.
  • 29. IEEE/ACM Transaction on Networking, 17 (2009), 1-14.
  • 30. Eur. Phys. J. B, 26 (2002), 521-529.
  • 31. SIAM Review, 45 (2003), 167-256.
  • 32. Interscience, 4 (1962).
  • 33. ECML-PKDD 2010, Barcelona, Spain 2010.
  • 34. 8 (2011), 141-170.
  • 35. PLOS Computational Biology, 6 (2010), e1000793.
  • 36. Mathematical Biosciences, 230 (2011), 67-78.
  • 37. Interface Journal of the Royal Society, 6 (2009), 1135-1144.
  • 38. PLoS ONE, 5 (2010), e11569.
  • 39. BMC Med, 9 (2011).
  • 40. Euro Surveillance, 14 (2009) .
  • 41. Proceedings of the Royal Society B, 274 (2011), 2925-2934.
  • 42. JTB: Journal of Theoretical Biology, Elsevier, 283 (2011), 136-144.

 

This article has been cited by

  • 1. Kundan Kandhway, Joy Kuri, Campaigning in Heterogeneous Social Networks: Optimal Control of SI Information Epidemics, IEEE/ACM Transactions on Networking, 2016, 24, 1, 383, 10.1109/TNET.2014.2361801
  • 2. Mina Youssef, Caterina Scoglio, Optimal Network-Based Intervention in the Presence of Undetectable Viruses, IEEE Communications Letters, 2014, 18, 8, 1347, 10.1109/LCOMM.2014.2325026
  • 3. Fanni Sélley, Ádám Besenyei, Istvan Z. Kiss, Péter L. Simon, Dynamic Control of Modern, Network-Based Epidemic Models, SIAM Journal on Applied Dynamical Systems, 2015, 14, 1, 168, 10.1137/130947039
  • 4. Kundan Kandhway, Joy Kuri, Optimal Resource Allocation Over Time and Degree Classes for Maximizing Information Dissemination in Social Networks, IEEE/ACM Transactions on Networking, 2016, 24, 5, 3204, 10.1109/TNET.2015.2512541
  • 5. Kundan Kandhway, Joy Kuri, Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 7, 1099, 10.1109/TSMC.2016.2531690
  • 6. Ping Hu, Li Ding, Tarik Hadzibeganovic, Individual-based optimal weight adaptation for heterogeneous epidemic spreading networks, Communications in Nonlinear Science and Numerical Simulation, 2018, 63, 339, 10.1016/j.cnsns.2018.04.003
  • 7. István Z. Kiss, Joel C. Miller, Péter L. Simon, , Mathematics of Epidemics on Networks, 2017, Chapter 1, 1, 10.1007/978-3-319-50806-1_1
  • 8. F.D. Sahneh, F.N. Chowdhury, G. Brase, C.M. Scoglio, J.M. Hyman, F. Milner, J. Saldaña, Individual-based Information Dissemination in Multilayer Epidemic Modeling, Mathematical Modelling of Natural Phenomena, 2014, 9, 2, 136, 10.1051/mmnp/20149209
  • 9. István Z. Kiss, Joel C. Miller, Péter L. Simon, , Mathematics of Epidemics on Networks, 2017, Chapter 8, 273, 10.1007/978-3-319-50806-1_8
  • 10. Damian Clancy, , Wiley StatsRef: Statistics Reference Online, 2015, 1, 10.1002/9781118445112.stat05267.pub2
  • 11. Ágnes Bodó, Péter Simon, Stochastic simulation control of epidemic propagation on networks, Electronic Journal of Qualitative Theory of Differential Equations, 2018, 41, 1, 10.14232/ejqtde.2018.1.41
  • 12. James D. Pleuss, Jessica L. Heier Stamm, Jason D. Ellis, Using Simulated Annealing to Improve the Information Dissemination Network Structure of a Foreign Animal Disease Outbreak Response, Journal of Homeland Security and Emergency Management, 2018, 15, 3, 10.1515/jhsem-2017-0008
  • 13. Yujing Liu, Li Ding, Xuming An, Ping Hu, Fuying Du, Epidemic spreading on midscopic multi-layer network with optimal control mechanism, Physica A: Statistical Mechanics and its Applications, 2020, 537, 122775, 10.1016/j.physa.2019.122775

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved