Mathematical Biosciences and Engineering, 2013, 10(4): 1207-1226. doi: 10.3934/mbe.2013.10.1207.

Primary: 92C15; Secondary: 80A30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks

1. Department of Mathematical Sciences, Northern Illinois University, Dekalb, IL 60115
2. Department of Mathematics and Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706

We describe a necessary condition for zero-eigenvalue Turing instability, i.e., Turing instability arising from a real eigenvalue changing sign from negative to positive, for general chemical reaction networks modeled with mass-action kinetics. The reaction mechanisms are represented by the species-reaction graph (SR graph), which is a bipartite graph with different nodes representing species and reactions. If the SR graph satisfies certain conditions, similar to the conditions for ruling out multiple equilibria in spatially homogeneous differential equations systems, then the corresponding mass-action reaction-diffusion system cannot exhibit zero-eigenvalue Turing instability for any parameter values.On the other hand, if the graph-theoretic condition for ruling out zero-eigenvalue Turing instability is not satisfied, then the corresponding model may display zero-eigenvalue Turing instability for some parameter values. The technique is illustrated with a model of a bifunctional enzyme.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Chemical reaction networks; SR graph; Turing instability.; reaction-diffusion systems

Citation: Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences and Engineering, 2013, 10(4): 1207-1226. doi: 10.3934/mbe.2013.10.1207

References

  • 1. Comm. in Math. Sciences, 7 (2009), 867-900.
  • 2. Adv. in Appl. Math., 44 (2010), 168-184.
  • 3. Partial differential equations and dynamical systems, 85-133, Res. Notes in Math., 101, Pitman, Boston, MA, 1984.
  • 4. Ph.D thesis, Ohio State University, 2002.
  • 5. SIAM J. Appl. Math., 65 (2005), 1526-1546.
  • 6. SIAM J. Appl. Math., 66 (2006), 1321-1338.
  • 7. PNAS, 103 (2006), 8697-8702.
  • 8. J. Math. Chem., 46 (2009), 322-339.
  • 9. Arch. Rational Mech. Anal., 49 (1972) 187-194.
  • 10. Written Version of Lectures Given at the Mathematical Research Center, University of Wisconsin, Madison, WI, 1979. Available at http://www.chbmeng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks.
  • 11. Arch. Rational Mech. Anal., 132 (1995), 311-370.
  • 12. Interscience, New York, 1960.
  • 13. FEBS Lett., 217 (1987), 212-215.
  • 14. FEBS Lett., 532 (2002), 295-299.
  • 15. Arch. Rational Mech. Anal., 47 (1972), 81-116.
  • 16. Academic Press, Orlando, 1985.
  • 17. Proc. IEEE, 96 (2008), 1281-1291.
  • 18. J. Math. Biol., 55 (2007), 61-86.
  • 19. J. Chem. Phys., 125 (2006), 204102.
  • 20. 2nd ed., Springer-Verlag, New York, 1993.
  • 21. J. Math. Biol., 41 (2000), 493-512.
  • 22. Lin. Alg. Appl., 398 (2005), 69-74.
  • 23. Math. Biosci., 240 (2012), 92-113.
  • 24. J. R. Soc. Interface, 2 (2005), 419-430.
  • 25. Bull. Math. Biol., 57 (1995), 247-276.
  • 26. Phil. Trans. R Soc. London B, 237 (1952), 37-72.
  • 27. (Russian), Nauka, Moscow, 1987, 57-102.
  • 28. J. Math. Anal. Appl., 254 (2001), 138-153.
  • 29. arXiv:1202.3621, (2012).

 

This article has been cited by

  • 1. Polly Y. Yu, Gheorghe Craciun, Mathematical Analysis of Chemical Reaction Systems, Israel Journal of Chemistry, 2018, 10.1002/ijch.201800003

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved