Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Evolution of dispersal and the ideal free distribution

1. Department of Mathematics, University of Miami, P. O . Box 249085, Coral Gables, FL 33124-4250
2. Department of Mathematics, The Ohio State State University, Columbus, Ohio 43210

A general question in the study of the evolution of dispersal is what kind of dispersal strategies can convey competitive advantages and thus will evolve. We consider a two species competition model in which the species are assumed to have the same population dynamics but different dispersal strategies. Both species disperse by random diffusion and advection along certain gradients, with the same random dispersal rates but different advection coefficients. We found a conditional dispersal strategy which results in the ideal free distribution of species, and show that it is a local evolutionarily stable strategy. We further show that this strategy is also a global convergent stable strategy under suitable assumptions, and our results illustrate how the evolution of conditional dispersal can lead to an ideal free distribution. The underlying biological reason is that the species with this particular dispersal strategy can perfectly match the environmental resource, which leads to its fitness being equilibrated across the habitats.
  Article Metrics

Keywords ideal free distribution; evolution of dispersal; reaction-diffusion-advection.

Citation: Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences and Engineering, 2010, 7(1): 17-36. doi: 10.3934/mbe.2010.7.17


This article has been cited by

  • 1. King-Yeung Lam, Daniel Munther, Invading the ideal free distribution, Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 10, 3219, 10.3934/dcdsb.2014.19.3219
  • 2. Kousuke Kuto, Tohru Tsujikawa, Limiting structure of steady-states to the Lotka–Volterra competition model with large diffusion and advection, Journal of Differential Equations, 2015, 258, 5, 1801, 10.1016/j.jde.2014.11.016
  • 3. Tuomas Nurmi, Kalle Parvinen, Vesa Selonen, The evolution of site-selection strategy during dispersal, Journal of Theoretical Biology, 2017, 425, 11, 10.1016/j.jtbi.2017.05.002
  • 4. Jie Wang, Cui-Ping Cheng, Shuibo Huang, Evolution of dispersal in a spatially periodic integrodifference model, Nonlinear Analysis: Real World Applications, 2016, 32, 10, 10.1016/j.nonrwa.2016.04.001
  • 5. E. Braverman, Md. Kamrujjaman, Lotka systems with directed dispersal dynamics: Competition and influence of diffusion strategies, Mathematical Biosciences, 2016, 279, 1, 10.1016/j.mbs.2016.06.007
  • 6. De Tang, Li Ma, Dynamical behavior of a general reaction–diffusion–advection model for two competing species, Computers & Mathematics with Applications, 2018, 75, 4, 1128, 10.1016/j.camwa.2017.10.026
  • 7. Robert Stephen Cantrell, Chris Cosner, Yuan Lou, Evolutionary stability of ideal free dispersal strategies in patchy environments, Journal of Mathematical Biology, 2012, 65, 5, 943, 10.1007/s00285-011-0486-5
  • 8. Chris Cosner, Andrew L. Nevai, Spatial population dynamics in a producer-scrounger model, Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 6, 1591, 10.3934/dcdsb.2015.20.1591
  • 9. Hailiang Liu, Hui Yu, Entropy/energy stable schemes for evolutionary dispersal models, Journal of Computational Physics, 2014, 256, 656, 10.1016/j.jcp.2013.08.032
  • 10. Yuan Lou, Frithjof Lutscher, Evolution of dispersal in open advective environments, Journal of Mathematical Biology, 2014, 69, 6-7, 1319, 10.1007/s00285-013-0730-2
  • 11. King-Yeung Lam, Yuan Lou, Frithjof Lutscher, Evolution of dispersal in closed advective environments, Journal of Biological Dynamics, 2015, 9, sup1, 188, 10.1080/17513758.2014.969336
  • 12. Peng Zhou, Dongmei Xiao, Global dynamics of a classical Lotka–Volterra competition–diffusion–advection system, Journal of Functional Analysis, 2018, 275, 2, 356, 10.1016/j.jfa.2018.03.006
  • 13. Xinfu Chen, King-Yeung Lam, Yuan Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete and Continuous Dynamical Systems, 2012, 32, 11, 3841, 10.3934/dcds.2012.32.3841
  • 14. King-Yeung Lam, Yuan Lou, Evolution of conditional dispersal: evolutionarily stable strategies in spatial models, Journal of Mathematical Biology, 2014, 68, 4, 851, 10.1007/s00285-013-0650-1
  • 15. Yong-Jung Kim, Ohsang Kwon, Fang Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, Journal of Mathematical Biology, 2014, 68, 6, 1341, 10.1007/s00285-013-0674-6
  • 16. Chris Cosner, Michael Winkler, Well-posedness and qualitative properties of a dynamical model for the ideal free distribution, Journal of Mathematical Biology, 2014, 69, 6-7, 1343, 10.1007/s00285-013-0733-z
  • 17. L. Korobenko, E. Braverman, On evolutionary stability of carrying capacity driven dispersal in competition with regularly diffusing populations, Journal of Mathematical Biology, 2014, 69, 5, 1181, 10.1007/s00285-013-0729-8
  • 18. L. Altenberg, Resolvent positive linear operators exhibit the reduction phenomenon, Proceedings of the National Academy of Sciences, 2012, 109, 10, 3705, 10.1073/pnas.1113833109
  • 19. Yuan Lou, Daniel Munther, Dynamics of a three species competition model, Discrete and Continuous Dynamical Systems, 2012, 32, 9, 3099, 10.3934/dcds.2012.32.3099
  • 20. Robert Stephen Cantrell, Chris Cosner, Yuan Lou, Sebastian J. Schreiber, Evolution of natal dispersal in spatially heterogenous environments, Mathematical Biosciences, 2017, 283, 136, 10.1016/j.mbs.2016.11.003
  • 21. Isabel Averill, Yuan Lou, Dan Munther, On several conjectures from evolution of dispersal, Journal of Biological Dynamics, 2012, 6, 2, 117, 10.1080/17513758.2010.529169
  • 22. E. Braverman, Md. Kamrujjaman, L. Korobenko, Competitive spatially distributed population dynamics models: Does diversity in diffusion strategies promote coexistence?, Mathematical Biosciences, 2015, 264, 63, 10.1016/j.mbs.2015.03.004
  • 23. Yoav Ram, Lee Altenberg, Uri Liberman, Marcus W. Feldman, Generation of variation and a modified mean fitness principle: Necessity is the mother of genetic invention, Theoretical Population Biology, 2018, 10.1016/j.tpb.2018.02.004
  • 24. Yuan Lou, Xiao-Qiang Zhao, Peng Zhou, Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments, Journal de Mathématiques Pures et Appliquées, 2018, 10.1016/j.matpur.2018.06.010
  • 25. Annalisa Massaccesi, Enrico Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, Journal of Mathematical Biology, 2017, 74, 1-2, 113, 10.1007/s00285-016-1019-z
  • 26. L. Korobenko, Md. Kamrujjaman, E. Braverman, Persistence and extinction in spatial models with a carrying capacity driven diffusion and harvesting, Journal of Mathematical Analysis and Applications, 2013, 399, 1, 352, 10.1016/j.jmaa.2012.09.057
  • 27. Yong-Jung Kim, Ohsang Kwon, Fang Li, Evolution of Dispersal Toward Fitness, Bulletin of Mathematical Biology, 2013, 75, 12, 2474, 10.1007/s11538-013-9904-8
  • 28. Chang-Hong Wu, Biased movement and the ideal free distribution in some free boundary problems, Journal of Differential Equations, 2018, 10.1016/j.jde.2018.06.002
  • 29. Richard Gejji, Yuan Lou, Daniel Munther, Justin Peyton, Evolutionary Convergence to Ideal Free Dispersal Strategies and Coexistence, Bulletin of Mathematical Biology, 2012, 74, 2, 257, 10.1007/s11538-011-9662-4
  • 30. Sebastian J. Schreiber, The Evolution of Patch Selection in Stochastic Environments, The American Naturalist, 2012, 180, 1, 17, 10.1086/665655
  • 31. L. Korobenko, E. Braverman, On logistic models with a carrying capacity dependent diffusion: Stability of equilibria and coexistence with a regularly diffusing population, Nonlinear Analysis: Real World Applications, 2012, 13, 6, 2648, 10.1016/j.nonrwa.2011.12.027
  • 32. Lee Altenberg, The evolution of dispersal in random environments and the principle of partial control, Ecological Monographs, 2012, 82, 3, 297, 10.1890/11-1136.1
  • 33. William F. Fagan, Eliezer Gurarie, Sharon Bewick, Allison Howard, Robert Stephen Cantrell, Chris Cosner, Perceptual Ranges, Information Gathering, and Foraging Success in Dynamic Landscapes, The American Naturalist, 2017, 189, 5, 474, 10.1086/691099
  • 34. Chris Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete and Continuous Dynamical Systems, 2013, 34, 5, 1701, 10.3934/dcds.2014.34.1701
  • 35. Simone Pigolotti, Roberto Benzi, Competition between fast- and slow-diffusing species in non-homogeneous environments, Journal of Theoretical Biology, 2016, 395, 204, 10.1016/j.jtbi.2016.01.033
  • 36. Daniel Munther, The ideal free strategy with weak Allee effect, Journal of Differential Equations, 2013, 254, 4, 1728, 10.1016/j.jde.2012.11.010
  • 37. Jack W. Bradbury, Sandra L. Vehrencamp, Kenneth E. Clifton, The ideal free antelope: foraging dispersions, Behavioral Ecology, 2015, 26, 5, 1303, 10.1093/beheco/arv078
  • 38. Chris Cosner, Juan Dávila, Salomé Martínez, Evolutionary stability of ideal free nonlocal dispersal, Journal of Biological Dynamics, 2012, 6, 2, 395, 10.1080/17513758.2011.588341
  • 39. Theodore E. Galanthay, Samuel M. Flaxman, Generalized Movement Strategies for Constrained Consumers: Ignoring Fitness Can Be Adaptive, The American Naturalist, 2012, 179, 4, 475, 10.1086/664625
  • 40. Heather Finotti, Suzanne Lenhart, Tuoc Van Phan, Optimal control of advective direction in reaction-diffusion population models, Evolution Equations and Control Theory, 2012, 1, 1, 81, 10.3934/eect.2012.1.81
  • 41. Sebastian Novak, Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution, Ecology and Evolution, 2014, 4, 24, 4589, 10.1002/ece3.1289
  • 42. King-Yeung Lam, Limiting Profiles of Semilinear Elliptic Equations with Large Advection in Population Dynamics II, SIAM Journal on Mathematical Analysis, 2012, 44, 3, 1808, 10.1137/100819758
  • 43. Song Liang, Yuan Lou, On the dependence of population size upon random dispersal rate, Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 8, 2771, 10.3934/dcdsb.2012.17.2771
  • 44. Tuomas Nurmi, Kalle Parvinen, Vesa Selonen, Joint evolution of dispersal propensity and site selection in structured metapopulation models, Journal of Theoretical Biology, 2018, 444, 50, 10.1016/j.jtbi.2018.02.011
  • 45. M.C. Tanzy, V.A. Volpert, A. Bayliss, M.E. Nehrkorn, A Nagumo-type model for competing populations with nonlocal coupling, Mathematical Biosciences, 2015, 263, 70, 10.1016/j.mbs.2015.01.014
  • 46. Vlastimil Křivan, Debaldev Jana, Effects of animal dispersal on harvesting with protected areas, Journal of Theoretical Biology, 2015, 364, 131, 10.1016/j.jtbi.2014.09.010
  • 47. Mark Broom, Jan Rychtář, Ideal Cost-Free Distributions in Structured Populations for General Payoff Functions, Dynamic Games and Applications, 2018, 8, 1, 79, 10.1007/s13235-016-0204-4
  • 48. E. Braverman, Md. Kamrujjaman, Competitive–cooperative models with various diffusion strategies, Computers & Mathematics with Applications, 2016, 72, 3, 653, 10.1016/j.camwa.2016.05.017
  • 49. M.C. Tanzy, V.A. Volpert, A. Bayliss, M.E. Nehrkorn, Stability and pattern formation for competing populations with asymmetric nonlocal coupling, Mathematical Biosciences, 2013, 246, 1, 14, 10.1016/j.mbs.2013.09.002
  • 50. A.N. Gorban, N. Çabukoǧlu, Basic model of purposeful kinesis, Ecological Complexity, 2018, 33, 75, 10.1016/j.ecocom.2018.01.002
  • 51. Robert Stephen Cantrell, Chris Cosner, Yuan Lou, Chao Xie, Random dispersal versus fitness-dependent dispersal, Journal of Differential Equations, 2013, 254, 7, 2905, 10.1016/j.jde.2013.01.012
  • 52. Theodore E. Galanthay, Mathematical study of the effects of travel costs on optimal dispersal in a two-patch model, Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 6, 1625, 10.3934/dcdsb.2015.20.1625
  • 53. Martin Golubitsky, Wenrui Hao, King-Yeung Lam, Yuan Lou, Dimorphism by Singularity Theory in a Model for River Ecology, Bulletin of Mathematical Biology, 2017, 79, 5, 1051, 10.1007/s11538-017-0268-3
  • 54. Avner Friedman, PDE problems arising in mathematical biology, Networks and Heterogeneous Media, 2012, 7, 4, 691, 10.3934/nhm.2012.7.691
  • 55. Steven N. Evans, Alexandru Hening, Sebastian J. Schreiber, Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments, Journal of Mathematical Biology, 2015, 71, 2, 325, 10.1007/s00285-014-0824-5
  • 56. Robert Stephen Cantrell, Chris Cosner, Salomé Martínez, Nicolás Torres, On a competitive system with ideal free dispersal, Journal of Differential Equations, 2018, 265, 8, 3464, 10.1016/j.jde.2018.05.008
  • 57. Robert StephenCantrell, Chris Cosner, Evolutionary stability of ideal free dispersal under spatial heterogeneity and time periodicity, Mathematical Biosciences, 2018, 10.1016/j.mbs.2018.09.002
  • 58. Robert Stephen Cantrell, Chris Cosner, Mark A. Lewis, Yuan Lou, Evolution of dispersal in spatial population models with multiple timescales, Journal of Mathematical Biology, 2018, 10.1007/s00285-018-1302-2
  • 59. Elena Braverman, Ilia Ilmer, On the interplay of harvesting and various diffusion strategies for spatially heterogeneous populations, Journal of Theoretical Biology, 2019, 10.1016/j.jtbi.2019.01.024
  • 60. Sebastian Novak, Richard Kollár, Spatial Gene Frequency Waves Under Genotype-Dependent Dispersal, Genetics, 2017, 205, 1, 367, 10.1534/genetics.116.193946
  • 61. Gabriel Maciel, Chris Cosner, Robert Stephen Cantrell, Frithjof Lutscher, Evolutionarily stable movement strategies in reaction–diffusion models with edge behavior, Journal of Mathematical Biology, 2019, 10.1007/s00285-019-01339-2
  • 62. De Tang, Peng Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, Journal of Differential Equations, 2019, 10.1016/j.jde.2019.09.003
  • 63. Robert Stephen Cantrell, Chris Cosner, Salomé Martínez, Persistence for a Two-Stage Reaction-Diffusion System, Mathematics, 2020, 8, 3, 396, 10.3390/math8030396
  • 64. Li Ma, De Tang, Existence and Stability of Stationary States of a Reaction–Diffusion-Advection Model for Two Competing Species, International Journal of Bifurcation and Chaos, 2020, 30, 05, 2050065, 10.1142/S0218127420500650
  • 65. Hsin-Yi Lin, William F. Fagan, Pierre-Emmanuel Jabin, Memory-driven movement model for periodic migrations, Journal of Theoretical Biology, 2020, 110486, 10.1016/j.jtbi.2020.110486

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved