Research article

Existence, continuous dependence and finite time stability for Riemann-Liouville fractional differential equations with a constant delay

  • Received: 24 November 2019 Accepted: 31 March 2020 Published: 21 April 2020
  • MSC : 34A08, 34A37

  • Non-linear scalar Riemann-Liouville fractional differential equation with a constant delay is studied on a finite interval. An initial value problem is set up in appropriate way combining the idea of the initial time interval in ordinary differential equations with delays and the properties of Riemann-Liouville fractional derivatives. The mild solution of the studied initial value problem is defined. The existence, uniqueness, continuous dependence on the initial functions, finite time stability of the mild solutions are investigated.

    Citation: Snezhana Hristova, Antonia Dobreva. Existence, continuous dependence and finite time stability for Riemann-Liouville fractional differential equations with a constant delay[J]. AIMS Mathematics, 2020, 5(4): 3809-3824. doi: 10.3934/math.2020247

    Related Papers:

    [1] Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini . The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1(4): 515-535. doi: 10.3934/nhm.2006.1.515
    [2] M.A.J Chaplain, G. Lolas . Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1(3): 399-439. doi: 10.3934/nhm.2006.1.399
    [3] A. Chauviere, T. Hillen, L. Preziosi . Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2(2): 333-357. doi: 10.3934/nhm.2007.2.333
    [4] Marco Scianna, Luca Munaron . Multiscale model of tumor-derived capillary-like network formation. Networks and Heterogeneous Media, 2011, 6(4): 597-624. doi: 10.3934/nhm.2011.6.597
    [5] Nicola Bellomo, Raluca Eftimie, Guido Forni . What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 2024, 19(2): 655-681. doi: 10.3934/nhm.2024029
    [6] Kenneth H. Karlsen, Süleyman Ulusoy . On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181
    [7] Peter W. Bates, Yu Liang, Alexander W. Shingleton . Growth regulation and the insulin signaling pathway. Networks and Heterogeneous Media, 2013, 8(1): 65-78. doi: 10.3934/nhm.2013.8.65
    [8] Urszula Ledzewicz, Heinz Schättler, Shuo Wang . On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14(1): 131-147. doi: 10.3934/nhm.2019007
    [9] Andrea Tosin . Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks and Heterogeneous Media, 2008, 3(1): 43-83. doi: 10.3934/nhm.2008.3.43
    [10] Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003
  • Non-linear scalar Riemann-Liouville fractional differential equation with a constant delay is studied on a finite interval. An initial value problem is set up in appropriate way combining the idea of the initial time interval in ordinary differential equations with delays and the properties of Riemann-Liouville fractional derivatives. The mild solution of the studied initial value problem is defined. The existence, uniqueness, continuous dependence on the initial functions, finite time stability of the mild solutions are investigated.




    [1] H. Zhang, R. Ye, S. Liu, et al. LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays, Int. J. Syst. Sci., 49 (2018), 537-545. doi: 10.1080/00207721.2017.1412534
    [2] W. Zhang, J. Cao, R. Wu, et al. Lag projective synchronization of fractional-order delayed chaotic systems, J. Franklin Institute, 356 (2019), 1522-1534. doi: 10.1016/j.jfranklin.2018.10.024
    [3] W. Zhang, H. Zhang, J. Cao, et al. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays, Neural Networks, 110 (2019), 186-198. doi: 10.1016/j.neunet.2018.12.004
    [4] P. Dorato, Short time stability in linear time-varying systems, Proc. IRE Int. Convention Record, 4 (1961), 83-87.
    [5] D. F. Luo, Z. G. Luo, Uniqueness and novel finite-time stability of solutions for a class of nonlinear fractional delay difference systems, Discr. Dynam, Nature Soc., 2018 (2018), 1-7.
    [6] G. C. Wu, D. Baleanu, S. D. Zeng, Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion, Commun. Nonl. Sci. Numer. Simul., 57 (2018), 299-308. doi: 10.1016/j.cnsns.2017.09.001
    [7] V. N. Phat, N. T. Thanh, New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality approach, Appl. Math. Lett., 83 (2018), 169-175. doi: 10.1016/j.aml.2018.03.023
    [8] D. F. Luo, Z. G. Luo, Existence and finite-time stability of solutions for a class of nonlinear fractional differential equations with time-varying delays and non-instantaneous impulses, Adv. Diff. Eq., 155, 2019.
    [9] D. Qian, C. Li, R. P. Agarwal, et al. Stability analysis of fractional differential system with Riemann-Liouville derivative, Math. Comput. Modell., 52 (2010), 862-874. doi: 10.1016/j.mcm.2010.05.016
    [10] M. Li, J. Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett., 64 (2017), 170-176. doi: 10.1016/j.aml.2016.09.004
    [11] M. Li, J. R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254-265.
    [12] M. Li, J. R. Wang, Finite time stability and relative controllability of Riemann-Liouville fractional delay differential equations, Math. Meth. Appl. Sci., 2019 (2019), 1-17.
    [13] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2010.
    [14] I. Podlubny, Fractional Differential Equations, Academic Press: San Diego, 1999.
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [16] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fracnal differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061
    [17] R. Agarwal, S. Hristova, D. O'Regan, Explicit solutions of initial value problems for linear scalar Riemann-Liouville fractional differential equations with a constant delay, Mathematics, 8 (2020), 1-14.
  • This article has been cited by:

    1. Jonathan F. Li, John Lowengrub, The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model, 2014, 343, 00225193, 79, 10.1016/j.jtbi.2013.10.008
    2. Michael Welter, Heiko Rieger, 2016, Chapter 3, 978-3-319-42021-9, 31, 10.1007/978-3-319-42023-3_3
    3. N. BELLOMO, N. K. LI, P. K. MAINI, ON THE FOUNDATIONS OF CANCER MODELLING: SELECTED TOPICS, SPECULATIONS, AND PERSPECTIVES, 2008, 18, 0218-2025, 593, 10.1142/S0218202508002796
    4. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01
    5. Luca Meacci, Mario Primicerio, Gustavo Carlos Buscaglia, Growth of tumours with stem cells: The effect of crowding and ageing of cells, 2021, 570, 03784371, 125841, 10.1016/j.physa.2021.125841
    6. Jie Wu, Quan Long, Shixiong Xu, Anwar R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature, 2009, 42, 00219290, 712, 10.1016/j.jbiomech.2009.01.009
    7. Luca Meacci, Mario Primicerio, Mathematical models for tumours with cancer stem cells, 2018, 37, 0101-8205, 6544, 10.1007/s40314-018-0707-2
    8. H. Perfahl, H. V. Jain, T. Joshi, M. Horger, N. Malek, M. Bitzer, M. Reuss, Hybrid Modelling of Transarterial Chemoembolisation Therapies (TACE) for Hepatocellular Carcinoma (HCC), 2020, 10, 2045-2322, 10.1038/s41598-020-65012-1
    9. M. Welter, K. Bartha, H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, 2008, 250, 00225193, 257, 10.1016/j.jtbi.2007.09.031
    10. Heiko Rieger, Thierry Fredrich, Michael Welter, Physics of the tumor vasculature: Theory and experiment, 2016, 131, 2190-5444, 10.1140/epjp/i2016-16031-9
    11. H Enderling, L Hlatky, P Hahnfeldt, Migration rules: tumours are conglomerates of self-metastases, 2009, 100, 0007-0920, 1917, 10.1038/sj.bjc.6605071
    12. Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Afshin Beheshti, Lynn Hlatky, Philip Hahnfeldt, Paradoxical Dependencies of Tumor Dormancy and Progression on Basic Cell Kinetics, 2009, 69, 0008-5472, 8814, 10.1158/0008-5472.CAN-09-2115
    13. Behnaz Abdollahi, Neal Dunlap, Hermann B. Frieboes, 2014, Chapter 18, 978-1-4614-8497-4, 463, 10.1007/978-1-4614-8498-1_18
    14. Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou, Toward Understanding the Boundary Propagation Speeds in Tumor Growth Models, 2021, 81, 0036-1399, 1052, 10.1137/19M1296665
    15. Michael Welter, Heiko Rieger, 2012, Chapter 13, 978-1-4614-0051-6, 335, 10.1007/978-1-4614-0052-3_13
    16. Markus R. Owen, Tomás Alarcón, Philip K. Maini, Helen M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, 2009, 58, 0303-6812, 689, 10.1007/s00285-008-0213-z
    17. Francisco Guillén-González, Juan Vicente Gutiérrez-Santacreu, From a cell model with active motion to a Hele–Shaw-like system: a numerical approach, 2019, 143, 0029-599X, 107, 10.1007/s00211-019-01053-7
    18. M. Welter, H. Rieger, Physical determinants of vascular network remodeling during tumor growth, 2010, 33, 1292-8941, 149, 10.1140/epje/i2010-10611-6
    19. M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for the formation of vascular networks, 2013, 333, 00225193, 174, 10.1016/j.jtbi.2013.04.037
    20. Heiko Rieger, Michael Welter, Integrative models of vascular remodeling during tumor growth, 2015, 7, 1939-5094, 113, 10.1002/wsbm.1295
    21. Tanvi V. Joshi, Daniele Avitabile, Markus R. Owen, Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model, 2018, 80, 0092-8240, 1435, 10.1007/s11538-018-0406-6
    22. M. Welter, K. Bartha, H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, 2009, 259, 00225193, 405, 10.1016/j.jtbi.2009.04.005
    23. Luca Meacci, Mario Primicerio, Interaction between crowding and growth in tumours with stem cells: Conceptual mathematical modelling, 2023, 18, 0973-5348, 15, 10.1051/mmnp/2023011
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4615) PDF downloads(405) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog