Citation: Snezhana Hristova, Antonia Dobreva. Existence, continuous dependence and finite time stability for Riemann-Liouville fractional differential equations with a constant delay[J]. AIMS Mathematics, 2020, 5(4): 3809-3824. doi: 10.3934/math.2020247
[1] | Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini . The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1(4): 515-535. doi: 10.3934/nhm.2006.1.515 |
[2] | M.A.J Chaplain, G. Lolas . Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1(3): 399-439. doi: 10.3934/nhm.2006.1.399 |
[3] | A. Chauviere, T. Hillen, L. Preziosi . Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2(2): 333-357. doi: 10.3934/nhm.2007.2.333 |
[4] | Marco Scianna, Luca Munaron . Multiscale model of tumor-derived capillary-like network formation. Networks and Heterogeneous Media, 2011, 6(4): 597-624. doi: 10.3934/nhm.2011.6.597 |
[5] | Nicola Bellomo, Raluca Eftimie, Guido Forni . What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 2024, 19(2): 655-681. doi: 10.3934/nhm.2024029 |
[6] | Kenneth H. Karlsen, Süleyman Ulusoy . On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181 |
[7] | Peter W. Bates, Yu Liang, Alexander W. Shingleton . Growth regulation and the insulin signaling pathway. Networks and Heterogeneous Media, 2013, 8(1): 65-78. doi: 10.3934/nhm.2013.8.65 |
[8] | Urszula Ledzewicz, Heinz Schättler, Shuo Wang . On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14(1): 131-147. doi: 10.3934/nhm.2019007 |
[9] | Andrea Tosin . Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks and Heterogeneous Media, 2008, 3(1): 43-83. doi: 10.3934/nhm.2008.3.43 |
[10] | Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003 |
[1] |
H. Zhang, R. Ye, S. Liu, et al. LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays, Int. J. Syst. Sci., 49 (2018), 537-545. doi: 10.1080/00207721.2017.1412534
![]() |
[2] |
W. Zhang, J. Cao, R. Wu, et al. Lag projective synchronization of fractional-order delayed chaotic systems, J. Franklin Institute, 356 (2019), 1522-1534. doi: 10.1016/j.jfranklin.2018.10.024
![]() |
[3] |
W. Zhang, H. Zhang, J. Cao, et al. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays, Neural Networks, 110 (2019), 186-198. doi: 10.1016/j.neunet.2018.12.004
![]() |
[4] | P. Dorato, Short time stability in linear time-varying systems, Proc. IRE Int. Convention Record, 4 (1961), 83-87. |
[5] | D. F. Luo, Z. G. Luo, Uniqueness and novel finite-time stability of solutions for a class of nonlinear fractional delay difference systems, Discr. Dynam, Nature Soc., 2018 (2018), 1-7. |
[6] |
G. C. Wu, D. Baleanu, S. D. Zeng, Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion, Commun. Nonl. Sci. Numer. Simul., 57 (2018), 299-308. doi: 10.1016/j.cnsns.2017.09.001
![]() |
[7] |
V. N. Phat, N. T. Thanh, New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality approach, Appl. Math. Lett., 83 (2018), 169-175. doi: 10.1016/j.aml.2018.03.023
![]() |
[8] | D. F. Luo, Z. G. Luo, Existence and finite-time stability of solutions for a class of nonlinear fractional differential equations with time-varying delays and non-instantaneous impulses, Adv. Diff. Eq., 155, 2019. |
[9] |
D. Qian, C. Li, R. P. Agarwal, et al. Stability analysis of fractional differential system with Riemann-Liouville derivative, Math. Comput. Modell., 52 (2010), 862-874. doi: 10.1016/j.mcm.2010.05.016
![]() |
[10] |
M. Li, J. Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett., 64 (2017), 170-176. doi: 10.1016/j.aml.2016.09.004
![]() |
[11] | M. Li, J. R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254-265. |
[12] | M. Li, J. R. Wang, Finite time stability and relative controllability of Riemann-Liouville fractional delay differential equations, Math. Meth. Appl. Sci., 2019 (2019), 1-17. |
[13] | K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2010. |
[14] | I. Podlubny, Fractional Differential Equations, Academic Press: San Diego, 1999. |
[15] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[16] |
H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fracnal differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061
![]() |
[17] | R. Agarwal, S. Hristova, D. O'Regan, Explicit solutions of initial value problems for linear scalar Riemann-Liouville fractional differential equations with a constant delay, Mathematics, 8 (2020), 1-14. |
1. | Jonathan F. Li, John Lowengrub, The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model, 2014, 343, 00225193, 79, 10.1016/j.jtbi.2013.10.008 | |
2. | Michael Welter, Heiko Rieger, 2016, Chapter 3, 978-3-319-42021-9, 31, 10.1007/978-3-319-42023-3_3 | |
3. | N. BELLOMO, N. K. LI, P. K. MAINI, ON THE FOUNDATIONS OF CANCER MODELLING: SELECTED TOPICS, SPECULATIONS, AND PERSPECTIVES, 2008, 18, 0218-2025, 593, 10.1142/S0218202508002796 | |
4. | J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01 | |
5. | Luca Meacci, Mario Primicerio, Gustavo Carlos Buscaglia, Growth of tumours with stem cells: The effect of crowding and ageing of cells, 2021, 570, 03784371, 125841, 10.1016/j.physa.2021.125841 | |
6. | Jie Wu, Quan Long, Shixiong Xu, Anwar R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature, 2009, 42, 00219290, 712, 10.1016/j.jbiomech.2009.01.009 | |
7. | Luca Meacci, Mario Primicerio, Mathematical models for tumours with cancer stem cells, 2018, 37, 0101-8205, 6544, 10.1007/s40314-018-0707-2 | |
8. | H. Perfahl, H. V. Jain, T. Joshi, M. Horger, N. Malek, M. Bitzer, M. Reuss, Hybrid Modelling of Transarterial Chemoembolisation Therapies (TACE) for Hepatocellular Carcinoma (HCC), 2020, 10, 2045-2322, 10.1038/s41598-020-65012-1 | |
9. | M. Welter, K. Bartha, H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, 2008, 250, 00225193, 257, 10.1016/j.jtbi.2007.09.031 | |
10. | Heiko Rieger, Thierry Fredrich, Michael Welter, Physics of the tumor vasculature: Theory and experiment, 2016, 131, 2190-5444, 10.1140/epjp/i2016-16031-9 | |
11. | H Enderling, L Hlatky, P Hahnfeldt, Migration rules: tumours are conglomerates of self-metastases, 2009, 100, 0007-0920, 1917, 10.1038/sj.bjc.6605071 | |
12. | Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Afshin Beheshti, Lynn Hlatky, Philip Hahnfeldt, Paradoxical Dependencies of Tumor Dormancy and Progression on Basic Cell Kinetics, 2009, 69, 0008-5472, 8814, 10.1158/0008-5472.CAN-09-2115 | |
13. | Behnaz Abdollahi, Neal Dunlap, Hermann B. Frieboes, 2014, Chapter 18, 978-1-4614-8497-4, 463, 10.1007/978-1-4614-8498-1_18 | |
14. | Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou, Toward Understanding the Boundary Propagation Speeds in Tumor Growth Models, 2021, 81, 0036-1399, 1052, 10.1137/19M1296665 | |
15. | Michael Welter, Heiko Rieger, 2012, Chapter 13, 978-1-4614-0051-6, 335, 10.1007/978-1-4614-0052-3_13 | |
16. | Markus R. Owen, Tomás Alarcón, Philip K. Maini, Helen M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, 2009, 58, 0303-6812, 689, 10.1007/s00285-008-0213-z | |
17. | Francisco Guillén-González, Juan Vicente Gutiérrez-Santacreu, From a cell model with active motion to a Hele–Shaw-like system: a numerical approach, 2019, 143, 0029-599X, 107, 10.1007/s00211-019-01053-7 | |
18. | M. Welter, H. Rieger, Physical determinants of vascular network remodeling during tumor growth, 2010, 33, 1292-8941, 149, 10.1140/epje/i2010-10611-6 | |
19. | M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for the formation of vascular networks, 2013, 333, 00225193, 174, 10.1016/j.jtbi.2013.04.037 | |
20. | Heiko Rieger, Michael Welter, Integrative models of vascular remodeling during tumor growth, 2015, 7, 1939-5094, 113, 10.1002/wsbm.1295 | |
21. | Tanvi V. Joshi, Daniele Avitabile, Markus R. Owen, Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model, 2018, 80, 0092-8240, 1435, 10.1007/s11538-018-0406-6 | |
22. | M. Welter, K. Bartha, H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, 2009, 259, 00225193, 405, 10.1016/j.jtbi.2009.04.005 | |
23. | Luca Meacci, Mario Primicerio, Interaction between crowding and growth in tumours with stem cells: Conceptual mathematical modelling, 2023, 18, 0973-5348, 15, 10.1051/mmnp/2023011 |