Research article Special Issues

Ostrowski type inequalities via new fractional conformable integrals

  • In this present study, firstly, some necessary definitions and some results related to Riemann-Liouville fractional and new fractional conformable integral operators defined by Jarad et al. [13] are given. As a second, a new identity has been proved. By using this identity, new Ostrowski type inequalities has obtained involving fractional conformable integral operators. Also, some new inequalities has established for AG-convex functions via fractional conformable integrals in this study. Relevant connections of the results presented here with those earlier ones are also pointed out.

    Citation: Erhan Set, Ahmet Ocak Akdemir, Abdurrahman Gözpınar, Fahd Jarad. Ostrowski type inequalities via new fractional conformable integrals[J]. AIMS Mathematics, 2019, 4(6): 1684-1697. doi: 10.3934/math.2019.6.1684

    Related Papers:

    [1] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322
    [2] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [3] Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392
    [4] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [5] Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
    [6] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [7] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [8] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [9] Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067
    [10] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
  • In this present study, firstly, some necessary definitions and some results related to Riemann-Liouville fractional and new fractional conformable integral operators defined by Jarad et al. [13] are given. As a second, a new identity has been proved. By using this identity, new Ostrowski type inequalities has obtained involving fractional conformable integral operators. Also, some new inequalities has established for AG-convex functions via fractional conformable integrals in this study. Relevant connections of the results presented here with those earlier ones are also pointed out.



    Ostrowski proved the following interesting and useful integral inequality in 1938, see [18] and [15, page:468].

    Theorem 1.1. Let f:IR, where IR is an interval, be a mapping differentiable in the interior I of I and let a,bI with a<b. If |f(x)|M for all x[a,b], then the following inequality holds:

    |f(x)1babaf(t)dt|M(ba)[14+(xa+b2)2(ba)2] (1.1)

    for all x[a,b]. The constant 14 is the best possible in sense that it cannot be replaced by a smaller one.

    This inequality gives an upper bound for the approximation of the integral average 1babaf(t)dt by the value of f(x) at point x[a,b]. In recent years, such inequalities were studied extensively by many researchers and numerous generalizations, extensions and variants of them appeared in a number of papers, see [1,2,10,11,19,20,21,22,23].

    A function  f:IRR is said to be convex (AAconvex) if the inequality

    f(tx+(1t)y)tf(x)+(1t)f(y)

    holds for all x,yI  and t[0,1].

    In [4], Anderson et al. also defined generalized convexity as follows:

    Definition 1.1. Let f:I(0,) be continuous, where I is subinterval of (0,). Let M and N be any two Mean functions. We say f is MN-convex (concave) if

    f(M(x,y))()N(f(x),f(y))

    for all x,yI.

    Recall the definitions of AGconvex functions, GGconvex functions and GA functions that are given in [16] by Niculescu:

    The AGconvex functions (usually known as logconvex functions) are those functions f:I(0,) for which

    x,yI and λ[0,1]f(λx+(1λ)y)f(x)1λf(y)λ, (1.2)

    i.e., for which logf is convex.

    The GGconvex functions (called in what follows multiplicatively convex functions) are those functions f:IJ (acting on subintervals of (0,)) such that

    x,yI and λ[0,1]f(x1λyλ)f(x)1λf(y)λ. (1.3)

    The class of all GAconvex functions is constituted by all functions f:IR (defined on subintervals of (0,)) for which

    x,yI and λ[0,1]f(x1λyλ)(1λ)f(x)+λf(y). (1.4)

    The article organized three sections as follows: In the first section, some definitions an preliminaries for Riemann-Liouville and new fractional conformable integral operators are given. Also, some Ostrowski type results involving Riemann-Liouville fractional integrals are in this section. In the second section, an identity involving new fractional conformable integral operator is proved. Further, new Ostrowski type results involving fractional conformable integral operator are obtained by using some inequalities on established lemma and some well-known inequalities such that triangle inequality, Hölder inequality and power mean inequality. After the proof of theorems, it is pointed out that, in special cases, the results reduce the some results involving Riemann-Liouville fractional integrals given by Set in [27]. Finally, in the last chapter, some new results for AG-convex functions has obtained involving new fractional conformable integrals.

    Let [a,b] (<a<b<) be a finite interval on the real axis R. The Riemann-Liouville fractional integrals Jαa+f and Jαbf of order αC ((α)>0) with a0 and b>0 are defined, respectively, by

    Jαa+f(x):=1Γ(α)xa(xt)α1f(t)dt(x>a;(α)>0) (1.5)

    and

    Jαbf(x):=1Γ(α)bx(tx)α1f(t)dt(x<b;(α)>0) (1.6)

    where Γ(t)=0exxt1dx is an Euler Gamma function.

    We recall Beta function (see, e.g., [28, Section 1.1])

    B(α,β)={10tα1(1t)β1dt((α)>0;(β)>0)Γ(α)Γ(β)Γ(α+β)             (α,βCZ0). (1.7)

    and the incomplete gamma function, defined for real numbers a>0 and x0 by

    Γ(a,x)=xetta1dt.

    For more details and properties concerning the fractional integral operators (1.5) and (1.6), we refer the reader, for example, to the works [3,5,6,7,8,9,14,17] and the references therein. Also, several new and recent results of fractional derivatives can be found in the papers [29,30,31,32,33,34,35,36,37,38,39,40,41,42].

    In [27], Set gave some Ostrowski type results involving Riemann-Liouville fractional integrals, as follows:

    Lemma 1.1. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If fL[a,b], then for all x[a,b] and α>0 we have:

    (xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]=(xa)α+1ba10tαf(tx+(1t)a)dt(bx)α+1ba10tαf(tx+(1t)b)dt

    where Γ(α) is Euler gamma function.

    By using the above lemma, he obtained some new Ostrowski type results involving Riemann-Liouville fractional integral operators, which will generalized via new fractional integral operators in this paper.

    Theorem 1.2. Let f:[a,b][0,)R be a differentiable mapping on (a,b) with a<b such that fL[a,b]. If |f| is sconvex in the second sense on [a,b] for some fixed s(0,1] and |f(x)|M, x[a,b], then the following inequality for fractional integrals with α>0 holds:

    |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|Mba(1+Γ(α+1)Γ(s+1)Γ(α+s+1))[(xa)α+1+(bx)α+1α+s+1]

    where Γ is Euler gamma function.

    Theorem 1.3. Let f:[a,b][0,)R be a differentiable mapping on (a,b) with a<b such that fL[a,b]. If |f|q is sconvex in the second sense on [a,b] for some fixed s(0,1],p,q>1 and |f(x)|M, x[a,b], then the following inequality for fractional integrals holds:

    |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|M(1+pα)1p(2s+1)1q[(xa)α+1+(bx)α+1ba]

    where 1p+1q=1, α>0 and Γ is Euler gamma function.

    Theorem 1.4. Let f:[a,b][0,)R be a differentiable mapping on (a,b) with a<b such that fL[a,b]. If |f|q is sconvex in the second sense on [a,b] for some fixed s(0,1],q1 and |f(x)|M, x[a,b], then the following inequality for fractional integrals holds:

    |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|M(1+α)11q(1+Γ(α+1)Γ(s+1)Γ(α+s+1))1q[(xa)α+1+(bx)α+1ba]

    where α>0 and Γ is Euler gamma function.

    Theorem 1.5. Let f:[a,b][0,)R be a differentiable mapping on (a,b) with a<b such that fL[a,b]. If |f|q is sconcave in the second sense on [a,b] for some fixed s(0,1],p,q>1, x[a,b], then the following inequality for fractional integrals holds:

    |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|2s1q(1+pα)1p(ba)[(xa)α+1|f(x+a2)|+(bx)α+1|f(b+x2)|]

    where 1p+1q=1, α>0 and Γ is Euler gamma function.

    Some fractional integral operators generalize the some other fractional integrals, in special cases, as in the following integral operator. Jarad et. al. [13] has defined a new fractional integral operator. Also, they gave some properties and relations between the some other fractional integral operators, as Riemann-Liouville fractional integral, Hadamard fractional integrals, generalized fractional integral operators etc., with this operator.

    Let βC,Re(β)>0, then the left and right sided fractional conformable integral operators has defined respectively, as follows;

    βaJαf(x)=1Γ(β)xa((xa)α(ta)αα)β1f(t)(ta)1αdt; (1.8)
    βJαbf(x)=1Γ(β)bx((bx)α(bt)αα)β1f(t)(bt)1αdt. (1.9)

    The results presented here, being general, can be reduced to yield many relatively simple inequalities and identities for functions associated with certain fractional integral operators. For example, the case α=1 in the obtained results are found to yield the same results involving Riemann-Liouville fractional integrals, given before, in literatures. Further, getting more knowledge, see the paper given in [12]. Recently, some studies on this integral operators appeared in literature. Gözpınar [13] obtained Hermite-Hadamard type results for differentiable convex functions. Also, Set et. al. obtained some new results for quasiconvex, some different type convex functions and differentiable convex functions involving this new operator, see [24,25,26]. Motivating the new definition of fractional conformable integral operator and the studies given above, first aim of this study is obtaining new generalizations.

    Lemma 2.1. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. Then the following equality for fractional conformable integrals holds:

    (xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]=(xa)αβ+1ba10(1(1t)αα)βf(tx+(1t)a)dt+(bx)αβ+1ba10(1(1t)αα)βf(tx+(1t)b)dt.

    where α,β>0 and Γ is Euler Gamma function.

    Proof. Using the definition as in (1.8) and (1.9), integrating by parts and and changing variables with u=tx+(1t)a and u=tx+(1t)b in

    I1=10(1(1t)αα)βf(tx+(1t)a)dt,I2=10(1(1t)αα)βf(tx+(1t)b)dt

    respectively, then we have

    I1=10(1(1t)αα)βf(tx+(1t)a)dt=(1(1t)αα)βf(tx+(1t)a)xa|10β10(1(1t)αα)β1(1t)α1f(tx+(1t)a)xadt=f(x)αβ(xa)βxa(1(xuxa)αα)β1(xuxa)α1f(u)xaduxa=f(x)αβ(xa)β(xa)αβ+1xa((xa)α(xu)αα)β1(xu)α1f(u)du=f(x)αβ(xa)Γ(β+1)(xa)αβ+1βJαxf(a),

    similarly

    I2=10(1(1t)αα)βf(tx+(1t)b)dt=f(x)αβ(bx)+Γ(β+1)(bx)αβ+1βxJαf(b)

    By multiplying I1 with (xa)αβ+1ba and I2 with (bx)αβ+1ba we get desired result.

    Remark 2.1. Taking α=1 in Lemma 2.1 is found to yield the same result as Lemma 1.1.

    Theorem 2.1. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f| is convex on [a,b] and |f(x)|M with x[a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba] (2.1)

    where α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.

    Proof. From Lemma 2.1 we can write

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba10(1(1t)αα)β|f(tx+(1t)a)|dt+(bx)αβ+1ba10(1(1t)αα)β|f(tx+(1t)b)|dt(xa)αβ+1ba[10(1(1t)αα)βt|f(x)|dt+10(1(1t)αα)β(1t)|f(a)|dt]+(bx)αβ+1ba[10(1(1t)αα)βt|f(x)|dt+10(1(1t)αα)β(1t)|f(b)|dt]. (2.2)

    Notice that

    10(1(1t)αα)βtdt=1αβ+1[B(1α,β+1)B(2α,β+1)],10(1(1t)αα)β(1t)dt=B(2α,β+1)αβ+1. (2.3)

    Using the fact that, |f(x)|M for x[a,b] and combining (2.3) with (2.2), we get desired result.

    Remark 2.2. Taking α=1 in Theorem 3.1 and s=1 in Theorem 1.2 are found to yield the same results.

    Theorem 2.2. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f|q is convex on [a,b], p,q>1 and |f(x)|M with x[a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|M[B(βp+1,1α)αβ+1]1p[(xa)αβ+1ba+(bx)αβ+1ba] (2.4)

    where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.

    Proof. By using Lemma 2.1, convexity of |f|q and well-known Hölder's inequality, we have

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)a)|qdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)b)|qdt)1q]. (2.5)

    Notice that, changing variables with x=1(1t)α, we get

    10(1(1t)αα)βp=B(βp+1,1α)αβ+1. (2.6)

    Since |f|q is convex on [a,b] and |f|qMq, we can easily observe that,

    10|f(tx+(1t)a)|qdt10t|f(x)|qdt+10(1t)|f(a)|qdtMq. (2.7)

    As a consequence, combining the equality (2.6) and inequality (2.7) with the inequality (2.5), the desired result is obtained.

    Remark 2.3. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.3 are found to yield the same results.

    Theorem 2.3. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f|q is convex on [a,b], q1 and |f(x)|M with x[a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba] (2.8)

    where α,β>0, B(x,y) and Γ are Euler Beta and Euler Gamma functions respectively.

    Proof. By using Lemma 2.1, convexity of |f|q and well-known power-mean inequality, we have

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba(10(1(1t)αα)βdt)11q(10(1(1t)αα)β|f(tx+(1t)a)|qdt)1q+(bx)αβ+1ba(10(1(1t)αα)βdt)11q(10(1(1t)αα)β|f(tx+(1t)b)|qdt)1q. (2.9)

    Since |f|q is convex and |f|qMq, by using (2.3) we can easily observe that,

    10(1(1t)αα)β|f(tx+(1t)a)|qdt10(1(1t)αα)β[t|f(x)|q+(1t)|f(a)|q]dtMqαβ+1B(1α,β+1). (2.10)

    As a consequence,

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba(1αβ+1B(1α,β+1))11q(Mqαβ+1B(1α,β+1))1q+(bx)αβ+1ba(1αβ+1B(1α,β+1))11q(Mqαβ+1B(1α,β+1))1q=Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba]. (2.11)

    This means that, the desired result is obtained.

    Remark 2.4. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.4 are found to yield the same results.

    Theorem 2.4. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f|q is concave on [a,b], p,q>1 and |f(x)|M with x[a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|[B(βp+1,1α)αβ+1]1p[(xa)αβ+1ba|f(x+a2)|+(bx)αβ+1ba|f(x+b2)|] (2.12)

    where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler Beta and Gamma functions respectively.

    Proof. By using Lemma 2.1 and well-known Hölder's inequality, we have

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)a)|qdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)b)|qdt)1q]. (2.13)

    Since |f|q is concave, it can be easily observe that,

    |f(tx+(1t)a)|qdt|f(x+a2)|,|f(tx+(1t)b)|qdt|f(b+x2)|. (2.14)

    Notice that, changing variables with x=1(1t)α, as in (2.6), we get,

    10(1(1t)αα)βp=B(βp+1,1α)αβ+1. (2.15)

    As a consequence, substituting (2.14) and (2.15) in (2.13), the desired result is obtained.

    Remark 2.5. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.5 are found to yield the same results.

    Some new inequalities for AG-convex functions has obtained in this chapter. For the simplicity, we will denote |f(x)||f(a)|=ω and |f(x)||f(b)|=ψ.

    Theorem 3.1. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f| is AGconvex on [a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]||f(a)|(xa)αβ+1αβ(ba)[ω1lnω(ωlnαβ1(ω)(Γ(αβ+1)Γ(αβ+1,lnω)))]+|f(b)|(bx)αβ+1αβ(ba)[ψ1lnψ(ψlnαβ1(ψ)(Γ(αβ+1)Γ(αβ+1,lnψ)))]

    where α>0,β>1, Re(lnω)<0Re(lnψ)<0Re(αβ)>1,B(x,y),Γ(x,y) and Γ are Euler Beta, Euler incomplete Gamma and Euler Gamma functions respectively.

    Proof. From Lemma 2.1 and definition of AGconvexity, we have

    (xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)](xa)αβ+1ba10(1(1t)αα)β|f(tx+(1t)a)|dt+(bx)αβ+1ba10(1(1t)αα)β|f(tx+(1t)b)|dt(xa)αβ+1ba[10(1(1t)αα)β|f(a)|(|f(x)||f(a)|)tdt]+(bx)αβ+1ba[10(1(1t)αα)β|f(b)|(|f(x)||f(b)|)tdt]. (3.1)

    By using the fact that |1(1t)α|β1|1t|αβ for α>0,β>1, we can write

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1αβ(ba)[10(1|1t|αβ)|f(a)|(|f(x)||f(a)|)tdt]+(bx)αβ+1αβ(ba)[10(1|1t|αβ)|f(b)|(|f(x)||f(b)|)tdt].

    By computing the above integrals, we get the desired result.

    Theorem 3.2. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f|q is AGconvex on [a,b] and p,q>1, then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(B(βp+1,1α)αβ+1)1p[|f(a)|(xa)αβ+1ba(ωq1qlnω)1q+|f(b)|(bx)αβ+1ba(ψq1qlnψ)1q].

    where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.

    Proof. By using Lemma 2.1, AGconvexity of |f|q and well-known Hölder's inequality, we can write

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(|f(a)|q10(|f(x)||f(a)|)qtdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(|f(b)|q10(|f(x)||f(b)|)qtdt)1q].

    By a simple computation, one can obtain

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(B(βp+1,1α)αβ+1)1p×[|f(a)|(xa)αβ+1ba(ωq1qlnω)1q+|f(b)|(bx)αβ+1ba(ψq1qlnψ)1q].

    This completes the proof.

    Corollary 3.1. In our results, some new Ostrowski type inequalities can be derived by choosing |f|M. We omit the details.

    The authors declare that no conflicts of interest in this paper.



    [1] M. Alomari, M. Darus, S. S. Dragomir, et al. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076. doi: 10.1016/j.aml.2010.04.038
    [2] G. A. Anastassiou, Ostrowski type inequalities, Proc. Amer. Math. Soc., 123 (1995), 3775-3781. doi: 10.1090/S0002-9939-1995-1283537-3
    [3] G. Anastassiou, M. R. Hooshmandasl, A. Ghasemi, et al. Montogomery identities for fractional integrals and related fractional inequalities, Journal of Inequalities in Pure and Applied Mathematics, 10 (2009), 1-6.
    [4] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308. doi: 10.1016/j.jmaa.2007.02.016
    [5] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 10 (2009), 86.
    [6] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlin. Sci. Num., 9 (2010), 493-497.
    [7] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51-58. doi: 10.15352/afa/1399900993
    [8] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonl. Sci. Lett. A, 1 (2010), 155-160.
    [9] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality usin Riemann-Liouville fractional integrals, Bulletin of Mathematical Analysis and Applications, 2 (2010), 93-99.
    [10] S. S. Dragomir, Ostrowski type inequalities for lebesque integral: A survey of recent results, Australian Journal of Mathematical Analysis and Applications, 14 (2017), 1-287.
    [11] S. S. Dragomir, General Lebesgue integral inequalities of Jensen and Ostrowski type for differentiable functions whose derivatives in absolute value are h-convex and applications, Annales Universitatis Mariae Curie-Sklodowska, Sectio A-Mathematica, 69 (2015), 17-45. doi: 10.17951/a.2015.69.2.17-45
    [12] A. Gözpınar, Some Hermite-Hadamard Type Inequalities For Convex Functions Via New Fractional Conformable Integrals And Related Inequalities, AIP Conference Proceedings, 1991 (2018), 20006.
    [13] F. Jarad, E. Uğurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ-NY, 2017 (2017), 247.
    [14] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
    [15] D. S. Mitrinoviç, J. E. Peèariæ, A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dortrecht, 1991.
    [16] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3 (2000), 155-167.
    [17] M. A. Noor, K. A. Noor, M. A. Awan, Fractional Ostrowski inequalities for (s,m)-Godunova-Levin functions, Facta Universitatis, Series: Mathematics and Informatics, 30 (2015), 489-499.
    [18] A. M. Ostrowski, Über die absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.
    [19] M. E. Özdemir, H. Kavurmaci, E. Set, Ostrowski's type inequalities for (α, m)-convex functions, Kyungpook Mathematical Journal, 50 (2010), 371-378. doi: 10.5666/KMJ.2010.50.3.371
    [20] M. E. Özdemir, A. O. Akdemir, E. Set, A new Ostrowski type inequality for double integrals, J. Inequal. Spec. Funct., 2 (2011), 27-34.
    [21] M. E. Özdemir, A. O. Akdemir, E. Set, On the Ostrowski-Grüss type inequality for twice differentiable functions, Hacet. J. Math. Stat., 41 (2012), 651-655.
    [22] M. Z. Sarıkaya, E. Set, On new Ostrowski type integral inequalities, Thai J. Math., 12 (2014), 145-154.
    [23] M. Z. Sarıkaya, E. Set, M. E. Özdemir, Some Ostrowski's type inequalities for functions whose second derivatives are s-convex in the second sense, Demonstratio Mathematica, 47 (2014), 37-47.
    [24] E. Set, J. Choi, A. Gözpınar, Hermite-Hadamard type inequalities for new fractional conformable integral operators, 2018. Available from: https://www.researchgate.net/publication/322936389.
    [25] E. Set, A. Gözpınar, F. Demirci, Hermite-Hadamard type inequalities for quasi-convex functions via new fractional conformable integrals, AIP Conference Proceedings, 1991 (2018), 20002.
    [26] E. Set, A. Karaoğlan, A. Gözpınar, Some inequalities related to different convex functions via new fractional conformable integrals, 2018.
    [27] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154. doi: 10.1016/j.camwa.2011.12.023
    [28] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
    [29] A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors?, Eur. Phys. J. Plus, 134 (2019), 429.
    [30] F. Jarad, T. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos, Solitons and Fractals, 117 (2018), 16-20. doi: 10.1016/j.chaos.2018.10.006
    [31] M. A. Imran, M. Aleem, M. B. Riaz, et al. A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos, Solitons and Fractals, 118 (2019), 274-289. doi: 10.1016/j.chaos.2018.12.001
    [32] N. A. Asif, Z. Hammouch, M. B. Riaz, et al. Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272.
    [33] M. B. Riaz and A. Zafar, Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo-Fabrizio derivatives, Math. Model. Nat. Pheno., 13 (2018), 8.
    [34] M. B. Riaz, N. A. Asif, A. Atangana, et al. Couette flows of a viscous fluid with slip effect and non-integer order derivative without singular kernel, Discrete and Continuous Dynamical Systems Series-S, 12 (2019), 645-664. doi: 10.3934/dcdss.2019041
    [35] H. Yepez-Martinez and J. F. Gomez-Aguilar, Optical solitons solution of resonance nonlinear Schrodinger type equation with Atangana's-conformable derivative using sub-equation method, Waves in Random and Complex Media, (2019), 1-24.
    [36] F. Gomez and B. Ghanbari, Optical soliton solutions of the Ginzburg-Landau equation with conformable derivative and Kerr law nonlinearity, Rev. Mex. Fis., 65 (2018), 73-81.
    [37] V. F. Morales-Delgado, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez, Fractional conformable attractors with low fractality, Math. Method. Appl. Sci., 41 (2018), 6378-6400. doi: 10.1002/mma.5146
    [38] V. F. Morales-Delgado, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez, et al. Fractional conformable derivatives of Liouville-Caputo type with low-fractionality, Physica A: Statistical Mechanics and its Applications, 503 (2018), 424-438. doi: 10.1016/j.physa.2018.03.018
    [39] J. E. S. Perez, J. F. Gomez-Aguilar, D. Baleanu, et al. Chaotic Attractors with Fractional Conformable Derivatives in the Liouville-Caputo Sense and Its Dynamical Behaviors, Entropy, 20 (2018), 384.
    [40] H. Yepez-Martinez and J. F. Gomez-Aguilar, Fractional sub-equation method for Hirota-Satsumacoupled KdV equation and coupled mKdV equation using the Atangana's conformable derivative, Waves in Random and Complex Media, 29 (2019), 678-693. doi: 10.1080/17455030.2018.1464233
    [41] H. Yepez-Martinez, J. F. Gomez-Aguilar and A. Atangana, First integral method for non-linear differential equations with conformable derivative, Math. Model. Nat. Pheno., 13 (2018), 14.
    [42] V. F. Morales-Delgado, J. F. Gomez-Aguilar and M. A. Taneco-Hernandez, Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, AEU-Int. J. Electron. C., 85 (2018), 108-117. doi: 10.1016/j.aeue.2017.12.031
  • This article has been cited by:

    1. Hüseyin Budak, Ebru Pehlivan, Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals, 2020, 5, 2473-6988, 1960, 10.3934/math.2020131
    2. Muhammad Samraiz, Fakhra Nawaz, Sajid Iqbal, Thabet Abdeljawad, Gauhar Rahman, Kottakkaran Sooppy Nisar, Certain mean-type fractional integral inequalities via different convexities with applications, 2020, 2020, 1029-242X, 10.1186/s13660-020-02474-x
    3. Akdemir Ocak, Erhan Deniz, Ebru Yüksel, Some new generalizations for m-convexity via new conformable fractional integral operators, 2019, 23, 1450-5932, 69, 10.5937/MatMor1902069O
    4. Mehmet Kunt, Artion Kashuri, Tingsong Du, Abdul Wakil Baidar, Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities, 2020, 5, 2473-6988, 5439, 10.3934/math.2020349
    5. Çetin YILDIZ, Mustafa GÜRBÜZ, The Minkowski type inequalities for weighted fractional operators, 2022, 71, 1303-5991, 884, 10.31801/cfsuasmas.1054069
    6. Xiaoming Wang, Khuram Ali Khan, Allah Ditta, Ammara Nosheen, Khalid Mahmood Awan, Rostin Matendo Mabela, Mohsan Raza, New Developments on Ostrowski Type Inequalities via q -Fractional Integrals Involving s -Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9742133
    7. Nabil Mlaiki, Antonio Di Crescenzo, Integral-Type Fractional Equations with a Proportional Riemann–Liouville Derivative, 2021, 2021, 2314-4785, 1, 10.1155/2021/9990439
    8. Abdelghani Lakhdari, Bandar Bin-Mohsin, Fahd Jarad, Hongyan Xu, Badreddine Meftah, A parametrized approach to generalized fractional integral inequalities: Hermite–Hadamard and Maclaurin variants, 2024, 10183647, 103523, 10.1016/j.jksus.2024.103523
    9. Areej A. Almoneef, Abd-Allah Hyder, Mohamed A. Barakat, Hüseyin Budak, Novel Ostrowski–Type Inequalities for Generalized Fractional Integrals and Diverse Function Classes, 2024, 8, 2504-3110, 534, 10.3390/fractalfract8090534
    10. Rui Ying, Abdelghani Lakhdari, Hongyan Xu, Wedad Saleh, Badreddine Meftah, On Conformable Fractional Milne-Type Inequalities, 2024, 16, 2073-8994, 196, 10.3390/sym16020196
    11. Ghulam Farid, Sajid Mehmood, Bakri A. Younis, Huda Uones Mohamed Ahamd, Ria H. Egami, Ahmed M. Ibrahim Adam, Generalized Ostrowski and Ostrowski-Grüss type inequalities, 2024, 0009-725X, 10.1007/s12215-024-01102-7
    12. Yonghong Liu, Ghulam Farid, Jongsuk Ro, Mawahib Elamin, Sayed Abdel-Khalek, Some well-known inequalities of Ostrowski like for Caputo derivatives, 2025, 33, 2769-0911, 10.1080/27690911.2025.2455190
    13. FATIH HEZENCI, MIGUEL VIVAS-CORTEZ, HÜSEYIN BUDAK, REMARKS ON INEQUALITIES WITH PARAMETER BY CONFORMABLE FRACTIONAL INTEGRALS, 2025, 33, 0218-348X, 10.1142/S0218348X24501378
    14. YONGHONG LIU, GHULAM FARID, LOAY ALKHALIFA, WAQAS NAZEER, FRACTIONAL INTEGRAL INEQUALITIES OF OSTROWSKI AND HADAMARD TYPE VIA k-ANALOGUES OF CAPUTO DERIVATIVES, 2025, 33, 0218-348X, 10.1142/S0218348X25400729
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4628) PDF downloads(591) Cited by(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog