Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Fractional differential equations with coupled slit-strips type integral boundary conditions

1 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Sri Vasavi College, Erode, TN, India
3 Department of Mathematics, Sona College of Technology, Salem, TN, India

Special Issues: Initial and Boundary Value Problems for Differential Equations

In this article, we discuss the existence of solutions for coupled hybrid fractional differential equations supplemented with coupled slit-strips type boundary conditions. We make use of the standard tools of fixed point theory to obtain the desired results, which are well-illustrated with examples.
  Figure/Table
  Supplementary
  Article Metrics

References

1. B. Ahmad, R. P. Agarwal, Some new versions of fractional boundary value problems with slitstrips conditions, Bound.Value Probl., 2014 (2014), 175.

2. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, The Scientific World J., 2014 (2014), 426438.

3. B. Ahmad, S. K. Ntouyas, J. Tariboon, A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations, Acta Math. Sci., 36 (2016), 1631-1640.    

4. B. Ahmad, S. K.Ntouyas, A coupled system of nonlocal fractional differential equations with coupled and uncoupled slit-strips type integral boundary conditions, J. Math. Sci., 226 (2017), 175-196.    

5. B. Ahmad, R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 423-441.    

6. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions, Bound. Value Probl., 2019 (2019), 109.

7. M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87 (2008), 851-863.    

8. A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dyn. Cont., 5 (2017), 168-186.    

9. B. C. Dhage, S. B. Dhage, K. Buvaneswari, Existence of mild solutions of nonlinear boundary value problems of coupled hybrid fractional integro differential equations, J. Fract. Calc. Appl., 10 (2019), 191-206.

10. Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Cont. Syst. Technol., 20 (2012), 763-769.    

11. M. Faieghi, S. Kuntanapreeda, H. Delavari, et al. LMI-based stabilization of a class of fractionalorder chaotic systems, Nonlin. Dynam., 72 (2013), 301-309.    

12. A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer-Verlag, 2005.

13. N. He, J. Wang, L. L. Zhang, et al. An improved fractional-order differentiation model for image denoising, Signal Process., 112 (2015), 180-188.    

14. J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Bound. Value Probl., 2015 (2015), 138.

15. M. A. E. Herzallah, D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal., 2014 (2014), 389386.

16. K. Hilal, A. Kajouni, Boundary value problem for hybrid differential equations, with fractional order, Adv. Difference Eq., 2015 (2015), 183.

17. M. Iqbal, Y. Li, K. Shah, et al. Application of topological degree method for solutions of coupled systems of multipoints boundary value problems of fractional order hybrid differential equations, Complexity, 2017 (2017), 7676814.

18. M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8-18.    

19. P. Karthikeyan, R. Arul, Existence of solutions for Hadamard fractional hybrid differential equations with impulsive and nonlocal conditions, J. Fract. Calc. Appl., 9 (2018), 232-240.

20. P. Karthikeyan, K. Buvaneswari, A note on coupled fractional hybrid differential equations involving Banach algebra, Malaya J. Mat., 6 (2018), 843-849.    

21. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: North-Holland Mathematics Studies, 2006.

22. C. F. Li, X. N. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl., 59 (2010), 1363-1375.    

23. S. Li, H. Yin, L. Li, The solution of a cooperative fractional hybrid differential system, Appl. Math. Lett., 91 (2019), 48-54.    

24. Z. Liu, J. Sun, Nonlinear boundary value problems of fractional differential systems, Comput. Math. Appl., 64 (2012), 463-475.    

25. M. Lundqvist, Silicon Strip Detectors for Scanned Multi-Slit X-Ray Imaging, Stockholm: Kungl Tekniska Hogskolan, 2003.

26. L. Lv, J. Wang, W. Wei, Existence and uniqueness results for fractional differential equations with boundary value conditions, Opuscula Math., 31 (2011), 629-643.    

27. T. Mellow, L. Karkkainen, On the sound fields of infinitely long strips, J. Acoust. Soc. Am., 130 (2011), 153-167.    

28. S. K. Ntouyas, M. Obaid, A coupled system of fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Eq., 2012 (2012), 130.

29. N. Nyamoradi, M. Javidi, B. Ahmad, Dynamics of SVEIS epidemic model with distinct incidence, Int. J. Biomath., 8 (2015), 1550076.

30. Y. Z. Povstenko, Fractional Thermoelasticity, New York: Springer, 2015.

31. J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007.

32. G. Wang, K. Pei, R. P. Agarwal, et al. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230-239.    

33. F. Zhang, G. Chen, C. Li, et al. Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc., 371 (2013), 20120155.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved