AIMS Mathematics, 2019, 4(4): 1291-1306. doi: 10.3934/math.2019.4.1291

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

An approach to Q-neutrosophic soft rings

School of Mathematical Sciences, Faculty of Science and Technology, Universiti KebangsaanMalaysia, 43600 UKM Bangi, Selangor DE, Malaysia

In this paper, we introduce the notion of Q-neutrosophic soft rings and discuss some of its related properties. Next, we discuss the cartesian product of Q-neutrosophic soft rings and homomorphic images and preimages of Q-neutrosophic soft rings. Moreover, Q-neutrosophic soft ideals are defined and some of their related properties are explored.
  Figure/Table
  Supplementary
  Article Metrics

References

1. M. Abu Qamar, N. Hassan, An approach toward a Q-neutrosophic soft set and its application in decision making, Symmetry, 11 (2019), 139.

2. M. Abu Qamar, N. Hassan, Entropy, measures of distance and similarity of Q-neutrosophic soft sets and some applications, Entropy, 20 (2018), 672.

3. M. Abu Qamar, N. Hassan, Generalized Q-neutrosophic soft expert set for decision under uncertainty, Symmetry, 10 (2018), 621.

4. M. Abu Qamar, N. Hassan, On Q-neutrosophic subring, Journal of Physics: Conference Series, 1212 (2019), 012018.

5. M. Abu Qamar, N. Hassan, Q-neutrosophic soft relation and its application in decision making, Entropy, 20 (2018), 172.

6. U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458-3463.    

7. F. Adam, N. Hassan, Properties on the multi Q-fuzzy soft matrix, AIP Conference Proceedings, 1614 (2014), 834-839.

8. A. Al-Masarwah, A. G. Ahmad, Doubt bipolar fuzzy subalgebras and ideals in BCK/BCI-algebras, J. Math. Anal., 9 (2018), 9-27.

9. A. Al-Masarwah, A. G. Ahmad, m-polar fuzzy ideals of BCK/BCI-algebras, J. King Saud University-Science, 2018.

10. A. Al-Masarwah, A. G. Ahmad, Novel concepts of doubt bipolar fuzzy H-ideals of BCK/BCI-algebras, Int. J. Innov. Comput. I., 14 (2018), 2025-2041.

11. A. Al-Masarwah, A. G. Ahmad, On (complete) normality of m-pF subalgebras in BCK/BCI-algebras, AIMS Mathematics, 4 (2019), 740-750.    

12. A. Al-Masarwah, A. G. Ahmad, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-algebras,. Eur. J. Pure Appl. Math., 11 (2018), 652-670.    

13. Y. L. Bao, H. L. Yang, On single valued neutrosophic refined rough set model and its application, J. Intell. Fuzzy Syst., 33 (2017), 1235-1248.    

14. T. Bera, N. K. Mahapatra, On neutrosophic soft rings, OPSEARCH, 54 (2017), 143-167.    

15. S. Broumi, A. Dey, M. Talea, et al. Shortest path problem using Bellman algorithm under neutrosophic environment, Complex & Intelligent Systems, (2019), 1-8.

16. S. Broumi, D. Nagarajan, A. Bakali, et al. The shortest path problem in interval valued trapezoidal and triangular neutrosophic environment, Complex & Intelligent Systems, (2019), 1-12.

17. S. Broumi, M. Talea, A. Bakali, et al. Shortest path problem in fuzzy, intuitionistic fuzzy and neutrosophic environment: an overview, Complex & Intelligent Systems, (2019), 1-8.

18. V. Ҫetkin, H. Aygün, An approach to neutrosophic subgroup and its fundamental properties, J. Intell. Fuzzy Syst., 29 (2015), 1941-1947.    

19. F. Feng, Y. B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621-2628.    

20. J. Ghosh, B. Dinda, T. K. Samanta, Fuzzy soft rings and fuzzy soft ideals, Int. J. Pure Appl. Sci. Technol., 2 (2011), 66-74.

21. Z. L. Guo, Y. L. Liu, H. L. Yang, A novel rough set model in generalized single valued neutrosophic approximation spaces and its application, Symmetry, 9 (2017), 119.

22. F. Karaaslan, Neutrosophic soft sets with applications in decision making, International Journal of Information Science and Intelligent System, 4 (2015), 1-20.

23. F. Karaaslan, Possibility neutrosophic soft sets and PNS-decision making method, Appl. Soft Comput., 54 (2017), 403-414.    

24. F. Karaaslan, Some properties of AG*-groupoids and AG-bands under SI-product operation, J. Intell. Fuzzy Syst., 36 (2019), 231-239.    

25. F. Karaaslan, K. Kaygısıza, N. Cagman, On intuitionistic fuzzy soft groups, Journal of New Results in Sciences, 2 (2013), 72-86.

26. Y. L. Liu, H. L. Yang, Further research of single valued neutrosophic rough sets, J. Intell. Fuzzy Syst., 33 (2017), 1467-1478.    

27. P. K. Maji, Neutrosophic soft set, Annals of Fuzzy Mathematics and Informatics, 5 (2013), 157-168.

28. D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31.

29. R. Rasuli, Characterization of Q-fuzzy subrings (Anti Q-fuzzy subrings) with respect to a T-norm (T-conorm), Journal of Information and Optimization Sciences, 39 (2018), 827-837.    

30. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.    

31. F. Smarandache, Neutrosophy. Neutrosophic Probability, Set and Logic, American Research Press: Rehoboth, IL, USA, 1998.

32. F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287-297.

33. F. Smarandache, n-valued refined neutrosophic logic and its applications to physics, Progress in Physics, 4 (2013), 143-146.

34. A. Solairaju, R. Nagarajan, A new structure and construction of Q-fuzzy groups, Advances in Fuzzy Mathematics, 4 (2009), 23-29.

35. S. Thiruveni, A. Solairaju, Neutrosophic Q-fuzzy subgroups, Int. J. Math. And Appl., 6 (2018), 859-866.

36. A. Ullah, I. Ahmad, F. Hayat, et al. Soft intersection Abel-Grassmann's groups, Journal of Hyperctructures, 7 (2018), 149-173.

37. A. Ullah, F. Karaaslan, I. Ahmad, Soft uni-Abel-Grassmann's groups, Eur. J. Pure Appl. Math., 11 (2018), 517-536.    

38. H. L. Yang, Z. L . Guo, Y. She, et al. On single valued neutrosophic relations, J. Intell. Fuzzy Syst., 30 (2016), 1045-1056.    

39. H. L. Yang , Y. L. Bao, Z. L. Guo, Generalized interval neutrosophic rough Sets and its application in multi-attribute decision making, Filomat, 32 (2018), 11-33.    

40. H. L. Yang, C. L. Zhang, Z. L. Guo, et al. A hybrid model of single valued neutrosophic sets and rough sets: single valued neutrosophic rough set model, Soft Computing, 21 (2017), 6253-6267.    

41. L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.    

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved