Research article

An approach to Q-neutrosophic soft rings

  • Received: 13 June 2019 Accepted: 08 August 2019 Published: 02 September 2019
  • MSC : 03G25, 08A72

  • In this paper, we introduce the notion of Q-neutrosophic soft rings and discuss some of its related properties. Next, we discuss the cartesian product of Q-neutrosophic soft rings and homomorphic images and preimages of Q-neutrosophic soft rings. Moreover, Q-neutrosophic soft ideals are defined and some of their related properties are explored.

    Citation: Majdoleen Abu Qamar, Abd Ghafur Ahmad, Nasruddin Hassan. An approach to Q-neutrosophic soft rings[J]. AIMS Mathematics, 2019, 4(4): 1291-1306. doi: 10.3934/math.2019.4.1291

    Related Papers:

    [1] Sumyyah Al-Hijjawi, Abd Ghafur Ahmad, Shawkat Alkhazaleh . A generalized effective neurosophic soft set and its applications. AIMS Mathematics, 2023, 18(12): 29628-29666. doi: 10.3934/math.20231517
    [2] Yaser Saber, Hanan Alohali, Tawfik Elmasry, Florentin Smarandache . On single-valued neutrosophic soft uniform spaces. AIMS Mathematics, 2024, 9(1): 412-439. doi: 10.3934/math.2024023
    [3] Muhammad Ihsan, Muhammad Saeed, Atiqe Ur Rahman, Mazin Abed Mohammed, Karrar Hameed Abdulkaree, Abed Saif Alghawli, Mohammed AA Al-qaness . An innovative decision-making framework for supplier selection based on a hybrid interval-valued neutrosophic soft expert set. AIMS Mathematics, 2023, 8(9): 22127-22161. doi: 10.3934/math.20231128
    [4] Hatice Tasbozan . Near neutrosophic soft set. AIMS Mathematics, 2024, 9(4): 9447-9454. doi: 10.3934/math.2024461
    [5] Amr Elrawy, Mohamed Abdalla . Results on a neutrosophic sub-rings. AIMS Mathematics, 2023, 8(9): 21393-21405. doi: 10.3934/math.20231090
    [6] Ali Yahya Hummdi, Amr Elrawy . On neutrosophic ideals and prime ideals in rings. AIMS Mathematics, 2024, 9(9): 24762-24775. doi: 10.3934/math.20241205
    [7] Khulud Fahad Bin Muhaya, Kholood Mohammad Alsager . Extending neutrosophic set theory: Cubic bipolar neutrosophic soft sets for decision making. AIMS Mathematics, 2024, 9(10): 27739-27769. doi: 10.3934/math.20241347
    [8] Tram B.T. Tran, My-Phuong Ngo, Quang-Thinh Bui, Vaclav Snasel, Bay Vo . A new approach for operations on neutrosophic soft sets based on the novel norms for constructing topological structures. AIMS Mathematics, 2022, 7(6): 9603-9626. doi: 10.3934/math.2022534
    [9] Rana Muhammad Zulqarnain, Wen Xiu Ma, Imran Siddique, Shahid Hussain Gurmani, Fahd Jarad, Muhammad Irfan Ahamad . Extension of aggregation operators to site selection for solid waste management under neutrosophic hypersoft set. AIMS Mathematics, 2023, 8(2): 4168-4201. doi: 10.3934/math.2023208
    [10] Murugan Palanikumar, Chiranjibe Jana, Biswajit Sarkar, Madhumangal Pal . $ q $-rung logarithmic Pythagorean neutrosophic vague normal aggregating operators and their applications in agricultural robotics. AIMS Mathematics, 2023, 8(12): 30209-30243. doi: 10.3934/math.20231544
  • In this paper, we introduce the notion of Q-neutrosophic soft rings and discuss some of its related properties. Next, we discuss the cartesian product of Q-neutrosophic soft rings and homomorphic images and preimages of Q-neutrosophic soft rings. Moreover, Q-neutrosophic soft ideals are defined and some of their related properties are explored.


    Neutrosophic sets (NSs) first appeared in mathematics in 1998 [31,32] as a way to handle uncertain and indeterminate data as an extension of the concepts of the classical sets and fuzzy sets [41]. Soft sets were presented by Molodtsov [28] as another way to deal with uncertainty. NSs were further extended to neutrosophic soft sets (NSSs) [27] by joining the notions of NSs and soft sets. NSSs were further discussed in [22]. NSs and NSSs became a vital area of study, they were utilized to different branches of mathematics including graph theory and decision making [13,15,16,17,21,23,26,38,39,40]. Q-Neutrosophic soft sets (Q-NSS) were established as a way to deal with two dimensional uncertain data as an extension of NSs, NSSs and Q–fuzzy soft sets [7]. A Q-NSS is identified via three independent membership degrees which are standard or non-standard subsets of the interval ]0,1+[ where 0=0ϵ,1+=1+ϵ;ϵ is an infinitesimal number. These memberships represent the degrees of truth, indeterminacy, and falsity; this structure makes Q-NSSs an effective common framework and empowers it to deal with two-dimensional indeterminate information. Thus, Q-NSS theory was further explored by Abu Qamar and Hassan by discussing their basic operations [1], relations [5], measures of distance, similarity and entropy [2] and also extended it further to the concept of generalized Q-neutrosophic soft expert sets [3].

    Hybrid models of fuzzy sets and soft sets were extensively applied in different fields of mathematics, in particular they were extremely applied in classical algebraic structures. This was started by Rosenfeld in 1971 [30] when he established the idea of fuzzy subetaoups, by applying fuzzy sets to the theory of groups. Recently, many researchers have applied different hybrid models of fuzzy sets to several algebraic structures such as groups, semirings and BCK/BCI-algebras [8,9,10,11,12,19,24,25,36,37]. NSs and NSSs have received more attention in studying the algebraic structures dealing with uncertainty. Çetkin and Aygün [18] established the concept of neutrosophic subetaoups. Bera and Mahapatra introduced neutrosophic soft rings [14]. Moreover, two-dimensional hybrid models of fuzzy sets and soft sets were also applied to different algebraic structures. The notion of Q-fuzzy groups was discusssed in [34], neutrosophic Q-fuzzy subetaoups were introduced in [35], while Q-fuzzy and anti Q-fuzzy subrings were established in [29] and Q-neutrosophic subrings were introduced in [4].

    Motivated by the above discussion, in the present work, we combine the idea of Q-NSSs and ring theory to establish the concept of Q-neutrosophic soft rings (Q-NS rings) as a generalization of neutrosophic soft rings and soft rings. Some properties and basic characteristics are explored. Additionally, we define the Q-level soft set of a Q-NSSs, which is a bridge between Q-NS rings and soft rings. The concept of Q-neutrosophic soft homomorphism (Q-NS hom) is defined and homomorphic image and preimage of a Q-NS ring are investigated. Furthermore, the cartesian product of Q-NS rings is defined and some pertinent properties are examined.

    In this section, we recall some concepts relevant to this study.

    Definition 2.1. [28] A pair (F,A) is called a soft set over X, where F is a mapping given by F:AP(X). In other words, a soft set over X is a parameterized family of subsets of the universe X.

    Definition 2.2. [6] A soft set (F,E) over a ring R is a soft ring over R if f(e) is a subring of R, eE.

    Definition 2.3. [20] Let (F,E) be a soft set over the ring R. Then, (F,E) is called a soft left ideal (resp. right ideal) over R if F(e) is a left ideal of R for each eE i.e.

    1. x,yF(e)xyF(e),

    2. xF(e),rRrxF(e)(resp. xrF(e)).

    Definition 2.4. [20] Let (F,E) be a soft set over the ring R. Then, (F,E) is called a both sided ideal over R if F(e) is a left and right ideal of R for each eE i.e.

    1. x,yF(e)xyF(e),

    2. xF(e),rRrxF(e),xrF(e).

    Definition 2.5. [5] Let X be a universal set, Q be a nonempty set and AE be a set of parameters. Let μlQNS(X) be the set of all multi Q-NSs on X with dimension l=1. A pair (ΓQ,A) is called a Q-NSS over X, where ΓQ:AμlQNS(X) is a mapping, such that ΓQ(e)=ϕ if eA.

    Definition 2.6. [1] The union of two Q-NSSs (ΓQ,A) and (ΨQ,B) is the Q-NSS (ΛQ,C) written as (ΓQ,A)(ΨQ,B)=(ΛQ,C), where C=AB and for all cC,(x,q)X×Q, the truth-membership, indeterminacy-membership and falsity-membership of (ΛQ,C) are as follows:

    TΛQ(c)(x,q)={TΓQ(c)(x,q) if cAB,TΨQ(c)(x,q) if cBA,max{TΓQ(c)(x,q),TΨQ(c)(x,q)} if cAB,
    IΛQ(c)(x,q)={IΓQ(c)(x,q) if cAB,IΨQ(c)(x,q) if cBA,min{IΓQ(c)(x,q),IΨQ(c)(x,q)} if cAB,
    FΛQ(c)(x,q)={FΓQ(c)(x,q) if cAB,FΨQ(c)(x,q) if cBA,min{FΓQ(c)(x,q),FΨQ(c)(x,q)} if cAB.

    Definition 2.7. [1] The intersection of two Q-NSSs (ΓQ,A) and (ΨQ,B) is the Q-NSS (ΛQ,C) written as (ΓQ,A)(ΨQ,B)=(ΛQ,C), where C=AB and for all cC and (x,q)X×Q the truth-membership, indeterminacy-membership and falsity-membership of (ΛQ,C) are as follows:

    TΛQ(c)(x,q)=min{TΓQ(c)(x,q),TΨQ(c)(x,q)},IΛQ(c)(x,q)=max{IΓQ(c)(x,q),IΨQ(c)(x,q)},FΛQ(c)(x,q)=max{FΓQ(c)(x,q),FΨQ(c)(x,q)}.

    In this section, we introduce the notion of Q-NS rings. Several basic properties and theorems related to this concept are explored.

    Definition 3.1. Let (ΓQ,A) be a Q-NSS over (R,+,.). Then, (ΓQ,A) is said to be a Q-NS ring over (R,+,.) if for all x,yR,qQ and eA it satisfies:

    1. TΓQ(e)(x+y,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)},IΓQ(e)(x+y,q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)} and FΓQ(e)(x+y,q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}.

    2. TΓQ(e)(x,q)TΓQ(e)(x,q),IΓQ(e)(x,q)IΓQ(e)(x,q) and FΓQ(e)(x,q)FΓQ(e)(x,q).

    3. TΓQ(e)(x.y,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)},IΓQ(e)(x.y,q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)} and FΓQ(e)(x.y,q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}.

    Example 3.1. Let R=(Z,+,.) be the ring of integers and A = N the set of natural numbers be the parametric set. Define a Q-NSS (ΓQ,A) as follows for qQ,xZ and mN

    TΓQ(m)(x,q)={0 if x is odd1m if x is even,IΓQ(m)(x,q)={12m if x is odd0 if x is even,FΓQ(m)(x,q)={11m if x is odd0 if x is even.

    It is clear that (ΓQ,Z) is a Q-NS ring over R.

    Theorem 3.2. A Q-NSS (ΓQ,A) over the ring (R,+,.) is a Q-NS ring if and only if for all x,yR,qQ and eA

    1. TΓQ(e)(xy,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)},

    IΓQ(e)(xy,q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)},

    FΓQ(e)(xy,q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}.

    2. TΓQ(e)(x.y,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)},

    IΓQ(e)(x.y,q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)},

    FΓQ(e)(x.y,q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}.

    Proof. Suppose that (ΓQ,A) is a Q-NS ring over (R,+,.). Then,

    TΓQ(e)(xy,q)=TΓQ(e)(x+(y),q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)}min{TΓQ(e)(x,q),TΓQ(e)(y,q)},IΓQ(e)(xy,q)=IΓQ(e)(x+(y),q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)}max{IΓQ(e)(x,q),IΓQ(e)(y,q)},FΓQ(e)(xy,q)=FΓQ(e)(x+(y),q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}max{FΓQ(e)(x,q),FΓQ(e)(y,q)}.

    Thus, conditions 1 and 2 are satisfied.

    Conversely, Suppose that conditions 1 and 2 are satisfied.

    For the additive identity 0R in (R,+,.),

    TΓQ(e)(0R,q)=TΓQ(e)(xx,q)min{TΓQ(e)(x,q),TΓQ(e)(x,q)}=TΓQ(e)(x,q),
    IΓQ(e)(0R,q)=IΓQ(e)(xx,q)max{IΓQ(e)(x,q),IΓQ(e)(x,q)}=IΓQ(e)(x,q),
    FΓQ(e)(0R,q)=FΓQ(e)(xx,q)max{FΓQ(e)(x,q),FΓQ(e)(x,q)}=FΓQ(e)(x,q).

    Now,

    TΓQ(e)(x,q)=TΓQ(e)(0Rx,q)min{TΓQ(e)(0R,q),TΓQ(e)(x,q)}min{TΓQ(e)(x,q),TΓQ(e)(x,q)}=TΓQ(e)(x,q),IΓQ(e)(x,q)=IΓQ(e)(0Rx,q)max{IΓQ(e)(0R,q),IΓQ(e)(x,q)}max{IΓQ(e)(x,q),IΓQ(e)(x,q)}=IΓQ(e)(x,q),FΓQ(e)(x,q)=ΓQ(e)(0Rx,q)max{FΓQ(e)(0R,q),FΓQ(e)(x,q)}max{FΓQ(e)(x,q),FΓQ(e)(x,q)}=FΓQ(e)(x,q)}

    also,

    TΓQ(e)(x+y,q)=TΓQ(e)(x(y),q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)},IΓQ(e)(x+y,q)=IΓQ(e)(x(y),q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)},FΓQ(e)(x+y,q)=FΓQ(e)(x(y),q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}.

    This completes the proof.

    Theorem 3.3. Let (ΓQ,A) and (ΨQ,B) be two Q-NS rings over (R,+,.). Then, (ΓQ,A)(ΨQ,B) is also a Q-NS ring over (R,+,.).

    Proof. Let (ΓQ,A)(ΨQ,B)=(ΛQ,AB). Now, x,yR,qQ and eAB,

    TΛQ(e)(xy,q)=min{TΓQ(e)(xy,q),TΨQ(e)(xy,q)}min{min{TΓQ(e)(x,q),TΓQ(e)(y,q)},min{TΨQ(e)(x,q),TΨQ(e)(y,q)}}=min{min{TΓQ(e)(x,q),TΨQ(e)(x,q)},min{TΓQ(e)(y,q),TΨQ(e)(y,q)}}=min{TΛQ(e)(x,q),TΛQ(e)(y,q)},

    also,

    IΛQ(e)(xy,q)=max{IΓQ(e)(xy,q),IΨQ(e)(xy,q)}max{max{IΓQ(e)(x,q),IΓQ(e)(y,q)},max{IΨQ(e)(x,q),IΨQ(e)(y,q)}}=max{max{IΓQ(e)(x,q),IΨQ(e)(x,q)},max{IΓQ(e)(y,q),IΨQ(e)(y,q)}}=max{IΛQ(e)(x,q),IΛQ(e)(y,q)}.

    Similarly, FΛQ(e)(xy,q)max{FΛQ(e)(x,q),FΛQ(e)(y,q)}.

    Next,

    TΛQ(e)(x.y,q)=min{TΓQ(e)(x.y,q),TΨQ(e)(x.y,q)}min{min{TΓQ(e)(x,q),TΓQ(e)(y,q)},min{TΨQ(e)(x,q),TΨQ(e)(y,q)}}=min{min{TΓQ(e)(x,q),TΨQ(e)(x,q)},min{TΓQ(e)(y,q),TΨQ(e)(y,q)}}=min{TΛQ(e)(x,q),TΛQ(e)(y,q)},

    also,

    IΛQ(e)(x.y,q)=max{IΓQ(e)(x.y,q),IΨQ(e)(x.y,q)}max{max{IΓQ(e)(x,q),IΓQ(e)(y,q)},max{IΨQ(e)(x,q),IΨQ(e)(y,q)}}=max{max{IΓQ(e)(x,q),IΨQ(e)(x,q)},max{IΓQ(e)(y,q),IΨQ(e)(y,q)}}=max{IΛQ(e)(x,q),IΛQ(e)(y,q)}.

    Similarly, we can show FΛQ(e)(x.y,q)max{FΛQ(e)(x,q),FΛQ(e)(y,q)}. This completes the proof.

    Remark 3.4. For two Q-NS rings (ΓQ,A) and (ΨQ,B) over (R,+,.), (ΓQ,A)(ΨQ,B) is not generally a Q-NS ring.

    For example, let R=(Z,+,.),E=2Z. Consider two Q-NS rings (ΓQ,E) and (ΨQ,E) over R as follows: for x,mZ and qQ

    TΓQ(2m)(x,q)={0.50 if x=4tm,tZ,0otherwise,IΓQ(2m)(x,q)={0 if x=4tm,tZ,0.25otherwise,FΓQ(2m)(x,q)={0.40 if x=4tm,tZ,0.10otherwise,

    and

    TΨQ(2m)(x,q)={0.67 if x=8tm,tZ,0otherwise,IΨQ(2m)(x,q)={0 if x=8tm,tZ,0.20otherwise,FΨQ(2m)(x,q)={0.16 if x=8tm,tZ,0.33otherwise.

    Let (ΓQ,A)(ΨQ,B)=(ΛQ,E). For m=3,x=12,y=18 we have,

    TΛQ(6)(1218,q)=TΛQ(6)(6,q)=max{TΓQ(6)(6,q),TΨQ(6)(6,q)}=max{0,0}=0

    and

    min{TΛQ(6)(12,q),TΛQ(6)(18,q)}=min{max{TΓQ(6)(12,q),TΨQ(6)(12,q)},max{TΓQ(6)(18,q),TΨQ(6)(18,q)}}=min{max{0.50,0},max{0,0.67}}=min{0.50,0.67}=0.50.

    Hence, TΛQ(6)(1218,q)<min{TΛQ(6)(12,q),TΛQ(6)(18,q)}. Thus, the union is not a Q-NS ring.

    Theorem 3.5. Let (ΓQ,A) and (ΨQ,B) be two Q-NS rings over (R,+,.). Then, (ΓQ,A)(ΨQ,B) is also a Q-NS ring over (R,+,.).

    Proof. The proof is similar to the proof of Theorem 3.3.

    Definition 3.6. Let (ΓQ,A) be a Q-NSS over X. Let α,β,γ[0,1] with α+β+γ3. Then (ΓQ,A)(α,β,γ) is a Q-level soft set of (ΓQ,A) defined by

    (ΓQ,A)(α,β,γ)={xX,qQ:TΓQ(e)(x,q)α,IΓQ(e)(x,q)β,FΓQ(e)(x,q)γ}

    for all eA.

    The next theorem provides a bridge between Q-NS rings and soft rings.

    Theorem 3.7. Let (ΓQ,A) be a Q-NSS over (R,+,.). Then, (ΓQ,A) is a Q-NS ring over (R,+,.) if and only if for all α,β,γ[0,1] the Q-level soft set (ΓQ,A)(α,β,γ)ϕ is a soft ring over R.

    Proof. Let (ΓQ,A) be a Q-NS ring over (R,+,.), x,y(ΓQ(e))(α,β,γ) and qQ, for arbitrary α,β,γ[0,1] and eA.

    Then, we have TΓQ(e)(x,q)α,IΓQ(e)(x,q)β,FΓQ(e)(x,q)γ. Since (ΓQ,A) is a Q-NS ring over G, then we have

    TΓQ(e)(xy,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)}min{α,α}=α,IΓQ(e)(xy,q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)}max{β,β}=β,FΓQ(e)(xy,q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}max{γ,γ}=γ.

    Therefore, xy(ΓQ(e))(α,β,γ). Furthermore, TΓQ(e)(x.y,q)α,IΓQ(e)(x.y,q)β,FΓQ(e)(x.y,q)γ. So, x.y(ΓQ,A)(α,β,γ). Hence, (ΓQ(e))(α,β,γ) is a subring over (R,+,.),eA.

    Conversely, suppose (ΓQ,A) is not a Q-NS ring over (R,+,.). Then, there exists eA such that ΓQ(e) is not a Q-neutrosophic subring of R. Then, there exist x1,y1R and qQ such that at least one of the conditions in Definition 3.1 does not hold. Without loss of generality, let us assume TΓQ(e)(x1y1,q)<min{TΓQ(e)(x1,q),TΓQ(e)(y1,q)}.

    Let TΓQ(e)(x1,q)=α1,TΓQ(e)(y1,q)=α2 and TΓQ(e)(x1y1,q)=α3. If we take α=min{α1,α2}, then x1y1(ΓQ(e))(α,β,γ). But, since

    TΓQ(e)(x1,q)=α1min{α1,α2}=α

    and

    TΓQ(e)(y1,q)=α2min{α1,α2}=α.

    For IΓQ(e)(x1,q)β,IΓQ(e)(y1,q)β,FΓQ(e)(x1,q)γ,FΓQ(e)(y1,q)γ, we have x1,y1(ΓQ(e))(α,β,γ). This contradicts with the fact that (ΓQ,A)(α,β,γ) is a soft ring over G.

    The other cases can be obtained similarly.

    In this section, we define the cartesian product of Q-NS rings and prove that it is also a Q-NS ring.

    Definition 4.1. Let (ΓQ,A) and (ΨQ,B) be two Q-NS rings over (R1,+,.) and (R2,+,.), respectively. Then, their cartesian product (ΛQ,A×B)=(ΓQ,A)×(ΨQ,B), where ΛQ(a,b)=ΓQ(a)×ΨQ(b) for (a,b)A×B. Analytically, for xR1,yR2 and qQ

    ΛQ(a,b)={((x,y),q),TΛQ(a,b)((x,y),q),IΛQ(a,b)((x,y),q),FΛQ(a,b)((x,y),q)}, where
    TΛQ(a,b)((x,y),q)=min{TΓQ(a)(x,q),TΨQ(b)(y,q)},IΛQ(a,b)((x,y),q)=max{IΓQ(a)(x,q),IΨQ(b)(y,q)},FΛQ(a,b)((x,y),q)=max{FΓQ(a)(x,q),FΨQ(b)(y,q)}.

    Theorem 4.2. Let (ΓQ,A) and (ΨQ,B) be two Q-NS rings over (R1,+,.) and (R2,+,.), respectively. Then, their cartesian product (ΓQ,A)×(ΨQ,B) is a Q-NS ring over (R1×R2).

    Proof. Let (ΛQ,A×B)=(ΓQ,A)×(ΨQ,B), where ΛQ(a,b)=ΓQ(a)×ΨQ(b) for (a,b)A×B. Then, for ((x1,y1),q),((x2,y2),q)(R1×R2)×Q we have,

    TΛQ(a,b)(((x1,y1)(x2,y2),q))=TΛQ(a,b)((x1x2,y1y2),q)=min{TΓQ(a)((x1x2),q),TΨQ(b)((y1y2),q)}min{min{TΓQ(a)(x1,q),TΓQ(a)(x2,q)},min{TΨQ(b)(y1,q),TΨQ(b)(y2,q)}}min{min{TΓQ(a)(x1,q),TΓQ(a)(x2,q)},min{TΨQ(b)(y1,q),TΨQ(b)(y2,q)}}=min{min{TΓQ(a)(x1,q),TΨQ(b)(y1,q)},min{TΓQ(a)(x2,q),TΨQ(b)(y2,q)}}=min{TΛQ(a,b)((x1,y1),q),TΛQ(a,b)((x2,y2),q)}

    also,

    IΛQ(a,b)(((x1,y1)(x2,y2),q))=IΛQ(a,b)((x1x2,y1y2),q)=max{IΓQ(a)((x1x2),q),IΨQ(b)((y1y2),q)}max{max{IΓQ(a)(x1,q),IΓQ(a)(x2,q)},max{IΨQ(b)(y1,q),IΨQ(b)(y2,q)}}max{max{IΓQ(a)(x1,q),IΓQ(a)(x2,q)},max{IΨQ(b)(y1,q),IΨQ(b)(y2,q)}}=max{max{IΓQ(a)(x1,q),IΨQ(b)(y1,q)},max{IΓQ(a)(x2,q),IΨQ(b)(y2,q)}}=max{IΛQ(a,b)((x1,y1),q),IΛQ(a,b)((x2,y2),q)},

    similarly, FΛQ(a,b)(((x1,y1)(x2,y2),q))max{FΛQ(a,b)((x1,y1),q),FΛQ(a,b)((x2,y2),q)}. Next,

    TΛQ(a,b)(((x1,y1).(x2,y2),q))=TΛQ(a,b)((x1.x2,y1.y2),q)=min{TΓQ(a)((x1.x2),q),TΨQ(b)((y1.y2),q)}min{min{TΓQ(a)(x1,q),TΓQ(a)(x2,q)},min{TΨQ(b)(y1,q),TΨQ(b)(y2,q)}}min{min{TΓQ(a)(x1,q),TΓQ(a)(x2,q)},min{TΨQ(b)(y1,q),TΨQ(b)(y2,q)}}=min{min{TΓQ(a)(x1,q),TΨQ(b)(y1,q)},min{TΓQ(a)(x2,q),TΨQ(b)(y2,q)}}=min{TΛQ(a,b)((x1,y1),q),TΛQ(a,b)((x2,y2),q)},
    IΛQ(a,b)(((x1,y1).(x2,y2),q))=IΛQ(a,b)((x1.x2,y1.y2),q)=max{IΓQ(a)((x1.x2),q),IΨQ(b)((y1.y2),q)}max{max{IΓQ(a)(x1,q),IΓQ(a)(x2,q)},max{IΨQ(b)(y1,q),IΨQ(b)(y2,q)}}max{max{IΓQ(a)(x1,q),IΓQ(a)(x2,q)},max{IΨQ(b)(y1,q),IΨQ(b)(y2,q)}}=max{max{IΓQ(a)(x1,q),IΨQ(b)(y1,q)},max{IΓQ(a)(x2,q),IΨQ(b)(y2,q)}}=max{IΛQ(a,b)((x1,y1),q),IΛQ(a,b)((x2,y2),q)},

    similarly, FΛQ(a,b)(((x1,y1),q).((x2,y2),q))max{FΛQ(a,b)((x1,y1),q),FΛQ(a,b)((x2,y2),q)}. This completes the proof.

    In this section, we define the Q-neutrosophic soft function, then define the image and pre-image of a Q-NSS under a Q-neutrosophic soft function. In continuation, we introduce the notion of Q-neutrosophic soft homomorphism along with some of it's properties.

    Definition 5.1. Let g:X×QY×Q and h:AB be two functions where Aand B are parameter sets. Then, the pair (g,h) is called a Q-neutrosophic soft function from X×Q to Y×Q.

    Definition 5.2. Let (ΓQ,A) and (ΨQ,B) be two Q-NSSs defined over X×Q and Y×Q, respectively, and (g,h) be a Q-neutrosophic soft function from X×Q to Y×Q. Then,

    1. The image of (ΓQ,A) under (g,h), denoted by (g,h)(ΓQ,A), is a Q-NSS over Y×Q and is defined by:

    (g,h)(ΓQ,A)=(g(ΓQ),h(A))={b,g(ΓQ)(b):bh(A)},

    where for all bh(A),yY and qQ,

    Tg(ΓQ)(b)(y,q)={maxg(x,q)=(y,q)maxh(a)=b[TΓQ(a)(x,q)] if (x,q)g1(y,q),0otherwise,Ig(ΓQ)(b)(y,q)={ming(x,q)=(y,q)minh(a)=b[IΓQ(a)(x,q)] if (x,q)g1(y,q),1otherwise,Fg(ΓQ)(b)(y,q)={ming(x,q)=(y,q)minh(a)=b[FΓQ(a)(x,q)] if (x,q)g1(y,q),1otherwise,

    2. The preimage of (ΨQ,B) under (g,h), denoted by (g,h)1(ΨQ,B), is a Q-NSS over X and is defined by:

    (g,h)1(ΨQ,B)=(g1(ΨQ),h1(B))={a,g1(ΨQ)(a):ah1(B)},

    where for all ah1(B),xX and qQ,

    Tg1(ΨQ)(a)(x,q)=TΨQ[h(a)](g(x,q)),Ig1(ΨQ)(a)(x,q)=IΨQ[h(a)](g(x,q)),Fg1(ΨQ)(a)(x,q)=FΨQ[h(a)](g(x,q)).

    If g and h are injective (surjective), then (g,h) is injective (surjective).

    Definition 5.3. Let (g,h) be a Q-neutrosophic soft function from X×Q to Y×Q. If g is a homomorphism from X×Q to Y×Q, then (g,h) is said to be a Q-neutrosophic soft homomorphism. If g is an isomorphism from X×Q to Y×Q and h is a one-to-one mapping from A to B, then (g,h) is said to be a Q-neutrosophic soft isomorphism.

    Theorem 5.4. Let (ΓQ,A) be a Q-NS ring over R1 and (g,h):R1×QR2×Q be a Q-neutrosophic soft homomorphism. Then, (g,h)(ΓQ,A) is a Q-NS ring over R2.

    Proof. Let bh(A) and y1,y2R2. For g1(y1,q)=ϕ or g1(y2,q)=ϕ, the proof is straight forward.

    So, assume there exists x1,x2R1 such that g(x1,q)=(y1,q) and g(x2,q)=(y2,q). Then,

    Tg(ΓQ)(b)(y1y2,q)=maxg(x,q)=(y1y2,q)maxh(a)=b[TΓQ(a)(x,q)]maxh(a)=b[TΓQ(a)(x1x2,q)]maxh(a)=b[min{TΓQ(a)(x1,q),TΓQ(a)(x2,q)}]maxh(a)=b[min{TΓQ(a)(x1,q),TΓQ(a)(x2,q)}]=min{maxh(a)=b[TΓQ(a)(x1,q)],maxh(a)=b[TΓQ(a)(x2,q)]}
    Tg(ΓQ)(b)(y1.y2,q)=maxg(x,q)=(y1.y2,q)maxh(a)=b[TΓQ(a)(x,q)]maxh(a)=b[TΓQ(a)(x1.x2,q)]maxh(a)=b[min{TΓQ(a)(x1,q),TΓQ(a)(x2,q)}]maxh(a)=b[min{TΓQ(a)(x1,q),TΓQ(a)(x2,q)}]=min{maxh(a)=b[TΓQ(a)(x1,q)],maxh(a)=b[TΓQ(a)(x2,q)]}.

    Since, the inequality is satisfied for each x1,x2R1, satisfying g(x1,q)=(y1,q) and g(x2,q)=(y2,q). Then,

    Tg(ΓQ)(b)(y1y2,q)min{maxg(x1,q)=(y1,q)maxh(a)=b[TΓQ(a)(x1,q)],maxg(x2,q)=(y1,q)maxh(a)=b[TΓQ(a)(x2,q)]}=min{Tg(ΓQ)(b)(y1,q),Tg(ΓQ)(b)(y2,q)}.
    Tg(ΓQ)(b)(y1.y2,q)min{maxg(x1,q)=(y1,q)maxh(a)=b[TΓQ(a)(x1,q)],maxg(x2,q)=(y1,q)maxh(a)=b[TΓQ(a)(x2,q)]}=min{Tg(ΓQ)(b)(y1,q),Tg(ΓQ)(b)(y2,q)}.

    Similarly, we show that

    Ig(ΓQ)(b)(y1y2,q)max{Ig(ΓQ)(b)(y1,q),Ig(ΓQ)(b)(y2,q)},
    Ig(ΓQ)(b)(y1.y2,q)max{Ig(ΓQ)(b)(y1,q),Ig(ΓQ)(b)(y2,q)},
    Fg(ΓQ)(b)(y1y2,q)max{Fg(ΓQ)(b)(y1,q),Fg(ΓQ)(b)(y2,q)},
    Fg(ΓQ)(b)(y1.y2,q)max{Fg(ΓQ)(b)(y1,q),Fg(ΓQ)(b)(y2,q)}.

    Theorem 5.5. Let (ΨQ,B) be a Q-NS ring over R2 and (g,h) be a Q-neutrosophic soft homomorphism from R1×Q to R2×Q. Then, (g,h)1(ΨQ,B) is a Q-NS ring over R1.

    Proof. For ah1(B) and x1,x2R1, we have

    Tg1(ΨQ)(a)(x1x2,q)=TΨQ[h(a)](g(x1x2,q))=TΨQ[h(a)](g(x1,q)g(x2,q))min{TΨQ[h(a)](g(x1,q)),TΨQ[h(a)](g(x2,q))}min{TΨQ[h(a)](g(x1,q)),TΨQ[h(a)](g(x2,q))}=min{Tg1(ΨQ)(a)(x1,q),Tg1(ΨQ)(a)(x2,q)}

    and

    Tg1(ΨQ)(a)(x1.x2,q)=TΨQ[h(a)](g(x1.x2,q))=TΨQ[h(a)](g(x1,q).g(x2,q))min{TΨQ[h(a)](g(x1,q)),TΨQ[h(a)](g(x2,q))}min{TΨQ[h(a)](g(x1,q)),TΨQ[h(a)](g(x2,q))}=min{Tg1(ΨQ)(a)(x1,q),Tg1(ΨQ)(a)(x2,q)}

    Similarly, we can obtain

    Ig1(ΨQ)(a)(x1x2,q)max{Ig1(ΨQ)(a)(x1,q),Ig1(ΨQ)(a)(x2,q)},Ig1(ΨQ)(a)(x1.x2,q)max{Ig1(ΨQ)(a)(x1,q),Ig1(ΨQ)(a)(x2,q)},Fg1(ΨQ)(a)(x1x2,q)max{Fg1(ΨQ)(a)(x1,q),Fg1(ΨQ)(a)(x2,q)},Fg1(ΨQ)(a)(x1.x2,q)max{Fg1(ΨQ)(a)(x1,q),Fg1(ΨQ)(a)(x2,q)}.

    Thus, the theorem is proved.

    In the current section, we present Q-neutrosophic soft ideals and explore some of their related properties.

    Definition 6.1. A Q-NSS over (ΓQ,A) over a ring (R,+,.) is called a Q-NS left (resp. right) ideal over (R,+,.) if for all x,yR,qQ and eA it satisfies:

    1. TΓQ(e)(xy,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)},IΓQ(e)(xy,q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)} and FΓQ(e)(xy,q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}.

    2. TΓQ(e)(x.y,q)TΓQ(e)(y,q),IΓQ(e)(x.y,q)IΓQ(e)(y,q) and FΓQ(e)(x.y,q)FΓQ(e)(y,q) (resp. TΓQ(e)(x.y,q)TΓQ(e)(x,q),IΓQ(e)(x.y,q)IΓQ(e)(x,q) and FΓQ(e)(x.y,q)FΓQ(e)(x,q)).

    Definition 6.2. A Q-NSS over (ΓQ,A) over a ring (R,+,.) is called a Q-NS ideal over (R,+,.) if for all x,yR,qQ and eA it satisfies:

    1. TΓQ(e)(xy,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)},IΓQ(e)(xy,q)max{IΓQ(e)(x,q),IΓQ(e)(y,q)} and FΓQ(e)(xy,q)max{FΓQ(e)(x,q),FΓQ(e)(y,q)}.

    2. TΓQ(e)(x.y,q)max{TΓQ(e)(x,q),TΓQ(e)(y,q)},IΓQ(e)(x.y,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)} and FΓQ(e)(x.y,q)min{TΓQ(e)(x,q),TΓQ(e)(y,q)}.

    Example 6.1. Let R=(Z,+,.) be the ring of integers and A = N the set of natural numbers be the parametric set. Define a Q-NSS (ΓQ,A) as follows for qQ,xZ and mN

    TΓQ(m)(x,q)={1m if x=2l1,lZ2m if x=2l,lZ,IΓQ(m)(x,q)={1m if x=2l1,lZ0 if x=2l,lZ,FΓQ(m)(x,q)={12m if x=2l1,lZ13m if x=2l,lZ.

    Then, by Definition 6.2 (ΓQ,A) is a Q-NS ideal over (Z,+,.).

    Theorem 6.3. Let (ΓQ,A) and (ΨQ,B) be two Q-NS ideals over (R,+,.). Then, (ΓQ,A)(ΨQ,B) is also a Q-NS ideal over (R,+,.).

    Proof. Let (ΓQ,A)(ΨQ,B)=(ΛQ,AB). Then, for x,yR,qQ and eAB the first condition of Definition 6.2 is satisfied by Theorem 3.3. Now, for the second condition

    TΛQ(e)(x.y,q)=min{TΓQ(e)(x.y,q),TΨQ(e)(x.y,q)}min{max{TΓQ(e)(x,q),TΓQ(e)(y,q)},max{TΨQ(e)(x,q),TΨQ(e)(y,q)}}=max{min{TΓQ(e)(x,q),TΨQ(e)(x,q)},min{TΓQ(e)(y,q),TΨQ(e)(y,q)}}=max{TΛQ(e)(x,q),TΛQ(e)(y,q)},

    also,

    IΛQ(e)(x.y,q)=max{IΓQ(e)(x.y,q),IΨQ(e)(x.y,q)}max{min{IΓQ(e)(x,q),IΓQ(e)(y,q)},min{IΨQ(e)(x,q),IΨQ(e)(y,q)}}=min{max{IΓQ(e)(x,q),IΨQ(e)(x,q)},max{IΓQ(e)(y,q),IΨQ(e)(y,q)}}=min{IΛQ(e)(x,q),IΛQ(e)(y,q)}.

    Similarly, we can show FΛQ(e)(x.y,q)min{FΛQ(e)(x,q),FΛQ(e)(y,q)}. This completes the proof.

    Theorem 6.4. Let (ΓQ,A) and (ΨQ,B) be two Q-NS ideals over (R,+,.). Then, (ΓQ,A)(ΨQ,B) is also a Q-NS ideal over (R,+,.).

    Proof. The proof is similar to the proof of Theorem 6.3.

    Remark 6.5. The union of two Q-NS ideals need not be a Q-NS ideal.

    For example, let R=Z6=0,1,2,3,4,5. Consider two Q-NS ideals (ΓQ,A) and (ΨQ,B) over R as follows: for xZ,qQ and eE

    TΓQ(2m)(x,q)={0.30 if x=0 or 3,0otherwise,IΓQ(2m)(x,q)={0 if x=0 or 3,0.20otherwise,FΓQ(2m)(x,q)={0.30 if x=0 or 3,1otherwise,

    and

    TΨQ(2m)(x,q)={0.40 if x=0,2,4,0otherwise,IΨQ(2m)(x,q)={0 if x=0,2,4,0.50otherwise,FΨQ(2m)(x,q)={0.25 if x=0,2,4,1otherwise.

    Let (ΓQ,A)(ΨQ,B)=(ΛQ,AB). For x=3,y=2 and qQ we have,

    TΛQ(e)(32,q)=TΛQ(e)(1,q)=max{TΓQ(e)(1,q),TΨQ(e)(1,q)}=max{0,0}=0

    and

    min{TΛQ(e)(3,q),TΛQ(e)(2,q)}=min{max{TΓQ(e)(3,q),TΨQ(e)(3,q)},max{TΓQ(e)(2,q),TΨQ(e)(2,q)}}=min{max{0.30,0},max{0,0.40}}=min{0.30,0.40}=0.30.

    Hence, TΛQ(e)(32,q)<min{TΛQ(e)(3,q),TΛQ(e)(2,q)}. Thus, the union is not a Q-NS ideal.

    In this study, we have introduced the idea of Q-neutrosophic soft rings and discuss some of its related properties. Then, we have discussed the cartesian product of Q-neutrosophic soft rings and homomorphic image and preimage of Q-neutrosophic soft rings. Finally, we have presented Q-neutrosophic soft ideals and explored some of their related properties. The proposed notion illuminates the way to broaden the notion of Q-neutrosophic soft sets and rings by using the refined neutrosophic set [33] and different other structures.

    We declare that there is no conflict of interest.



    [1] M. Abu Qamar, N. Hassan, An approach toward a Q-neutrosophic soft set and its application in decision making, Symmetry, 11 (2019), 139.
    [2] M. Abu Qamar, N. Hassan, Entropy, measures of distance and similarity of Q-neutrosophic soft sets and some applications, Entropy, 20 (2018), 672.
    [3] M. Abu Qamar, N. Hassan, Generalized Q-neutrosophic soft expert set for decision under uncertainty, Symmetry, 10 (2018), 621.
    [4] M. Abu Qamar, N. Hassan, On Q-neutrosophic subring, Journal of Physics: Conference Series, 1212 (2019), 012018.
    [5] M. Abu Qamar, N. Hassan, Q-neutrosophic soft relation and its application in decision making, Entropy, 20 (2018), 172.
    [6] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458-3463. doi: 10.1016/j.camwa.2010.03.034
    [7] F. Adam, N. Hassan, Properties on the multi Q-fuzzy soft matrix, AIP Conference Proceedings, 1614 (2014), 834-839.
    [8] A. Al-Masarwah, A. G. Ahmad, Doubt bipolar fuzzy subalgebras and ideals in BCK/BCI-algebras, J. Math. Anal., 9 (2018), 9-27.
    [9] A. Al-Masarwah, A. G. Ahmad, m-polar fuzzy ideals of BCK/BCI-algebras, J. King Saud University-Science, 2018.
    [10] A. Al-Masarwah, A. G. Ahmad, Novel concepts of doubt bipolar fuzzy H-ideals of BCK/BCI-algebras, Int. J. Innov. Comput. I., 14 (2018), 2025-2041.
    [11] A. Al-Masarwah, A. G. Ahmad, On (complete) normality of m-pF subalgebras in BCK/BCI-algebras, AIMS Mathematics, 4 (2019), 740-750. doi: 10.3934/math.2019.3.740
    [12] A. Al-Masarwah, A. G. Ahmad, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-algebras,. Eur. J. Pure Appl. Math., 11 (2018), 652-670. doi: 10.29020/nybg.ejpam.v11i3.3288
    [13] Y. L. Bao, H. L. Yang, On single valued neutrosophic refined rough set model and its application, J. Intell. Fuzzy Syst., 33 (2017), 1235-1248. doi: 10.3233/JIFS-17094
    [14] T. Bera, N. K. Mahapatra, On neutrosophic soft rings, OPSEARCH, 54 (2017), 143-167. doi: 10.1007/s12597-016-0273-6
    [15] S. Broumi, A. Dey, M. Talea, et al. Shortest path problem using Bellman algorithm under neutrosophic environment, Complex & Intelligent Systems, (2019), 1-8.
    [16] S. Broumi, D. Nagarajan, A. Bakali, et al. The shortest path problem in interval valued trapezoidal and triangular neutrosophic environment, Complex & Intelligent Systems, (2019), 1-12.
    [17] S. Broumi, M. Talea, A. Bakali, et al. Shortest path problem in fuzzy, intuitionistic fuzzy and neutrosophic environment: an overview, Complex & Intelligent Systems, (2019), 1-8.
    [18] V. Ҫetkin, H. Aygün, An approach to neutrosophic subgroup and its fundamental properties, J. Intell. Fuzzy Syst., 29 (2015), 1941-1947. doi: 10.3233/IFS-151672
    [19] F. Feng, Y. B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621-2628. doi: 10.1016/j.camwa.2008.05.011
    [20] J. Ghosh, B. Dinda, T. K. Samanta, Fuzzy soft rings and fuzzy soft ideals, Int. J. Pure Appl. Sci. Technol., 2 (2011), 66-74.
    [21] Z. L. Guo, Y. L. Liu, H. L. Yang, A novel rough set model in generalized single valued neutrosophic approximation spaces and its application, Symmetry, 9 (2017), 119.
    [22] F. Karaaslan, Neutrosophic soft sets with applications in decision making, International Journal of Information Science and Intelligent System, 4 (2015), 1-20.
    [23] F. Karaaslan, Possibility neutrosophic soft sets and PNS-decision making method, Appl. Soft Comput., 54 (2017), 403-414. doi: 10.1016/j.asoc.2016.07.013
    [24] F. Karaaslan, Some properties of AG*-groupoids and AG-bands under SI-product operation, J. Intell. Fuzzy Syst., 36 (2019), 231-239. doi: 10.3233/JIFS-181208
    [25] F. Karaaslan, K. Kaygısıza, N. Cagman, On intuitionistic fuzzy soft groups, Journal of New Results in Sciences, 2 (2013), 72-86.
    [26] Y. L. Liu, H. L. Yang, Further research of single valued neutrosophic rough sets, J. Intell. Fuzzy Syst., 33 (2017), 1467-1478. doi: 10.3233/JIFS-17401
    [27] P. K. Maji, Neutrosophic soft set, Annals of Fuzzy Mathematics and Informatics, 5 (2013), 157-168.
    [28] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31.
    [29] R. Rasuli, Characterization of Q-fuzzy subrings (Anti Q-fuzzy subrings) with respect to a T-norm (T-conorm), Journal of Information and Optimization Sciences, 39 (2018), 827-837. doi: 10.1080/02522667.2016.1228316
    [30] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517. doi: 10.1016/0022-247X(71)90199-5
    [31] F. Smarandache, Neutrosophy. Neutrosophic Probability, Set and Logic, American Research Press: Rehoboth, IL, USA, 1998.
    [32] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287-297.
    [33] F. Smarandache, n-valued refined neutrosophic logic and its applications to physics, Progress in Physics, 4 (2013), 143-146.
    [34] A. Solairaju, R. Nagarajan, A new structure and construction of Q-fuzzy groups, Advances in Fuzzy Mathematics, 4 (2009), 23-29.
    [35] S. Thiruveni, A. Solairaju, Neutrosophic Q-fuzzy subgroups, Int. J. Math. And Appl., 6 (2018), 859-866.
    [36] A. Ullah, I. Ahmad, F. Hayat, et al. Soft intersection Abel-Grassmann's groups, Journal of Hyperctructures, 7 (2018), 149-173.
    [37] A. Ullah, F. Karaaslan, I. Ahmad, Soft uni-Abel-Grassmann's groups, Eur. J. Pure Appl. Math., 11 (2018), 517-536. doi: 10.29020/nybg.ejpam.v11i2.3228
    [38] H. L. Yang, Z. L . Guo, Y. She, et al. On single valued neutrosophic relations, J. Intell. Fuzzy Syst., 30 (2016), 1045-1056. doi: 10.3233/IFS-151827
    [39] H. L. Yang , Y. L. Bao, Z. L. Guo, Generalized interval neutrosophic rough Sets and its application in multi-attribute decision making, Filomat, 32 (2018), 11-33. doi: 10.2298/FIL1801011Y
    [40] H. L. Yang, C. L. Zhang, Z. L. Guo, et al. A hybrid model of single valued neutrosophic sets and rough sets: single valued neutrosophic rough set model, Soft Computing, 21 (2017), 6253-6267. doi: 10.1007/s00500-016-2356-y
    [41] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
  • This article has been cited by:

    1. Sisi Xia, Lin Chen, Haoran Yang, A soft set based approach for the decision-making problem with heterogeneous information, 2022, 7, 2473-6988, 20420, 10.3934/math.20221119
    2. Zeeshan Saleem Mufti, Ali Tabraiz, Qin Xin, Bander Almutairi, Rukhshanda Anjum, Fuzzy topological analysis of pizza graph, 2023, 8, 2473-6988, 12841, 10.3934/math.2023647
    3. Noor Bani Abd Al-Rahman, Anas Al-Masarwah, Abd Ulazeez Alkouri, Algebraic Aspects of Crossing Cubic BE-Algebras, 2025, 17, 1616-8658, 20, 10.26599/FIE.2025.9270051
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4220) PDF downloads(435) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog