Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Influence of solvent and molecular weight in wrinkle formation in spin-cast polystyrene thin films

1 College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268 Donghuan Road, Chengzhong District, Liuzou, Guangxi, 545006, P. R. China
2 Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
3 Department of Chemistry, 140 Flagg Road, University of Rhode Island, Kingston, RI, 02881, USA

Topical Section: Thin films, surfaces and interfaces

The surface morphology of polystyrene thin films formed from various molecular weight polystyrene and solvent conditions is studied. When spin-cast from tetrahydrofuran (THF) wrinkles are formed at the extremities that have periodicity with wavelengths in the μm range and amplitudes in the nm range but varies with molecular weight. A mixed solvent system consisting of THF and dimethylformamide (DMF) leads to periodic structures only with THF-rich compositions. THF and DMF have similar properties relevant to spin-casting: density, surface tension, molecular weight, and viscosity but different boiling points and room temperature vapor pressures, demonstrating that formation periodicity requires a volatile solvent. The formation of the surface structures is attributed to the Marangoni effect and the film thicknesses and wave parameters are shown to be consistent with literature models.
  Figure/Table
  Supplementary
  Article Metrics

Keywords morphology; polymer; solvent casting; wrinkle formation; spin-coating

Citation: Chunyi Tang, Matthew Mullen, William B. Euler. Influence of solvent and molecular weight in wrinkle formation in spin-cast polystyrene thin films. AIMS Materials Science, 2020, 7(1): 60-74. doi: 10.3934/matersci.2020.1.60

References

  • 1. Su J, Chen J (2017) Synthetic porous materials applied in hydrogenation reactions. Micropor Mesopor Mat 237: 246-259.    
  • 2. Pan L, Qiu H, Dou C, et al. (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11: 2636-2657.    
  • 3. Share K, Westover A, Li M, et al. (2016) Surface engineering of nanomaterials for improved energy storage-A review. Chem Eng Sci 154: 3-19.    
  • 4. Gor GY (2014) Adsorption stress changes the elasticity of liquid argon confined in a nanopore. Langmuir 30: 13564-13569.    
  • 5. Ghosh J, Faller R (2008) Comparing the density of states of binary Lennard-Jones glasses in bulk and film. J Chem Phys 128: 124509.    
  • 6. Zhan D, Han L, Zhang J, et al. (2016) Confined chemical etching for electrochemical machining with nanoscale accuracy. Accounts Chem Res 49: 2596-2604.    
  • 7. Huang Z, Geyer N, Werner P, et al. (2011) Metal assisted chemical etching of silicon: A review. Adv Mater 23: 285-308.    
  • 8. Chen Y, Pépin A (2001) Nanofabrication: conventional and nonconventional methods. Electrophoresis 22: 187-207.    
  • 9. Fourche G (1995) An overview of the basic aspects of polymer adhesion. Part I: Fundamentals. Polym Eng Sci 35: 957-967.
  • 10. Adamson AW, Gast AP (1997) Physical Chemistry of Surfaces, 6th Eds, New York: New York: Interscience publishers, 150: 180.
  • 11. Kuwabara K, Ogino M, Motowaki S, et al. (2004) Fluorescence measurements of nanopillars fabricated by high-aspect ratio nanoprint technology. Microelectron Eng 73: 752-756.
  • 12. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445: 39-46.    
  • 13. Levitsky IA, Euler WB, Tokranova N, et al. (2007) Fluorescent polymer-porous silicon microcavity devices for explosives detection. Appl Phys Lett 90: 041904.    
  • 14. Lalanne P, Sauvan C, Hugonin JP (2008) Photon confinement in photonic crystal nanocavities. Laser Photonics Rev 2: 514-526.    
  • 15. Koo WH, Jeong SM, Araoka F, et al. (2010) Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat Photonics 4: 222-226.    
  • 16. Zhang L, Lang X, Hirata A, et al. (2011) Wrinkled nanoporous gold films with ultrahigh surface-enhanced raman scattering enhancement. ACS Nano 5: 4407-4413.    
  • 17. Hsiao YS, Charan S, Wu FY, et al. (2012) Improving the light trapping efficiency of plasmonic polymer solar cells through photon management. J Phys Chem C 116: 20731-20737.    
  • 18. Matoian MA, Sweetman R, Hall EC, et al. (2013) Light trapping to amplify metal enhanced fluorescence with application for sensing TNT. J Fluoresc 23: 877-880.    
  • 19. Zhou W, Liu R, Tang D, et al. (2013) Luminescence and local photonic confinement of single ZnSe:Mn nanostructure and the shape dependent lasing behavior. Nanotechnology 24: 055201.    
  • 20. Mischok A, Brückner R, Sudzius M, et al. (2014) Photonic confinement in laterally structured metal-organic microcavities. Appl Phys Lett 105: 051108.    
  • 21. Khang DY, Jiang H, Huang Y, et al. (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311: 208-212.    
  • 22. Kim DH, Ahn JH, Choi WM, et al. (2008) Stretchable and foldable silicon integrated circuits. Science 320: 507-511.    
  • 23. Lin PC, Yang S (2009) Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matter 5: 1011-1018.    
  • 24. Ohzono T, Monobe H (2010) Morphological transformation of a liquid micropattern on dynamically tunable microwrinkles. Langmuir 26: 6127-6132.    
  • 25. Khare K, Zhou J, Yang S (2009) Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 25: 12794-12799.    
  • 26. Reiter G (1993) Unstable thin polymer films-rupture and dewetting processes. Langmuir 9: 1344-1351.    
  • 27. Sharma A, Reiter G (1996) Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation. J Colloid Interf Sci 178: 383-399.    
  • 28. Müller-Buschbaum P, Bauer E, Wunnicke O, et al. (2005) The control of thin film morphology by the interplay of dewetting, phase separation, and microphase separation. J Phys-Condens Mat 17: S363.    
  • 29. Wu N, Pease III LF, Russel WB (2006) Toward large-scale alignment of electrohydrodynamic patterning of thin polymer films. Adv Funct Mater 16: 1992-1999.    
  • 30. Schaffer E, Thurn-Albrecht T, Russel TP, et al. (2000) Electrically induced structure formation and pattern transfer. Nature 403: 874-877.    
  • 31. Bunz UHF (2006) Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater 18: 973-989.    
  • 32. Hernandez-Guerrero M, Stenzel MH (2012) Honeycomb structures polymer films via breath figures. Polym Chem 3: 563-577.    
  • 33. Schaffer E, Harkema S, Blossey R, et al. (2002) Temperature gradient induced instability in polymer films. Europhys Lett 60: 255-261.    
  • 34. Schaffer E, Harkema S, Roerdink M, et al. (2003) Thermomechanical lithography: pattern replication using a temperature gradient driven instability. Adv Mater 15: 514-517.    
  • 35. Xue L, Zhang J, Han Y (2012) Phase separation induced ordered patterns in thin polymer blend films. Prog Polym Sci 37: 564-594.    
  • 36. Reiter G, Castelein G, Hoerner P, et al. (1999) Nanometer-scale surface patterns with long range order greated by crystallization of diblock copolymers. Phys Rev Lett 83: 3844-3847.    
  • 37. Lim HS, Lee SY, Lee NE, et al. (2018) Patterning of wrinkled polymer surfaces by single-step electron irradiation. Langmuir 34: 5290-5296.    
  • 38. Childs WR, Nuzzo RG (2002) Decal transfer microlithography: A new soft-lithographic patterning method. J Am Chem Soc 124: 13583-13596.    
  • 39. Fournier AC, Cumming H, McGrath KM (2010) Assembly of two- and three-dimensionally patterned silicate materials using responsive soft templates. Dalton Trans 39: 6524-6531.    
  • 40. Shen M (2010) Nano-structuring solid surfaces with femtosecond laser irradiations for applications. Mod Phys Lett B 24: 257-269.    
  • 41. Torres JM, Stafford CM, Vogt BD (2010) Impact of molecular mass on the elastic modulus of thin polystyrene films. Polymer 51: 4211-4217.    
  • 42. Feng C, Yi Z, Dumée LF, et al. (2015) Shrinkage induced stretchable micro-wrinkled reduced graphene oxide composite with recoverable conductivity. Carbon 93: 878-886.    
  • 43. Meng J, Xie J, Han X, et al. (2016) Surface wrinkling on polydopamine film. App Surf Sci 371: 96-101.    
  • 44. Müller-Buschbaum P, Gutmann JS, Wolkenhauer M, et al. (2001) Solvent-induced surface morphology of thin polymer films. Macromolecules 34: 1369-1375.    
  • 45. Xia F, Razavi B, Xu H, et al. (2002) Dependence of threshold thickness of crystallization and film morphology on film processing conditions in poly(vinylidene fluoride-trifluoroethylene) copolymer thin films. J Appl Phys 92: 3111-3115.    
  • 46. Pauchard L, Allain C (2003) Buckling instability induced by polymer solution drying. Europhys Lett 62: 897-903.    
  • 47. He L, Zhang L, Liang H (2008) Microdomain morphology of lamella-forming diblock copolymer confined in a thin film. J Polym Sci Pol Phys 47: 1-10.
  • 48. Li B, Cao YP, Feng XQ, et al. (2012) Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8: 5728-5745.    
  • 49. Ramanathan M, Lokitz BS, Messman JM, et al. (2013) Spontaneous wrinkling in Azlactone-based functional polymer thin films in 2D and 3D geometries for guided nanopatterning. J Mater Chem C 1: 2097-2101.    
  • 50. Rodríguez-Hernández J (2015) Wrinkled interfaces: taking advantage of surface instabilities to pattern polymer surfaces. Prog Polym Sci 42: 1-41.    
  • 51. Chapman CT, Paci JT, Lee WK, et al. (2016) Interfacial effects on nanoscale wrinkling in gold-covered polystyrene. ACS Appl Mater Inter 8: 24339-24344.    
  • 52. Schaefer C, Michels JJ, van der Schoot P (2016) Structuring of thin-film polymer mixtures upon solvent evaporation. Macromolecules 49: 6858-6870.    
  • 53. Emslie AG, Bonner FT, Peck LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29: 858-862.    
  • 54. Bornside DE, Macosko CW, Scriven LE (1991) Spin coating of a PMMA/Chlorobenzene solution. J Electrochem Soc 138: 317-320.    
  • 55. Du XM, Orignac X, Almeida RM (1995) Striation-free, spin-coated sol-gel optical films. J Am Ceram Soc 78: 2254-2256.    
  • 56. Birnie III, DP (2001) Rational solvent selection strategies to combat striation formation during spin coating of thin films. J Mater Res 16: 1145-1154.    
  • 57. De Gennes PG (2002) Solvent evaporation of spin cast films: "Crust" effects. Eur Phys J E 7: 31-34.
  • 58. Bassou N, Rharbi Y (2009) Role of Benard-Marangoni instabilities during solvent evaporation in polymer surface corrugations. Langmuir 25: 624-632.    
  • 59. Birnie III, DP (2013) A model for the drying control cosolvent selection for spin-coating uniformity: The thin film limit. Langmuir 29: 9072-9078.    
  • 60. Fowler PD, Ruscher C, McGraw JD, et al. (2016) Controlling Marangoni-induced instabilities in spin-cast polymer films: How to prepare uniform films. Eur Phys J E 39: 90.    
  • 61. Wagner HL (1985) The Mark-Houwink-Sakurada equation for the viscosity of atactic polystyrene. J Phys Chem Ref Data 14: 1101-1106.    
  • 62. Smallwood IM (1996) Handbook of Organic Solvent Properties, New York: John Wiley & Sons.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved