Citation: Aylin Ahadi, Jakob Krochmal. Anisotropic peridynamic model—Formulation and implementation[J]. AIMS Materials Science, 2018, 5(4): 742-755. doi: 10.3934/matersci.2018.4.742
[1] | Rashmi Murali, Sangeeta Malhotra, Debajit Palit, Krishnapada Sasmal . Socio-technical assessment of solar photovoltaic systems implemented for rural electrification in selected villages of Sundarbans region of India. AIMS Energy, 2015, 3(4): 612-634. doi: 10.3934/energy.2015.4.612 |
[2] | Pedro Neves, Morten Gleditsch, Cindy Bennet, Mathias Craig, Jon Sumanik-Leary . Assessment of locally manufactured small wind turbines as an appropriate technology for the electrification of the Caribbean Coast of Nicaragua. AIMS Energy, 2015, 3(1): 41-74. doi: 10.3934/energy.2015.1.41 |
[3] | Pugazenthi D, Gopal K Sarangi, Arabinda Mishra, Subhes C Bhattacharyya . Replication and scaling-up of isolated mini-grid type of off-grid interventions in India. AIMS Energy, 2016, 4(2): 222-255. doi: 10.3934/energy.2016.2.222 |
[4] | Jerome Mungwe, Stefano Mandelli, Emanuela Colombo . Community pico and micro hydropower for rural electrification: experiences from the mountain regions of Cameroon. AIMS Energy, 2016, 4(1): 190-205. doi: 10.3934/energy.2016.1.190 |
[5] | Matthew Dornan . Reforms for the expansion of electricity access and rural electrification in small island developing states. AIMS Energy, 2015, 3(3): 463-479. doi: 10.3934/energy.2015.3.463 |
[6] | Tilahun Nigussie, Wondwossen Bogale, Feyisa Bekele, Edessa Dribssa . Feasibility study for power generation using off- grid energy system from micro hydro-PV-diesel generator-battery for rural area of Ethiopia: The case of Melkey Hera village, Western Ethiopia. AIMS Energy, 2017, 5(4): 667-690. doi: 10.3934/energy.2017.4.667 |
[7] | Wesly Jean, Antonio C. P. Brasil Junior, Eugênia Cornils Monteiro da Silva . Smart grid systems infrastructures and distributed solar power generation in urban slums–A case study and energy policy in Rio de Janeiro. AIMS Energy, 2023, 11(3): 486-502. doi: 10.3934/energy.2023025 |
[8] | Ashebir Dingeto Hailu, Desta Kalbessa Kumsa . Ethiopia renewable energy potentials and current state. AIMS Energy, 2021, 9(1): 1-14. doi: 10.3934/energy.2021001 |
[9] | Kharisma Bani Adam, Jangkung Raharjo, Desri Kristina Silalahi, Bandiyah Sri Aprilia, IGPO Indra Wijaya . Integrative analysis of diverse hybrid power systems for sustainable energy in underdeveloped regions: A case study in Indonesia. AIMS Energy, 2024, 12(1): 304-320. doi: 10.3934/energy.2024015 |
[10] | Shi Yin, Yuan Yuan . Integrated assessment and influencing factor analysis of energy-economy-environment system in rural China. AIMS Energy, 2024, 12(6): 1173-1205. doi: 10.3934/energy.2024054 |
In 1997, Van Hamme [19,(H.2)] proved the following supercongruence: for any prime
(p−1)/2∑k=0(12)3kk!3≡0(modp2), | (1.1) |
where
mp−1∑k=0(12)3kk!3≡0(modp2). | (1.2) |
The first purpose of this paper is to prove the following
Theorem 1.1. Let
mn−1∑k=0(1+q4k+1)(q2;q4)3k(1+q)(q4;q4)3kqk≡0(modΦn(q)2), | (1.3) |
[5pt]mn+(n−1)/2∑k=0(1+q4k+1)(q2;q4)3k(1+q)(q4;q4)3kqk≡0(modΦn(q)2). | (1.4) |
Here and in what follows, the
Φn(q)=∏1≤k≤ngcd(n,k)=1(q−ζk), |
where
The
In 2016, Swisher [18,(H.3) with
(p2−1)/2∑k=0(12)3kk!3≡p2(modp5), | (1.5) |
The second purpose of this paper is to prove the following
Theorem 1.2. Let
(n2−1)/2∑k=0(1+q4k+1)(q2;q4)3k(1+q)(q4;q4)3kqk≡[n2]q2(q3;q4)(n2−1)/2(q5;q4)(n2−1)/2q(1−n2)/2, | (1.6) |
[5pt]n2−1∑k=0(1+q4k+1)(q2;q4)3k(1+q)(q4;q4)3kqk≡[n2]q2(q3;q4)(n2−1)/2(q5;q4)(n2−1)/2q(1−n2)/2. | (1.7) |
Let
limq→1(q3;q4)(p2−1)/2(q5;q4)(p2−1)/2=(p2−1)/2∏k=14k−14k+1=(34)(p2−1)/2(54)(p2−1)/2. |
Therefore, we obtain the following conclusion.
Corollary 1. Let
(p2−1)/2∑k=0(12)3kk!3≡p2(34)(p2−1)/2(54)(p2−1)/2(modp4), | (1.8) |
[5pt]p2−1∑k=0(12)3kk!3≡p2(34)(p2−1)/2(54)(p2−1)/2(modp4). | (1.9) |
Comparing (1.5) and (1.8), we would like to propose the following conjecture, which was recently confirmed by Wang and Pan [20].
Conjecture 1. Let
(p2r−1)/2∏k=14k−14k+1≡1(modp2). | (1.10) |
Note that the
We need to use Watson's terminating
8ϕ7[a,qa12,−qa12,b,c,d,e,q−na12,−a12,aq/b,aq/c,aq/d,aq/e,aqn+1;q,a2qn+2bcde]=(aq;q)n(aq/de;q)n(aq/d;q)n(aq/e;q)n4ϕ3[aq/bc, d, e, q−naq/b,aq/c,deq−n/a;q,q], | (2.1) |
where the basic hypergeometric
r+1ϕr[a1,a2,…,ar+1b1,…,br;q,z]:=∞∑k=0(a1;q)k(a2;q)k…(ar+1;q)k(q;q)k(b1;q)k⋯(br;q)kzk. |
The left-hand side of (1.4) with
8ϕ7[q2,q5,−q5,q2,q,q2,q4+(4m+2)n,q2−(4m+2)nq,−q,q4,q5,q4,q2−(4m+2)n,q4+(4m+2)n;q4,q]. | (2.2) |
By Watson's transformation formula (2.1) with
(q6;q4)mn+(n−1)/2(q−(4m+2)n;q4)mn+(n−1)/2(q4;q4)mn+(n−1)/2(q2−(4m+2)n;q4)mn+(n−1)/2×4ϕ3[q3, q2,q4+(4m+2)n, q2−(4m+2)nq4,q5,q6;q4,q4]. | (2.3) |
It is not difficult to see that there are exactly
(q3;q4)k(q2;q4)k(q4+(4m+2)n;q4)k(q2−(4m+2)n;q4)k(q4;q4)2k(q5;q4)k(q6;q4)kq4k |
in the
It is easy to see that
The author and Zudilin [11,Theorem 1.1] proved that, for any positive odd integer
(n−1)/2∑k=0(1+q4k+1)(q2;q4)3k(1+q)(q4;q4)3kqk≡[n]q2(q3;q4)(n−1)/2(q5;q4)(n−1)/2q(1−n)/2(modΦn(q)2), | (3.1) |
which is also true when the sum on the left-hand side of (3.1) is over
It is easy to see that, for
[n2]q2(q3;q4)(n2−1)/2(q5;q4)(n2−1)/2q(1−n2)/2≡0(modΦn(q)2) |
because
Swisher's (H.3) conjecture also indicates that, for positive integer
(p2r−1)/2∑k=0(12)3kk!3≡p2r(modp2r+3). | (4.1) |
Motivated by (4.1), we shall give the following generalization of Theorem 1.2.
Theorem 4.1. Let
(n2r−1)/2∑k=0(1+q4k+1)(q2;q4)3k(1+q)(q4;q4)3kqk≡[n2r]q2(q3;q4)(n2r−1)/2(q5;q4)(n2r−1)/2q(1−n2r)/2, | (4.2) |
[5pt]n2r−1∑k=0(1+q4k+1)(q2;q4)3k(1+q)(q4;q4)3kqk≡[n2r]q2(q3;q4)(n2r−1)/2(q5;q4)(n2r−1)/2q(1−n2r)/2. | (4.3) |
Proof. Replacing
[n2r]q2(q3;q4)(n2r−1)/2(q5;q4)(n2r−1)/2q(1−n2r)/2≡0(modr∏j=1Φn2j−1(q)2). |
Further, by Theorem 1.1, we can easily deduce that the left-hand sides of (4.2) and (4.3) are also congruent to
Letting
Corollary 2. Let
(p2r−1)/2∑k=0(12)3kk!3≡p2r(34)(p2r−1)/2(54)(p2r−1)/2(modp2r+2), | (4.4) |
[5pt]p2r−1∑k=0(12)3kk!3≡p2r(34)(p2r−1)/2(54)(p2r−1)/2(modp2r+2). | (4.5) |
In light of (1.10), the supercongruence (4.4) implies that (4.1) holds modulo
It is known that
Conjecture 2 (Guo and Zudilin). Let
mn−1∑k=0(q;q2)2k(q2;q4)k(q2;q2)2k(q4;q4)kq2k≡0(modΦn(q)2),mn+(n−1)/2∑k=0(q;q2)2k(q2;q4)k(q2;q2)2k(q4;q4)kq2k≡0(modΦn(q)2). | (4.6) |
The author and Zudilin [10,Theorem 2] themselves have proved (4.6) for the
Conjecture 3. Let
(n2−1)/2∑k=0(q;q2)2k(q2;q4)k(q2;q2)2k(q4;q4)kq2k≡[n2](q3;q4)(n2−1)/2(q5;q4)(n2−1)/2,n2−1∑k=0(q;q2)2k(q2;q4)k(q2;q2)2k(q4;q4)kq2k≡[n2](q3;q4)(n2−1)/2(q5;q4)(n2−1)/2. |
There are similar such new
The author is grateful to the two anonymous referees for their careful readings of this paper.
[1] |
Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range. J Mech Phys Solids 48: 175–209. doi: 10.1016/S0022-5096(99)00029-0
![]() |
[2] |
Askari E, Bobaru F, Lehoucq RB, et al. (2008) Peridynamics for multiscale materials modeling. J Phys Conf Ser 125: 012078. doi: 10.1088/1742-6596/125/1/012078
![]() |
[3] |
Silling SA, Askari E (2005) Meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83: 1526–1535. doi: 10.1016/j.compstruc.2004.11.026
![]() |
[4] |
Silling SA, Epton M, Weckner O, et al. (2007) Peridynamics States and Constitutive Modeling. J Elasticity 88: 151–184. doi: 10.1007/s10659-007-9125-1
![]() |
[5] |
Parks ML, Lehoucq RB, Plimpton SJ, et al. (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179: 777–783. doi: 10.1016/j.cpc.2008.06.011
![]() |
[6] |
Seleson P, Parks ML, Gunzburger M, et al. (2009) Peridynamics as an upscaling of molecular dynamics. Multiscale Model Sim 8: 204–227. doi: 10.1137/09074807X
![]() |
[7] | LAMMPS, Available from: http://lammps.sandia.gov. |
[8] | Parks ML, Seleson P, Plimpton SJ, et al. (2011) Peridynamics with LAMMPS: A User Guide v0.3 Beta. Sandia National Laboratories. |
[9] | Mitchell J (2011) A nonlocal ordinary state-based plasticity model for peridynamics. Sandia National Lab Report. |
[10] | Mitchell J (2011) A non-local, ordinary-state-based viscoelasticity model for peridynamics. Sandia National Lab Report. |
[11] | Rahman R, Foster JT (2014) Implementation of elastic–plastic model in LAMMPS. University of Texas at San Antonio, Sandia National Laboratory. |
[12] | Rahman R, Foster JT (2014) Implementation of linear viscoelasticity model in pdlammps. University of Texas at San Antonio, Sandia National Laboratory. |
[13] | Rahman R, Foster JT, Plimpton SJ (2014) PDLAMMPS-made easy. University of Texas at San Antonio, Sandia National Laboratory. |
[14] |
Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56: 1566–1577. doi: 10.1016/j.jmps.2007.08.004
![]() |
[15] | Seleson P, Parks ML (2012) On the role of the influence function in the peridynamic theory. University of Texas at San Antonio, Sandia National Laboratory. |
[16] | Trefethen LN, Bau III D (1997) Numerical Linear Algebra. |
1. | Baseem Khan, Josep M. Guerrero, Sanjay Chaudhary, Juan C. Vasquez, Kenn H. B. Frederiksen, Ying Wu, A Review of Grid Code Requirements for the Integration of Renewable Energy Sources in Ethiopia, 2022, 15, 1996-1073, 5197, 10.3390/en15145197 | |
2. | Mustafa Rahime, K.B. Rashitovich, Shir Agha Shahryar, Rafiqullah Hamdard, Yama Aseel, Development of Electric Network Impact on Socio-Economic of Ghazni Province, Republic of Afghanistan, 2024, 2, 2786-7447, 334, 10.59324/ejtas.2024.2(2).29 |