Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Hydrophilic surfaces via the self-assembly of nitrile-terminated alkanethiols on gold

1 Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
2 Department of Chemistry, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas 78520, United States

Topical Section: Thin films, surfaces and interfaces

A series of CN-terminated alkanethiols were synthesized and used to generate self-assembled monolayers (SAMs) on gold. The SAMs were characterized using ellipsometry, contact angle goniometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The SAMs were compared to those derived from a series of analogous CH3-terminated alkanethiols. The CN-terminated SAMs exhibited lower film thicknesses than the CH3-terminated SAMs, which was largely due to their greater tilt angle on the surface. Additionally, the CN-terminated SAMs form well-ordered films on flat gold surfaces with relative packing densities being indistinguishable from the CH3-terminated SAMs. The CN-terminated SAMs exhibited a less hydrophobic character than the SAMs derived from CH3-terminated adsorbates, which was attributed to the dipole moment of the terminal group as well as the lone pair of the nitrogen atom of the CN-terminal group.
  Article Metrics

Keywords self-assembled monolayers; CN-terminated; contact angles; hydrophilic surfaces

Citation: Chul Soon Park, Oussama Zenasni, Maria D. Marquez, H. Justin Moore, T. Randall Lee. Hydrophilic surfaces via the self-assembly of nitrile-terminated alkanethiols on gold. AIMS Materials Science, 2018, 5(2): 171-189. doi: 10.3934/matersci.2018.2.171


  • 1. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105: 4481–4483.    
  • 2. Whelan CM, Kinsella M, Carbonell L, et al. (2003) Corrosion inhibition by self-assembled monolayers for enhanced wire bonding on Cu surfaces. Microelectron Eng 70: 551–557.    
  • 3. Ostuni E, Chapman RG, Liang MN, et al. (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17: 6336–6343.    
  • 4. Pham T, Lai D, Ji D, et al. (2004) Well-ordered self-assembled monolayer surfaces can be used to enhance the growth of protein crystals. Colloid Surface B 34: 191–196.
  • 5. Shakiba A, Patil SL, Zenasni O, et al. (2017) DNA loading and release using custom-tailored poly(L-lysine) surfaces. ACS Appl Mater Interfaces 9: 23370–23378.