Citation: Valeri S. Harutyunyan, Ashot P. Aivazyan, Andrey N. Avagyan. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals[J]. AIMS Materials Science, 2017, 4(6): 1202-1219. doi: 10.3934/matersci.2017.6.1202
[1] | Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218 |
[2] | Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123 |
[3] | Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718 |
[4] | Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134 |
[5] | Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068 |
[6] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[7] | Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283 |
[8] | Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135 |
[9] | Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048 |
[10] | Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133 |
[1] | Hirth JP, Lothe J (1982) Theory of Dislocations, New York: John Wiley & Sons. |
[2] | Morkoc H (2008) Handbook of Nitride Semiconductors and Devices, Berlin: Wiley-VCH. |
[3] | Telling RH, Heggie MI (2003) Stacking fault and dislocation glide on basal plane of graphite. Phil Mag Lett 83: 411–421. |
[4] |
Jagannadham K, Marcinkowski MJ (1978) Comparison of the image and surface dislocation models. Phys Status Solidi A 50: 293–302. doi: 10.1002/pssa.2210500135
![]() |
[5] |
Cheng X, Shen Y, Zhang L, et al. (2012) Surface effect on the screw dislocation mobility over the Peierls barrier. Phil Mag Lett 92: 270–277. doi: 10.1080/09500839.2012.669053
![]() |
[6] |
Gars B, Markenscoff X (2012) The Peierls stress for coupled dislocation partials near a free surface. Philos Mag 92: 1390–1421. doi: 10.1080/14786435.2011.645900
![]() |
[7] |
Lee CL, Li S (2007) A half-space Peierls–Nabarro model and the mobility of screw dislocations in a thin film. Acta Mater 55: 2149–2157. doi: 10.1016/j.actamat.2006.11.015
![]() |
[8] | Liu L, Meng Z, Xu G, et al. (2017) Surface effects on the properties of screw dislocation in nanofilms. Adv Mater Sci Eng 2017. |
[9] |
Eshelby JD, Read WT, Shockley W (1953) Anisotropic elasticity with applications to dislocations theory. Acta Metall 1: 251–259. doi: 10.1016/0001-6160(53)90099-6
![]() |
[10] |
Spence GB (1962) Theory of extended dislocations in symmetry directions in anisotropic infinite crystals and thin plates. J Appl Phys 33: 729–733. doi: 10.1063/1.1702496
![]() |
[11] |
Chou YT (1962) Interaction of parallel dislocations in a hexagonal crystal. J Appl Phys 33: 2747–2751. doi: 10.1063/1.1702541
![]() |
[12] |
Chou YT (1963) Characteristics of dislocation stress fields due to elastic anisotropy. J Appl Phys 34: 429–433. doi: 10.1063/1.1702625
![]() |
[13] | Holec D (2008) Multi-Scale Modeling of III-Nitrides: from Dislocations to the Electronic Structure [PhD thesis]. University of Cambridge. |
[14] |
Chu HJ, Pan E, Wang J, et al. (2011) Three-dimensional elastic displacements induced by a dislocation of polygonal shape in anisotropic elastic crystals. Int J Solids Struct 48: 1164–1170. doi: 10.1016/j.ijsolstr.2010.12.015
![]() |
[15] |
Chu HJ, Wang J, Beyerlein IJ, et al. (2013) Dislocation models of interfacial shearing induced by an approaching glide dislocation. Int J Plasticity 41: 1–13. doi: 10.1016/j.ijplas.2012.08.005
![]() |
[16] |
Barnett DM, Lothe J (1974) An image force theorem for dislocations in anisotropic bicrystals. J Phys F Metal Phys 4: 1618–1635. doi: 10.1088/0305-4608/4/10/010
![]() |
[17] |
Wang J, Hoagland RG, Hirth JP, et al. (2008) Atomistic modeling of the interaction of glide dislocations with "weak" interfaces. Acta Mater 56: 5685–5693. doi: 10.1016/j.actamat.2008.07.041
![]() |
[18] | Wang L, Liu Z, Zhuang Z (2016) Developing micro-scale crystal plasticity model based on phase field theory for modeling dislocations in heteroepitaxial structures. Int J Plasticity 81: 267–283. |
[19] |
Chou YT (1966) On dislocation–boundary interaction in an anisotropic aggregate. Phys Status Solidi B 15: 123–127. doi: 10.1002/pssb.19660150110
![]() |
[20] |
Chu H, Pan E (2014) Elastic fields due to dislocation arrays in anisotropic biomaterials. Int J Solids Struct 51: 1954–1961. doi: 10.1016/j.ijsolstr.2014.02.001
![]() |
[21] |
Shahsavari R, Chen L (2015) Screw dislocations in complex, low symmetry oxides: Core structures, energetics, and impact on crystal growth. ACS Appl Mater Interfaces 7: 2223–2234. doi: 10.1021/am5091808
![]() |
[22] | Ruterana P, Albrecht M, Neugebauer J (2003) Nitride Semiconductors: Handbook on Materials and Devices, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. |
[23] | Munro RG (2000) Material properties of titanium diboride. J Res Natl Inst Stan 105: 709–720. |
[24] | Cheng TS, Davies A, Summerfield A, et al. (2016) High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire. J Vac Sci Technol B 34: 02L101. |
[25] | Chung DH, Buessem WR (1968) The Elastic Anisotropy of Crystals, In: Vahldiek FW, Mersol SA, Anisotropy in Single-Crystal Refractory Compounds, New York: Plenum, 217–245. |
[26] | Lethbridge ZAD, Walton RI, Marmier ASH, et al. (2010) Elastic anisotropy and extreme Poisson's ratios in single crystals. Acta Mater 58: 6444–6451. |
[27] |
Kube CM (2016) Elastic anisotropy of crystals. AIP Adv 6: 095209. doi: 10.1063/1.4962996
![]() |
[28] | Specht P, Harutyunyan VS, Ho J, et al. (2004) Anisotropy of the elastic properties of wurtzite InN epitaxial films. Defect Diff Forum 226–228: 79–90. |
[29] |
Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductors. J Appl Phys 94: 3675–3696. doi: 10.1063/1.1600519
![]() |
[30] | Wang HY, Xue FY, Zhao NH, et al. (2011) First-principles calculation of elastic properties of TiB2 and ZrB2. Adv Mater Res 150–151: 40–43. |
[31] |
Polian A, Grimsditch M, Grzegory I (1996) Elastic constants of gallium nitride. J Appl Phys 79: 3343–3344. doi: 10.1063/1.361236
![]() |
[32] |
Spoor PS, Maynard JD, Pan MJ, et al. (1997) Elastic constants and crystal anisotropy of titanium diboride. Appl Phys Lett 70: 1959–1961. doi: 10.1063/1.118791
![]() |
[33] |
Peselnick L, Meister R (1965) Variational method of determining effective moduli of polycrystals: (A) hexagonal symmetry, (B) trigonal symmetry. J Appl Phys 36: 2879–2884. doi: 10.1063/1.1714598
![]() |
[34] |
Watt JP, Peselnick L (1980) Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. J Appl Phys 51: 1525–1531. doi: 10.1063/1.327804
![]() |
[35] | Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a Handbook, Cambridge, Massachusetts: The MIT Press. |
[36] | Cousins CSG, Heggie MI (2003) Elasticity of carbon allotropes. III. Hexagonal graphite: Review of data, previous calculations, and a fit to a modified anharmonic Keating model. Phys Rev B 67: 024109. |
1. | Yixiang Wu, Necibe Tuncer, Maia Martcheva, Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion, 2017, 22, 1553-524X, 1167, 10.3934/dcdsb.2017057 | |
2. | Junping Shi, Yixiang Wu, Xingfu Zou, Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model, 2020, 32, 1040-7294, 1085, 10.1007/s10884-019-09763-0 | |
3. | Yixiang Wu, Xingfu Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, 2016, 261, 00220396, 4424, 10.1016/j.jde.2016.06.028 | |
4. | Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, 2020, 51, 14681218, 102966, 10.1016/j.nonrwa.2019.102966 | |
5. | Jing Ge, Ling Lin, Lai Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, 2017, 22, 1553-524X, 2763, 10.3934/dcdsb.2017134 | |
6. | Yuan Lou, Rachidi B. Salako, Control Strategies for a Multi-strain Epidemic Model, 2022, 84, 0092-8240, 10.1007/s11538-021-00957-6 | |
7. | Jinsheng Guo, Shuang-Ming Wang, Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay, 2022, 7, 2473-6988, 6331, 10.3934/math.2022352 | |
8. | Rachidi B. Salako, Impact of population size and movement on the persistence of a two-strain infectious disease, 2023, 86, 0303-6812, 10.1007/s00285-022-01842-z | |
9. | Yuan Lou, Rachidi B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, 2023, 370, 00220396, 424, 10.1016/j.jde.2023.06.018 | |
10. | Jonas T. Doumatè, Tahir B. Issa, Rachidi B. Salako, Competition-exclusion and coexistence in a two-strain SIS epidemic model in patchy environments, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023213 | |
11. | Azmy S. Ackleh, Nicolas Saintier, Aijun Zhang, A multiple-strain pathogen model with diffusion on the space of Radon measures, 2025, 140, 10075704, 108402, 10.1016/j.cnsns.2024.108402 | |
12. | Jamal Adetola, Keoni G. Castellano, Rachidi B. Salako, Dynamics of classical solutions of a multi-strain diffusive epidemic model with mass-action transmission mechanism, 2025, 90, 0303-6812, 10.1007/s00285-024-02167-9 |