Citation: Abdullah Ahmed Ali Ahmed, Zainal Abidin Talib, Mohd Zobir Hussein, Yusra Abdullah Ahmed Al-Magdashi. New DC conductivity spectra of Zn–Al layered double hydroxide (Zn–Al–NO3–LDH) and its calcined product of ZnO phase[J]. AIMS Materials Science, 2017, 4(3): 670-679. doi: 10.3934/matersci.2017.3.670
[1] | Baoye Song, Shumin Tang, Yao Li . A new path planning strategy integrating improved ACO and DWA algorithms for mobile robots in dynamic environments. Mathematical Biosciences and Engineering, 2024, 21(2): 2189-2211. doi: 10.3934/mbe.2024096 |
[2] | Jian Si, Xiaoguang Bao . A novel parallel ant colony optimization algorithm for mobile robot path planning. Mathematical Biosciences and Engineering, 2024, 21(2): 2568-2586. doi: 10.3934/mbe.2024113 |
[3] | Yuzhuo Shi, Huijie Zhang, Zhisheng Li, Kun Hao, Yonglei Liu, Lu Zhao . Path planning for mobile robots in complex environments based on improved ant colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(9): 15568-15602. doi: 10.3934/mbe.2023695 |
[4] | Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia . Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments. Mathematical Biosciences and Engineering, 2023, 20(1): 145-178. doi: 10.3934/mbe.2023008 |
[5] | Tian Xue, Liu Li, Liu Shuang, Du Zhiping, Pang Ming . Path planning of mobile robot based on improved ant colony algorithm for logistics. Mathematical Biosciences and Engineering, 2021, 18(4): 3034-3045. doi: 10.3934/mbe.2021152 |
[6] | Xuewu Wang, Bin Tang, Xin Zhou, Xingsheng Gu . Double-robot obstacle avoidance path optimization for welding process. Mathematical Biosciences and Engineering, 2019, 16(5): 5697-5708. doi: 10.3934/mbe.2019284 |
[7] | Zhenao Yu, Peng Duan, Leilei Meng, Yuyan Han, Fan Ye . Multi-objective path planning for mobile robot with an improved artificial bee colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(2): 2501-2529. doi: 10.3934/mbe.2023117 |
[8] | Ping Li, Liwei Yang . Conflict-free and energy-efficient path planning for multi-robots based on priority free ant colony optimization. Mathematical Biosciences and Engineering, 2023, 20(2): 3528-3565. doi: 10.3934/mbe.2023165 |
[9] | Jinzhuang Xiao, Xuele Yu, Keke Sun, Zhen Zhou, Gang Zhou . Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA. Mathematical Biosciences and Engineering, 2022, 19(12): 12532-12557. doi: 10.3934/mbe.2022585 |
[10] | Chikun Gong, Yuhang Yang, Lipeng Yuan, Jiaxin Wang . An improved ant colony algorithm for integrating global path planning and local obstacle avoidance for mobile robot in dynamic environment. Mathematical Biosciences and Engineering, 2022, 19(12): 12405-12426. doi: 10.3934/mbe.2022579 |
[1] |
Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11: 173–301. doi: 10.1016/0920-5861(91)80068-K
![]() |
[2] | Braterman PS, Xu ZP, Yarberry F (2004) Layered Double Hydroxides (LDHs). In: Auerbach SM, Carrado KA, Dutta PK, Handbook of layered materials, New York: Marcel Dekker Inc., 373–474. |
[3] | Jin S, Fallgren PH, Morris JM, et al. (2007) Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites. Sci Technol Adv Mat 8: 67–70. |
[4] |
Li SP, Hou WG, Hu JF, et al. (2003) Influence of shear rate on thixotropic suspensions. J Disper Sci Technol 24: 709–714. doi: 10.1081/DIS-120023817
![]() |
[5] |
Tamura H, Chiba J, Ito M, et al. (2004) Synthesis and characterization of hydrotalcite-ATP intercalates. Solid State Ionics 172: 607–609. doi: 10.1016/j.ssi.2004.04.035
![]() |
[6] |
Williams GR, O'Hare D (2006) Towards understanding, control and application of layered double hydroxide chemistry. J Mater Chem 16: 3065–3074. doi: 10.1039/b604895a
![]() |
[7] |
Mehrotra V, Giannelis EP (1992) On the dielectric response of complex layered oxides: Mica-type silicates and layered double hydroxides. J Appl Phys 72: 1039–1048. doi: 10.1063/1.351830
![]() |
[8] |
Ivanov M, Klemkaite K, Khinsky A, et al. (2011) Dielectric and Conductive Properties of Hydrotalcite. Ferroelectrics 417: 136–142. doi: 10.1080/00150193.2011.578529
![]() |
[9] |
Frunza L, Schönhals A, Frunza S, et al. (2007) Rotational fluctuations of water confined to layered oxide materials: Nonmonotonous temperature dependence of relaxation times. J Phys Chem A 111: 5166–5175. doi: 10.1021/jp0717140
![]() |
[10] |
Ahmed AAA, Talib ZA, Hussein MZB, et al. (2012) In situ dielectric measurements of Zn–Al layered double hydroxide with anionic nitrate ions. Solid State Sci 14: 1196–1202. doi: 10.1016/j.solidstatesciences.2012.06.007
![]() |
[11] |
Ahmed AAA, Talib ZA, Hussein MZB (2012) Thermal, optical and dielectric properties of Zn–Al layered double hydroxide. Appl Clay Sci 56: 68–76. doi: 10.1016/j.clay.2011.11.024
![]() |
[12] |
Chitrakar R, Tezuka S, Sonoda A, et al. (2008) A New Method for Synthesis of Mg–Al, Mg–Fe, and Zn–Al Layered Double Hydroxides and Their Uptake Properties of Bromide Ion. Ind Eng Chem Res 47: 4905–4908. doi: 10.1021/ie0716417
![]() |
[13] |
Seftel EM, Popovici E, Mertens M, et al. (2008) Zn–Al layered double hydroxides: Synthesis, characterization and photocatalytic application. Micropor Mesopor Mat 113: 296–304. doi: 10.1016/j.micromeso.2007.11.029
![]() |
[14] |
Marotti RE, Guerra DN, Bello C, et al. (2004) Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol Energ Mat Sol C 82: 85–103. doi: 10.1016/j.solmat.2004.01.008
![]() |
[15] |
Hussein MZB, Yun-Hin TY, Tawang MMB, et al. (2002) Thermal degradation of (zinc-aluminium-layered double hydroxide-dioctyl sulphosuccinate) nanocomposite. Mater Chem Phys 74: 265–271. doi: 10.1016/S0254-0584(01)00481-3
![]() |
[16] | Jonscher AK (1983) Dielectric relaxation in solids, London: Chelsea Dielectrics Press. |
[17] | Mehrotra V (1992) Intercalation of Layered Silicates, Layered Double Hydroxides, and Lead Iodide: Synthesis, Characterization and Properties [PhD's Dissertation], New York: Cornell University. |
[18] |
Jung H, Ohashi H, Anilkumar GM, et al. (2013) Zn2+ substitution effects in layered double hydroxide (Mg(1−x)Znx)2Al: textural properties, water content and ionic conductivity. J Mater Chem A 1: 13348–13356. doi: 10.1039/c3ta12025b
![]() |
[19] |
Furukawa Y, Tadanaga K, Hayashi A, et al. (2011) Evaluation of ionic conductivity for Mg–Al layered double hydroxide intercalated with inorganic anions. Solid State Ionics 192: 185–187. doi: 10.1016/j.ssi.2010.05.032
![]() |
[20] |
Kim HS, Yamazaki Y, Kim JD, et al. (2010) High ionic conductivity of Mg–Al layered double hydroxides at intermediate temperature (100–200 °C) under saturated humidity condition (100% RH). Solid State Ionics 181: 883–888. doi: 10.1016/j.ssi.2010.04.037
![]() |
[21] |
Light TS, Licht S, Bevilacqua AC, et al. (2005) The fundamental conductivity and resistivity of water. Electrochem Solid-State Lett 8: E16–E19. doi: 10.1149/1.1836121
![]() |
[22] |
Ahmed AAA, Abidin Talib Z, Hussein MZB (2012) ESR spectra and thermal diffusivity of Zn–Al layered double hydroxide. J Phys Chem Solids 73: 124–128. doi: 10.1016/j.jpcs.2011.10.016
![]() |
[23] |
Babu KS, Chiranjivi T (1982) DC ionic conductivity in single crystals of lead nitrate. Solid State Ionics 6: 155–157. doi: 10.1016/0167-2738(82)90082-0
![]() |
[24] |
Tripathi R, Kumar A, Bharti C, et al. (2010) Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Curr Appl Phys 10: 676–681. doi: 10.1016/j.cap.2009.08.015
![]() |
[25] | Jonscher AK (1996) Universal relaxation law, London: Chelsea Dielectrics Press. |
[26] |
Tripathi R, Kumar A, Bharti C, et al. (2010) Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Curr Appl Phys 10: 676–681. doi: 10.1016/j.cap.2009.08.015
![]() |
1. | Liwei Yang, Lixia Fu, Ping Li, Jianlin Mao, Ning Guo, An Effective Dynamic Path Planning Approach for Mobile Robots Based on Ant Colony Fusion Dynamic Windows, 2022, 10, 2075-1702, 50, 10.3390/machines10010050 | |
2. | Qian Wang, Junli Li, Liwei Yang, Zhen Yang, Ping Li, Guofeng Xia, Distributed Multi-Mobile Robot Path Planning and Obstacle Avoidance Based on ACO–DWA in Unknown Complex Terrain, 2022, 11, 2079-9292, 2144, 10.3390/electronics11142144 | |
3. | Pranshav Gajjar, Virensinh Dodia, Siddharth Mandaliya, Pooja Shah, Vijay Ukani, Madhu Shukla, 2022, Chapter 19, 978-3-031-23094-3, 262, 10.1007/978-3-031-23095-0_19 | |
4. | Xingcheng Pu, Xinlin Song, Ling Tan, Yi Zhang, Improved ant colony algorithm in path planning of a single robot and multi-robots with multi-objective, 2023, 1864-5909, 10.1007/s12065-023-00821-7 | |
5. | Xiaoling Meng, Xijing Zhu, Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm, 2022, 14, 2073-8994, 1843, 10.3390/sym14091843 | |
6. | Sai Zhang, Li Tang, Yan-Jun Liu, Formation deployment control of multi-agent systems modeled with PDE, 2022, 19, 1551-0018, 13541, 10.3934/mbe.2022632 | |
7. | Jie Zhang, Xiuqin Pan, 2022, Chapter 1, 978-3-031-23584-9, 3, 10.1007/978-3-031-23585-6_1 | |
8. | Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia, Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments, 2022, 20, 1551-0018, 145, 10.3934/mbe.2023008 | |
9. | Nour Abujabal, Raouf Fareh, Saif Sinan, Mohammed Baziyad, Maamar Bettayeb, A comprehensive review of the latest path planning developments for multi-robot formation systems, 2023, 0263-5747, 1, 10.1017/S0263574723000322 | |
10. | Yiqi Xu, Qiongqiong Li, Xuan Xu, Jiafu Yang, Yong Chen, Research Progress of Nature-Inspired Metaheuristic Algorithms in Mobile Robot Path Planning, 2023, 12, 2079-9292, 3263, 10.3390/electronics12153263 | |
11. | Wenjie Ning, Li Ma, Zhichuang Wang, Fangyuan Hou, 2024, Chapter 33, 978-981-97-3327-9, 393, 10.1007/978-981-97-3328-6_33 | |
12. | Semonti Banik, Sajal Chandra Banik, Sarker Safat Mahmud, Path Planning Approaches in Multi‐robot System: A Review, 2024, 2577-8196, 10.1002/eng2.13035 | |
13. | Georgios Karamitsos, Dimitrios Bechtsis, Naoum Tsolakis, Dimitrios Vlachos, 2024, Chapter 5, 978-3-031-58918-8, 139, 10.1007/978-3-031-58919-5_5 | |
14. | Liwei Yang, Ping Li, Song Qian, He Quan, Jinchao Miao, Mengqi Liu, Yanpei Hu, Erexidin Memetimin, Path Planning Technique for Mobile Robots: A Review, 2023, 11, 2075-1702, 980, 10.3390/machines11100980 | |
15. | Bilal Gurevin, Furkan Gulturk, Muhammed Yildiz, Ihsan Pehlivan, Trung Thanh Nguyen, Fatih Caliskan, Baris Boru, Mustafa Zahid Yildiz, A Novel GUI Design for Comparison of ROS-Based Mobile Robot Local Planners, 2023, 11, 2169-3536, 125738, 10.1109/ACCESS.2023.3327705 | |
16. | Zhen Zhou, Chenchen Geng, Buhu Qi, Aiwen Meng, Jinzhuang Xiao, Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA, 2023, 20, 1551-0018, 19152, 10.3934/mbe.2023846 | |
17. | Mohammed Baziyad, Nour AbuJabal, Raouf Fareh, Tamer Rabie, Ibrahim Kamel, Maamar Bettayeb, 2023, A Direction for Swarm Robotic Path Planning Technique Using Potential Field Concepts and Particle Swarm Optimization, 979-8-3503-8239-6, 7, 10.1109/IIT59782.2023.10366467 | |
18. | Shuai Wu, Ani Dong, Qingxia Li, Wenhong Wei, Yuhui Zhang, Zijing Ye, Application of ant colony optimization algorithm based on farthest point optimization and multi-objective strategy in robot path planning, 2024, 167, 15684946, 112433, 10.1016/j.asoc.2024.112433 | |
19. | Yongrong Cai, Haibin Liu, Mingfei Li, Fujie Ren, A Method of Dual-AGV-Ganged Path Planning Based on the Genetic Algorithm, 2024, 14, 2076-3417, 7482, 10.3390/app14177482 | |
20. | Shuai Wu, Qingxia Li, Wenhong Wei, Zijing Ye, 2023, Research on Mobile Robot Path Planning in Angle-Guided Ant Colony Optimization Algorithm, 979-8-3503-0375-9, 7070, 10.1109/CAC59555.2023.10450803 | |
21. | Nour AbuJabal, Tamer Rabie, Mohammed Baziyad, Ibrahim Kamel, Khawla Almazrouei, Path Planning Techniques for Real-Time Multi-Robot Systems: A Systematic Review, 2024, 13, 2079-9292, 2239, 10.3390/electronics13122239 | |
22. | Nour Ayman Abujabal, Tamer Rabie, Ibrahim Kamel, 2023, Path Planning Techniques for Multi-robot Systems: A Systematic Review, 979-8-3503-8239-6, 1, 10.1109/IIT59782.2023.10366472 | |
23. | Cuicui Cai, Chaochuan Jia, Yao Nie, Jinhong Zhang, Ling Li, A path planning method using modified harris hawks optimization algorithm for mobile robots, 2023, 9, 2376-5992, e1473, 10.7717/peerj-cs.1473 | |
24. | Shuai Wu, Qingxia Li, Wenhong Wei, Application of Ant Colony Optimization Algorithm Based on Triangle Inequality Principle and Partition Method Strategy in Robot Path Planning, 2023, 12, 2075-1680, 525, 10.3390/axioms12060525 | |
25. | Meltem Eyuboglu, Gokhan Atali, A novel collaborative path planning algorithm for 3-wheel omnidirectional Autonomous Mobile Robot, 2023, 169, 09218890, 104527, 10.1016/j.robot.2023.104527 | |
26. | Wenteng Wang, 2024, Chapter 4, 978-981-97-3209-8, 39, 10.1007/978-981-97-3210-4_4 | |
27. | Haobo Feng, Qiao Hu, Zhenyi Zhao, Xinglong Feng, Chuan Jiang, A varied-width path planning method for multiple AUV formation, 2025, 199, 03608352, 110746, 10.1016/j.cie.2024.110746 | |
28. | Luis E. Ruiz-Fernandez, Javier Ruiz-Leon, David Gomez-Gutierrez, Rafael Murrieta-Cid, Decentralized multi-robot formation control in environments with non-convex and dynamic obstacles based on path planning algorithms, 2025, 1861-2776, 10.1007/s11370-024-00582-x | |
29. | Yong Li, Neng Long, 2024, Path Planning for Mobile Robots Based on the Improved Adaptive Ant Colony Algorithm, 979-8-3503-6860-4, 1761, 10.1109/CAC63892.2024.10865367 | |
30. | Wenyan Zhu, Wenzheng Cai, Hoiio Kong, Optimal Path Planning Based on ACO in Intelligent Transportation, 2025, 26663074, 10.1016/j.ijcce.2025.02.006 | |
31. | Huiliao Yang, Bo Zhang, Chang Xiao, 2025, Chapter 44, 978-981-96-2227-6, 470, 10.1007/978-981-96-2228-3_44 | |
32. | Guangping Qiu, Jizhong Deng, Jincan Li, Weixing Wang, Hybrid Clustering-Enhanced Brain Storm Optimization Algorithm for Efficient Multi-Robot Path Planning, 2025, 10, 2313-7673, 347, 10.3390/biomimetics10060347 |