Research article Topical Sections

New DC conductivity spectra of Zn–Al layered double hydroxide (Zn–Al–NO3–LDH) and its calcined product of ZnO phase

  • Received: 22 March 2017 Accepted: 21 May 2017 Published: 26 May 2017
  • Zn–Al–NO3–LDH nanostructure was synthesized via the coprecipitation method at molar ratio Zn2+/Al3+ = 4 and pH = 7. The resultant sample was thermally treated at calcined temperatures of 50, 100, 150, 200, 250 and 300 °C. The layered structure of the Zn–Al–NO3–LDH samples was stable below the calcination temperature 200 °C as shown in powder X-ray diffraction (PXRD) patterns of calcined samples. The calcination products showed a collapse of LDH structure and ZnO phase was formed at 200 °C and above. The dielectric spectroscopy of LDH was explained using anomalous low frequency dispersion (ALFD) due to the low mobility of LDH carriers. The conductivity spectra of LDH can be theoretically described according to the effective phase within the calcination products of LDH. In the comparison with previously researches, this study presented higher values of DC conductivity for all studied samples.

    Citation: Abdullah Ahmed Ali Ahmed, Zainal Abidin Talib, Mohd Zobir Hussein, Yusra Abdullah Ahmed Al-Magdashi. New DC conductivity spectra of Zn–Al layered double hydroxide (Zn–Al–NO3–LDH) and its calcined product of ZnO phase[J]. AIMS Materials Science, 2017, 4(3): 670-679. doi: 10.3934/matersci.2017.3.670

    Related Papers:

    [1] Baoye Song, Shumin Tang, Yao Li . A new path planning strategy integrating improved ACO and DWA algorithms for mobile robots in dynamic environments. Mathematical Biosciences and Engineering, 2024, 21(2): 2189-2211. doi: 10.3934/mbe.2024096
    [2] Jian Si, Xiaoguang Bao . A novel parallel ant colony optimization algorithm for mobile robot path planning. Mathematical Biosciences and Engineering, 2024, 21(2): 2568-2586. doi: 10.3934/mbe.2024113
    [3] Yuzhuo Shi, Huijie Zhang, Zhisheng Li, Kun Hao, Yonglei Liu, Lu Zhao . Path planning for mobile robots in complex environments based on improved ant colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(9): 15568-15602. doi: 10.3934/mbe.2023695
    [4] Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia . Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments. Mathematical Biosciences and Engineering, 2023, 20(1): 145-178. doi: 10.3934/mbe.2023008
    [5] Tian Xue, Liu Li, Liu Shuang, Du Zhiping, Pang Ming . Path planning of mobile robot based on improved ant colony algorithm for logistics. Mathematical Biosciences and Engineering, 2021, 18(4): 3034-3045. doi: 10.3934/mbe.2021152
    [6] Xuewu Wang, Bin Tang, Xin Zhou, Xingsheng Gu . Double-robot obstacle avoidance path optimization for welding process. Mathematical Biosciences and Engineering, 2019, 16(5): 5697-5708. doi: 10.3934/mbe.2019284
    [7] Zhenao Yu, Peng Duan, Leilei Meng, Yuyan Han, Fan Ye . Multi-objective path planning for mobile robot with an improved artificial bee colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(2): 2501-2529. doi: 10.3934/mbe.2023117
    [8] Ping Li, Liwei Yang . Conflict-free and energy-efficient path planning for multi-robots based on priority free ant colony optimization. Mathematical Biosciences and Engineering, 2023, 20(2): 3528-3565. doi: 10.3934/mbe.2023165
    [9] Jinzhuang Xiao, Xuele Yu, Keke Sun, Zhen Zhou, Gang Zhou . Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA. Mathematical Biosciences and Engineering, 2022, 19(12): 12532-12557. doi: 10.3934/mbe.2022585
    [10] Chikun Gong, Yuhang Yang, Lipeng Yuan, Jiaxin Wang . An improved ant colony algorithm for integrating global path planning and local obstacle avoidance for mobile robot in dynamic environment. Mathematical Biosciences and Engineering, 2022, 19(12): 12405-12426. doi: 10.3934/mbe.2022579
  • Zn–Al–NO3–LDH nanostructure was synthesized via the coprecipitation method at molar ratio Zn2+/Al3+ = 4 and pH = 7. The resultant sample was thermally treated at calcined temperatures of 50, 100, 150, 200, 250 and 300 °C. The layered structure of the Zn–Al–NO3–LDH samples was stable below the calcination temperature 200 °C as shown in powder X-ray diffraction (PXRD) patterns of calcined samples. The calcination products showed a collapse of LDH structure and ZnO phase was formed at 200 °C and above. The dielectric spectroscopy of LDH was explained using anomalous low frequency dispersion (ALFD) due to the low mobility of LDH carriers. The conductivity spectra of LDH can be theoretically described according to the effective phase within the calcination products of LDH. In the comparison with previously researches, this study presented higher values of DC conductivity for all studied samples.


    [1] Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11: 173–301. doi: 10.1016/0920-5861(91)80068-K
    [2] Braterman PS, Xu ZP, Yarberry F (2004) Layered Double Hydroxides (LDHs). In: Auerbach SM, Carrado KA, Dutta PK, Handbook of layered materials, New York: Marcel Dekker Inc., 373–474.
    [3] Jin S, Fallgren PH, Morris JM, et al. (2007) Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites. Sci Technol Adv Mat 8: 67–70.
    [4] Li SP, Hou WG, Hu JF, et al. (2003) Influence of shear rate on thixotropic suspensions. J Disper Sci Technol 24: 709–714. doi: 10.1081/DIS-120023817
    [5] Tamura H, Chiba J, Ito M, et al. (2004) Synthesis and characterization of hydrotalcite-ATP intercalates. Solid State Ionics 172: 607–609. doi: 10.1016/j.ssi.2004.04.035
    [6] Williams GR, O'Hare D (2006) Towards understanding, control and application of layered double hydroxide chemistry. J Mater Chem 16: 3065–3074. doi: 10.1039/b604895a
    [7] Mehrotra V, Giannelis EP (1992) On the dielectric response of complex layered oxides: Mica-type silicates and layered double hydroxides. J Appl Phys 72: 1039–1048. doi: 10.1063/1.351830
    [8] Ivanov M, Klemkaite K, Khinsky A, et al. (2011) Dielectric and Conductive Properties of Hydrotalcite. Ferroelectrics 417: 136–142. doi: 10.1080/00150193.2011.578529
    [9] Frunza L, Schönhals A, Frunza S, et al. (2007) Rotational fluctuations of water confined to layered oxide materials: Nonmonotonous temperature dependence of relaxation times. J Phys Chem A 111: 5166–5175. doi: 10.1021/jp0717140
    [10] Ahmed AAA, Talib ZA, Hussein MZB, et al. (2012) In situ dielectric measurements of Zn–Al layered double hydroxide with anionic nitrate ions. Solid State Sci 14: 1196–1202. doi: 10.1016/j.solidstatesciences.2012.06.007
    [11] Ahmed AAA, Talib ZA, Hussein MZB (2012) Thermal, optical and dielectric properties of Zn–Al layered double hydroxide. Appl Clay Sci 56: 68–76. doi: 10.1016/j.clay.2011.11.024
    [12] Chitrakar R, Tezuka S, Sonoda A, et al. (2008) A New Method for Synthesis of Mg–Al, Mg–Fe, and Zn–Al Layered Double Hydroxides and Their Uptake Properties of Bromide Ion. Ind Eng Chem Res 47: 4905–4908. doi: 10.1021/ie0716417
    [13] Seftel EM, Popovici E, Mertens M, et al. (2008) Zn–Al layered double hydroxides: Synthesis, characterization and photocatalytic application. Micropor Mesopor Mat 113: 296–304. doi: 10.1016/j.micromeso.2007.11.029
    [14] Marotti RE, Guerra DN, Bello C, et al. (2004) Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol Energ Mat Sol C 82: 85–103. doi: 10.1016/j.solmat.2004.01.008
    [15] Hussein MZB, Yun-Hin TY, Tawang MMB, et al. (2002) Thermal degradation of (zinc-aluminium-layered double hydroxide-dioctyl sulphosuccinate) nanocomposite. Mater Chem Phys 74: 265–271. doi: 10.1016/S0254-0584(01)00481-3
    [16] Jonscher AK (1983) Dielectric relaxation in solids, London: Chelsea Dielectrics Press.
    [17] Mehrotra V (1992) Intercalation of Layered Silicates, Layered Double Hydroxides, and Lead Iodide: Synthesis, Characterization and Properties [PhD's Dissertation], New York: Cornell University.
    [18] Jung H, Ohashi H, Anilkumar GM, et al. (2013) Zn2+ substitution effects in layered double hydroxide (Mg(1−x)Znx)2Al: textural properties, water content and ionic conductivity. J Mater Chem A 1: 13348–13356. doi: 10.1039/c3ta12025b
    [19] Furukawa Y, Tadanaga K, Hayashi A, et al. (2011) Evaluation of ionic conductivity for Mg–Al layered double hydroxide intercalated with inorganic anions. Solid State Ionics 192: 185–187. doi: 10.1016/j.ssi.2010.05.032
    [20] Kim HS, Yamazaki Y, Kim JD, et al. (2010) High ionic conductivity of Mg–Al layered double hydroxides at intermediate temperature (100–200 °C) under saturated humidity condition (100% RH). Solid State Ionics 181: 883–888. doi: 10.1016/j.ssi.2010.04.037
    [21] Light TS, Licht S, Bevilacqua AC, et al. (2005) The fundamental conductivity and resistivity of water. Electrochem Solid-State Lett 8: E16–E19. doi: 10.1149/1.1836121
    [22] Ahmed AAA, Abidin Talib Z, Hussein MZB (2012) ESR spectra and thermal diffusivity of Zn–Al layered double hydroxide. J Phys Chem Solids 73: 124–128. doi: 10.1016/j.jpcs.2011.10.016
    [23] Babu KS, Chiranjivi T (1982) DC ionic conductivity in single crystals of lead nitrate. Solid State Ionics 6: 155–157. doi: 10.1016/0167-2738(82)90082-0
    [24] Tripathi R, Kumar A, Bharti C, et al. (2010) Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Curr Appl Phys 10: 676–681. doi: 10.1016/j.cap.2009.08.015
    [25] Jonscher AK (1996) Universal relaxation law, London: Chelsea Dielectrics Press.
    [26] Tripathi R, Kumar A, Bharti C, et al. (2010) Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Curr Appl Phys 10: 676–681. doi: 10.1016/j.cap.2009.08.015
  • This article has been cited by:

    1. Liwei Yang, Lixia Fu, Ping Li, Jianlin Mao, Ning Guo, An Effective Dynamic Path Planning Approach for Mobile Robots Based on Ant Colony Fusion Dynamic Windows, 2022, 10, 2075-1702, 50, 10.3390/machines10010050
    2. Qian Wang, Junli Li, Liwei Yang, Zhen Yang, Ping Li, Guofeng Xia, Distributed Multi-Mobile Robot Path Planning and Obstacle Avoidance Based on ACO–DWA in Unknown Complex Terrain, 2022, 11, 2079-9292, 2144, 10.3390/electronics11142144
    3. Pranshav Gajjar, Virensinh Dodia, Siddharth Mandaliya, Pooja Shah, Vijay Ukani, Madhu Shukla, 2022, Chapter 19, 978-3-031-23094-3, 262, 10.1007/978-3-031-23095-0_19
    4. Xingcheng Pu, Xinlin Song, Ling Tan, Yi Zhang, Improved ant colony algorithm in path planning of a single robot and multi-robots with multi-objective, 2023, 1864-5909, 10.1007/s12065-023-00821-7
    5. Xiaoling Meng, Xijing Zhu, Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm, 2022, 14, 2073-8994, 1843, 10.3390/sym14091843
    6. Sai Zhang, Li Tang, Yan-Jun Liu, Formation deployment control of multi-agent systems modeled with PDE, 2022, 19, 1551-0018, 13541, 10.3934/mbe.2022632
    7. Jie Zhang, Xiuqin Pan, 2022, Chapter 1, 978-3-031-23584-9, 3, 10.1007/978-3-031-23585-6_1
    8. Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia, Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments, 2022, 20, 1551-0018, 145, 10.3934/mbe.2023008
    9. Nour Abujabal, Raouf Fareh, Saif Sinan, Mohammed Baziyad, Maamar Bettayeb, A comprehensive review of the latest path planning developments for multi-robot formation systems, 2023, 0263-5747, 1, 10.1017/S0263574723000322
    10. Yiqi Xu, Qiongqiong Li, Xuan Xu, Jiafu Yang, Yong Chen, Research Progress of Nature-Inspired Metaheuristic Algorithms in Mobile Robot Path Planning, 2023, 12, 2079-9292, 3263, 10.3390/electronics12153263
    11. Wenjie Ning, Li Ma, Zhichuang Wang, Fangyuan Hou, 2024, Chapter 33, 978-981-97-3327-9, 393, 10.1007/978-981-97-3328-6_33
    12. Semonti Banik, Sajal Chandra Banik, Sarker Safat Mahmud, Path Planning Approaches in Multi‐robot System: A Review, 2024, 2577-8196, 10.1002/eng2.13035
    13. Georgios Karamitsos, Dimitrios Bechtsis, Naoum Tsolakis, Dimitrios Vlachos, 2024, Chapter 5, 978-3-031-58918-8, 139, 10.1007/978-3-031-58919-5_5
    14. Liwei Yang, Ping Li, Song Qian, He Quan, Jinchao Miao, Mengqi Liu, Yanpei Hu, Erexidin Memetimin, Path Planning Technique for Mobile Robots: A Review, 2023, 11, 2075-1702, 980, 10.3390/machines11100980
    15. Bilal Gurevin, Furkan Gulturk, Muhammed Yildiz, Ihsan Pehlivan, Trung Thanh Nguyen, Fatih Caliskan, Baris Boru, Mustafa Zahid Yildiz, A Novel GUI Design for Comparison of ROS-Based Mobile Robot Local Planners, 2023, 11, 2169-3536, 125738, 10.1109/ACCESS.2023.3327705
    16. Zhen Zhou, Chenchen Geng, Buhu Qi, Aiwen Meng, Jinzhuang Xiao, Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA, 2023, 20, 1551-0018, 19152, 10.3934/mbe.2023846
    17. Mohammed Baziyad, Nour AbuJabal, Raouf Fareh, Tamer Rabie, Ibrahim Kamel, Maamar Bettayeb, 2023, A Direction for Swarm Robotic Path Planning Technique Using Potential Field Concepts and Particle Swarm Optimization, 979-8-3503-8239-6, 7, 10.1109/IIT59782.2023.10366467
    18. Shuai Wu, Ani Dong, Qingxia Li, Wenhong Wei, Yuhui Zhang, Zijing Ye, Application of ant colony optimization algorithm based on farthest point optimization and multi-objective strategy in robot path planning, 2024, 167, 15684946, 112433, 10.1016/j.asoc.2024.112433
    19. Yongrong Cai, Haibin Liu, Mingfei Li, Fujie Ren, A Method of Dual-AGV-Ganged Path Planning Based on the Genetic Algorithm, 2024, 14, 2076-3417, 7482, 10.3390/app14177482
    20. Shuai Wu, Qingxia Li, Wenhong Wei, Zijing Ye, 2023, Research on Mobile Robot Path Planning in Angle-Guided Ant Colony Optimization Algorithm, 979-8-3503-0375-9, 7070, 10.1109/CAC59555.2023.10450803
    21. Nour AbuJabal, Tamer Rabie, Mohammed Baziyad, Ibrahim Kamel, Khawla Almazrouei, Path Planning Techniques for Real-Time Multi-Robot Systems: A Systematic Review, 2024, 13, 2079-9292, 2239, 10.3390/electronics13122239
    22. Nour Ayman Abujabal, Tamer Rabie, Ibrahim Kamel, 2023, Path Planning Techniques for Multi-robot Systems: A Systematic Review, 979-8-3503-8239-6, 1, 10.1109/IIT59782.2023.10366472
    23. Cuicui Cai, Chaochuan Jia, Yao Nie, Jinhong Zhang, Ling Li, A path planning method using modified harris hawks optimization algorithm for mobile robots, 2023, 9, 2376-5992, e1473, 10.7717/peerj-cs.1473
    24. Shuai Wu, Qingxia Li, Wenhong Wei, Application of Ant Colony Optimization Algorithm Based on Triangle Inequality Principle and Partition Method Strategy in Robot Path Planning, 2023, 12, 2075-1680, 525, 10.3390/axioms12060525
    25. Meltem Eyuboglu, Gokhan Atali, A novel collaborative path planning algorithm for 3-wheel omnidirectional Autonomous Mobile Robot, 2023, 169, 09218890, 104527, 10.1016/j.robot.2023.104527
    26. Wenteng Wang, 2024, Chapter 4, 978-981-97-3209-8, 39, 10.1007/978-981-97-3210-4_4
    27. Haobo Feng, Qiao Hu, Zhenyi Zhao, Xinglong Feng, Chuan Jiang, A varied-width path planning method for multiple AUV formation, 2025, 199, 03608352, 110746, 10.1016/j.cie.2024.110746
    28. Luis E. Ruiz-Fernandez, Javier Ruiz-Leon, David Gomez-Gutierrez, Rafael Murrieta-Cid, Decentralized multi-robot formation control in environments with non-convex and dynamic obstacles based on path planning algorithms, 2025, 1861-2776, 10.1007/s11370-024-00582-x
    29. Yong Li, Neng Long, 2024, Path Planning for Mobile Robots Based on the Improved Adaptive Ant Colony Algorithm, 979-8-3503-6860-4, 1761, 10.1109/CAC63892.2024.10865367
    30. Wenyan Zhu, Wenzheng Cai, Hoiio Kong, Optimal Path Planning Based on ACO in Intelligent Transportation, 2025, 26663074, 10.1016/j.ijcce.2025.02.006
    31. Huiliao Yang, Bo Zhang, Chang Xiao, 2025, Chapter 44, 978-981-96-2227-6, 470, 10.1007/978-981-96-2228-3_44
    32. Guangping Qiu, Jizhong Deng, Jincan Li, Weixing Wang, Hybrid Clustering-Enhanced Brain Storm Optimization Algorithm for Efficient Multi-Robot Path Planning, 2025, 10, 2313-7673, 347, 10.3390/biomimetics10060347
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6443) PDF downloads(1048) Cited by(4)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog