-
AIMS Materials Science, 2016, 3(4): 1773-1795. doi: 10.3934/matersci.2016.4.1773
Research article Special Issues
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Evaluation of effective hyperelastic material coefficients for multi-defected solids under large deformation
1 Department of Civil Engineering, National Central University, Zhongli, Taoyuan 32001, Taiwan
2 Department of Mathematics, National Central University, Zhongli, Taoyuan 32001, Taiwan
Received: , Accepted: , Published:
Special Issues: Interaction of Multiple Cracks in Materials -Volume 1
References
1. Nemat-Nasser S, Yu S, Hori M (1993) Solids with periodically distributed cracks. Int J Solids Struct 30: 2071–2095.
2. Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45: 304–335.
3. Petrova V, Tamuzs V, Romalis N (2000) A survey of macro-microcrack interaction problems. Appl Mech Rev 53: 1459–1472.
4. Shen L, Li J (2004) A numerical simulation for effective elastic moduli of plates with various distributions and sizes of cracks. Int J Solids Struct 41: 7471–7492.
5. Jasiuk I (1995) Cavities vis-a-vis rigid inclusions: Elastic moduli of materials with polygonal inclusions. Int J Solids Struct 32: 407–422.
6. Nozaki H, Taya M (2001) Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems. J Appl Mech 68: 441–452.
7. Tsukrov I, Novak J (2004) Effective elastic properties of solids with two-dimensional inclusions of irregular shapes. Int J Solids Struct 41: 6905–6924.
8. Chang JH, Liu DY (2009) Damage assesssment for 2-D multi-cracked materials/structures by using Mc-integral. ASCE J Eng Mech 135: 1100–1107.
9. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Comput Method Appl M 171: 387–418.
10. Kouznetsova VG, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27: 37–48.
11. Mistler M, Anthoine A, Butenweg C (2007) In-plane and out-of-plane homogenisation of masonry. Comput Struct 85: 1321–1330.
12. Shabana YM, Noda N (2008) Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method. Int J Solids Struct 45: 3494–3506.
13. Matous K, Kulkarni MG, Geubelle PH (2008) Multiscale cohesive failure modeling of heterogeneous adhesives. J Mech Phys Solids 56: 1511–1533.
14. Hirschberger CB, Ricker S, Steinmann P, et al. (2009) Computational multiscale modelling of heterogeneous material layers. Eng Fract Mech 76: 793–812.
15. Pham NKH, Kouznetsova V, Geers MGD (2013) Transient computational homogenization for heterogeneous materials under dynamic excitation. J Mech Phys Solids 61: 2125–2146.
16. Belytschko T, Xiao SP (2003) Coupling methods for continuum model with molecular model. Int J Multiscale Com 1: 115–126.
17. Liu WK, Park HS, Qian D, et al. (2006) Bridging scale methods for nanomechanics and materials. Comput Method Appl M 195: 1407–1421.
18. Budarapu PR, Gracie R, Bordas S, et al. (2014) An adaptive multiscale method for quasi-static crack growth. Comput Mech 53: 1129–1148.
19. Budarapu PR, Gracie R, Shih WY, et al. (2014) Efficient coarse graining in multiscale modeling of fracture. Theor Appl Fract Mec 69: 126–143.
20. Talebi H, Silani M, Rabczuk T (2015) Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Adv Eng Softw 80: 82–92.
21. Yang SW, Budarapu PR, Mahapatra DR, et al. (2015) A meshless adaptive multiscale method for fracture. Comp Mater Sci 96: 382–395.
22. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 241: 376–396.
23. Walpole LJ (1969) On the overall elastic moduli of composite materials. J Mech Phys Solids 17: 235–251.
24. Kachanov M, Tsukrov I, Shafiro B (1994) Effective properties of solids with cavities of various shapes. Appl Mech Rev 47: 151–174.
25. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3: 15–35.
26. Ogden RW (1984) Non-Linear Elastic Deformation, Ellis Horwood Limited, England.
Copyright Info: © 2016, Jui-Hung Chang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)