-
AIMS Materials Science, 2016, 3(4): 1365-1381. doi: 10.3934/matersci.2016.4.1365.
Research article Special Issues
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Moving row of antiplane shear cracks within one-dimensional piezoelectric quasicrystals
School of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, UK
Received: , Accepted: , Published:
Special Issues: Interaction of Multiple Cracks in Materials -Volume 1
Keywords: moving antiplane shear cracks; piezoelectric quasicrystals; dislocation layers
Citation: Geoffrey E. Tupholme. Moving row of antiplane shear cracks within one-dimensional piezoelectric quasicrystals. AIMS Materials Science, 2016, 3(4): 1365-1381. doi: 10.3934/matersci.2016.4.1365
References:
-
1. Shechtman D, Blech I, Gratias D, et al. (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53: 1951–1953.
- 2. Fan TY (2011) The mathematical theory of elasticity of quasicrystals and its applications. Science Press, Springer-Verlag, Beijing/Heidelberg.
-
3. Fan TY (2013) Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering 5: 407–448.
-
4. Ding DH, Yang WG, Hu CZ, et al. (1993) Generalized elasticity theory of quasicrystals. Phys Rev B 48: 7003–7009.
-
5. Altay G, Dökmeci MC (2012) On the fundamental equations of piezoelasticity of quasicrystal media. Int J Solids Struct 49: 3255–3262.
-
6. Li CL, Liu YY (2004) The physical property tensors of one-dimensional quasicrystals. Chin Phys 13: 924–931.
-
7. Wang X, Pan E (2008) Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals. Pramana J Phys 70: 911–933.
-
8. Yang LZ, Gao Y, Pan E, et al. (2014) Electric-elastic field induced by a straight dislocation in one-dimensional quasicrystals. Acta Phys Polonica A 126: 467–470.
-
9. Li XY, Li PD, Wu TH, et al. (2014) Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys Lett A 378: 826–834.
-
10. Yu J, Guo J, Xing Y (2015) Complex variable method for an anti-plane elliptical cavity of one-dimensional hexagonal piezoelectric quasicrystals. Chin J Aero 28: 1287–1295.
-
11. Yu J, Guo J, Pan E, et al. (2015) General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics. Appl Math Mech 36: 793–814.
-
12. Zhang L, Zhang Y, Gao Y (2014) General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect. Phys Lett A 378: 2768–2776.
-
13. Yang J, Li X (2016) Analytical solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects. Theor Appl Fract Mech 82: 17–24.
-
14. Guo J, Zhang Z, Xing Y (2016) Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Phil Mag 96: 349–369.
-
15. Fan C, Li Y, Xu G, et al. (2016) Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech Res Comm 74: 39–44.
- 16. Tupholme GE, One-dimensional piezoelectric quasicrystals with an embedded moving, non-uniformly loaded shear crack. Acta Mech [in press].
-
17. Guo J, Pan E (2016) Three-phase cylinder model of one-dimensional piezoelectric quasi-crystal composites. ASME J Appl Mech 83: 081007.
-
18. Guo J, Yu J, Xing Y, et al. (2016) Thermoelastic analysis of a two-dimensional decagonal quasicrystal with a conductive elliptic hole. Acta Mech 227: 2595–2607.
- 19. Bilby BA, Eshelby JD (1968) Dislocations and the theory of fracture. In: Liebowitz H, Fracture, New York: Academic Press, 1: 99–182.
- 20. Lardner RW (1974) Mathematical theory of dislocations and fracture. University of Toronto Press, Toronto.
-
21. Leibfried G (1951) Verteilung von versetzungen im statischen gleichgewicht. Z Phys 130: 214–226.
- 22. Muskhelishvili NI (1953) Singular integral equations. Noordhoff Int. Pub., Leyden.
- 23. Gakhov FD (1966) Boundary value problems. Pergamon, Oxford.
Reader Comments
Copyright Info: 2016, Geoffrey E. Tupholme, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *