Citation: Afsaneh Dorri Moghadam, J.B. Ferguson, Benjamin F. Schultz, Pradeep K. Rohatgi. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts[J]. AIMS Materials Science, 2016, 3(3): 954-964. doi: 10.3934/matersci.2016.3.954
[1] | Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278 |
[2] | Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390 |
[3] | Zhisheng Shuai, P. van den Driessche . Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences and Engineering, 2012, 9(2): 393-411. doi: 10.3934/mbe.2012.9.393 |
[4] | Xinyu Bai, Shaojuan Ma . Stochastic dynamical behavior of COVID-19 model based on secondary vaccination. Mathematical Biosciences and Engineering, 2023, 20(2): 2980-2997. doi: 10.3934/mbe.2023141 |
[5] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[6] | Ying He, Junlong Tao, Bo Bi . Stationary distribution for a three-dimensional stochastic viral infection model with general distributed delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18018-18029. doi: 10.3934/mbe.2023800 |
[7] | Tong Guo, Jing Han, Cancan Zhou, Jianping Zhou . Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology. Mathematical Biosciences and Engineering, 2022, 19(8): 7504-7520. doi: 10.3934/mbe.2022353 |
[8] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[9] | Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209 |
[10] | Shuang-Hong Ma, Hai-Feng Huo . Global dynamics for a multi-group alcoholism model with public health education and alcoholism age. Mathematical Biosciences and Engineering, 2019, 16(3): 1683-1708. doi: 10.3934/mbe.2019080 |
[1] | Moghadam AD, Schultz BF, Ferguson JB, et al. (2014) Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. JOM 66: 872–881. |
[2] | Sato A, Mehrabian R (1976) Aluminum matrix composites: fabrication and properties. Metall Trans B 7: 443–451. |
[3] |
Amirkhanlou S, Niroumand B (2010) Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Trans Nonferrous Met Soc China 20: s788–s793. doi: 10.1016/S1003-6326(10)60582-1
![]() |
[4] | Das S, Das K (2007) Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt% Cu alloy matrix composites–A comparative study. Compos Sci Technol 67: 746–751. |
[5] | Rohatgi PK, Schultz BF, Daoud A, et al. (2010) Tribological performance of A206 aluminum alloy containing silica sand particles. Tribol Int 43: 455–466. |
[6] | Dorri Moghadam A, Ferguson JB, Schultz BF, Lopez HF, Rohatgi PK (2016) Direct synthesis of nano structured in-situ hybrid aluminum matrix nanocomposite.Ind Eng Chem Res 55: 6345–6353. |
[7] | Zuhailawati H, Samayamutthirian P, Haizu CM (2007) Fabrication of low cost aluminium matrix composite reinforced with silica sand. J Phys Sci 18: 47–55. |
[8] | Yoshikawa N, Kikuchi A, Taniguchi S (2002) Anomalous temperature dependence of the growth rate of the reaction layer between silica and molten aluminum. J Am Ceram Soc 85: 1827–1834. |
[9] |
Hemanth J (2009) Quartz (SiO 2p) reinforced chilled metal matrix composite (CMMC) for automotive applications. Mater Des 30: 323–329. doi: 10.1016/j.matdes.2008.04.064
![]() |
[10] |
Sulaiman S, Sayuti M, Samin R (2008) Mechanical properties of the as-cast quartz particulate reinforced LM6 alloy matrix composites. J Mater Process Technol 201: 731–735. doi: 10.1016/j.jmatprotec.2007.11.221
![]() |
[11] | Rohatgi PK, Pai BC, Panda SC (1979) Preparation of Cast Aluminum-Silica Particulate Composites. J Mater Sci 14: 2277–2283. |
[12] |
Rohatgi PK, Asthana R, Das S (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. Int Mater Rev 31: 115–139. doi: 10.1179/imr.1986.31.1.115
![]() |
[13] |
Gupta AK, Dan TK, Rohatgi PK (1986) Aluminum Alloy-silica Sand Composites: Preparation and Properties. J Mater Sci 21: 3413–3419. doi: 10.1007/BF02402980
![]() |
[14] | Moghadam AD, Omrani E, Menezes P L, Rohatgi PK (2016). Effect of in-situ processing parameters on the mechanical and tribological properties of self-lubricating hybrid aluminum nanocomposites.Tribology Letters62: 1-10. |
[15] | Pai BC, Ramani G, Pillai RM, et al. (1995) Role of Magnesium in Cast Aluminum Alloy Matrix Composites. J Mater Sci 30: 1903–1911. |
[16] | McLeod AD, Gabryel CM (1992) Kinetics of the Growth of Spinel. MgAl2O4, on Alumina Particulate in Aluminum Alloys Containing Magnesium. Metall Trans A 23A: 1279–1283. |
[17] |
Mogilevsky R, Bryan SR, Wolbach WS, et al. (1995) Reactions at the Matrix/Reinforcement Interface in Aluminum Alloy Matrix Composites. Mater Sci Eng A 191: 209–222. doi: 10.1016/0921-5093(94)09635-A
![]() |
[18] |
Hanabe MR, Aswath PB (1996) Al2O3/Al particle-reinforced aluminum matrix composite by displacement reaction. J Mater Res 11: 1562–1569. doi: 10.1557/JMR.1996.0195
![]() |
1. | Jinhu Xu, Yan Geng, A nonstandard finite difference scheme for a multi-group epidemic model with time delay, 2017, 2017, 1687-1847, 10.1186/s13662-017-1415-8 | |
2. | Zhijun Liu, Jing Hu, Lianwen Wang, Modelling and analysis of global resurgence of mumps: A multi-group epidemic model with asymptomatic infection, general vaccinated and exposed distributions, 2017, 37, 14681218, 137, 10.1016/j.nonrwa.2017.02.009 | |
3. | Xue Ran, Lin Hu, Lin-Fei Nie, Zhidong Teng, Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate, 2021, 394, 00963003, 125798, 10.1016/j.amc.2020.125798 | |
4. | Yan Geng, Jinhu Xu, Stability preserving NSFD scheme for a multi-group SVIR epidemic model, 2017, 01704214, 10.1002/mma.4357 | |
5. | Yan Liu, Pinrui Yu, Dianhui Chu, Huan Su, Stationary distribution of stochastic multi-group models with dispersal and telegraph noise, 2019, 33, 1751570X, 93, 10.1016/j.nahs.2019.01.007 | |
6. | Xinyou Meng, Qingling Zhang, Complex Dynamics in a Singular Delayed Bioeconomic Model with and without Stochastic Fluctuation, 2015, 2015, 1026-0226, 1, 10.1155/2015/302494 | |
7. | Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020 | |
8. | Junyuan Yang, Yuming Chen, Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate, 2018, 12, 1751-3758, 789, 10.1080/17513758.2018.1528393 | |
9. | Ying Guo, Wei Zhao, Xiaohua Ding, Input-to-state stability for stochastic multi-group models with multi-dispersal and time-varying delay, 2019, 343, 00963003, 114, 10.1016/j.amc.2018.07.058 | |
10. | Lan Meng, Wei Zhu, Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies, 2022, 200, 03784754, 489, 10.1016/j.matcom.2022.04.027 | |
11. | Zhen Cao, Lin-Fei Nie, DYNAMICS OF A STOCHASTIC VECTOR-HOST EPIDEMIC MODEL WITH AGE-DEPENDENT OF VACCINATION AND DISEASE RELAPSE, 2023, 13, 2156-907X, 1274, 10.11948/20220099 | |
12. | Han Ma, Yanyan Du, Zong Wang, Qimin Zhang, Positivity and Boundedness Preserving Numerical Scheme for a Stochastic Multigroup Susceptible-Infected-Recovering Epidemic Model with Age Structure, 2024, 1557-8666, 10.1089/cmb.2023.0443 |