
AIMS Geosciences, 2016, 2(2): 116151. doi: 10.3934/geosci.2016.2.116
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Inversion of Gravity Anomalies Using PrimalDual Interior Point Methods
1 CyberShARE Center of Excellence, University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
2 Department of Geological Sciences, University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
Received: , Accepted: , Published:
Special Issues: Special Issue on Satellite Remote Sensing
References
1 Chang S., Baag C., and Langston C. (2004) Joint analysis of teleseismic receiver functions and surface wave dispersion using the genetic algorithm. Bull. Seism. Soc. Am., 94: 691–704.
2 Moorkamp M., Jones A.G., and Fishwick S. (2010) Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. J Geophys Res, 115: 1–23.
3 Sambridge M. and Drijkoningen G.G. (1992) Genetic algorithms in seismic waveform inversion. Geophys J Int, 109: 323–342.
4 Shibutani T., Sambridge M., and Kennett, B. (1996) Genetic algorithm inversion for receiver functions with application to the crust and uppermost mantle structure beneath eastern Australia. Geophys. Res. Lett., 23: 1829–1832.
5 Vinnik L., Reigber C., Aleshin I., Kosarev G., Kaban M., Oreshin S., and Roecker S. (2004) Receiver function tomography of the central Tien Shan. Earth planet. Sci. Lett., 225: 131–146.
6 Vinnik L., Aleshin I., Kaban M., Kiselev S., Kosarev G., Oreshin S., and Reigber C. (2006) Crust and mantle of the Tien Shan from data of the receiver function tomography. Izvest Phys. Solid Earth, 42: 639–651.
7 Sambridge M. (1999) Geophysical inversion with a neighbourhood algorithm I: Searching a parameter space. Geophys J Int, 138: 479–494.
8 Sambridge M. (1999) Geophysical inversion with a neighbourhood algorithm II: Appraising the ensemble. Geophys J Int , 138: 727746.
9 Sambridge M. and Mosegaard K. (2002) Monte Carlo methods in geophysical inverse problems. Rev. Geophys., 40: 3.1–3.29.
10 Lines L.R., Schultz A.K., and Treitel S. (1988) Cooperative inversion of geophysical data. Geophys, 53: 8–20
11 Sosa A., Velasco A.A., Velazquez L., Argaez M., and Romero R. (2013) Constrained optimization framework for joint inversion of geophysical data sets. Geophys J Int, 195: 1745–1762.
12 Musil M., Maurer H.R., and Green A.G. (2003) Discrete tomography and joint inversion for loosely connected or unconnected physical properties: application to crosshole seismic and georadar data set. Geophys J Int, 153: 389–402.
13 Burstedde C. and Ghattas O. (2009) Algorithmic strategies for full waveform inversion: 1D experiments. Geophys, 74: WCC37–WCC46.
14 Li Y. and Oldenburg D.W. (1998) 3D inversion of gravity data. Geophys, 63: 109–119.
15 USGS.(1997) Introduction to potential fields: Gravity.
16 Abdelrahman E.M., AboEzz E.R., Essa K.S., ElAraby T.M. and Soliman K.S. (2006) A leastsquares vaiance analysis method for shape and depth estimation from gravity data. J Geophys Engin, 3: 143–153.
17 Essa K.S. (2007) A simple formula for shape and depth determination from residual gravity anomalies. Acta Geophys, 55: 182–190.
18 Essa K.S. (2011) A new algorithm for gravity or selfpotential data interpretation. J Geophys Engin, 8: 434–446.
19 Mehanee S. (2014) Accurate and e cient regularized inversion approach for the interpretation of isolated gravity anomalies. Pure App Geophys, 171: 1897–1937.
20 Cady J.W. (1980) Calculation of gravity and magnetic anomalies of finitelength right polygonal prisms. Geophys, 45: 1507–1512.
21 Levine S. (1941) The calculation of gravity anomalies due to bodies of finite extent. Geophys, 6: 180–196.
22 Siegert A.J.F. (1942) A mechanical integrator for the computation of gravity anomalies. Geophys, 7: 354–366.
23 Talwani M., Worzel J.L., and Landisman M. (1959) Rapid gravity computations of twodimensional bodies with the application to the Mendocino submarine fracture zone. J Geophys Res, 64: 49–59.
24 Talwani M. and Ewing M. (1960) Rapid computation of gravitational attraction of threedimensional bodies of arbitrary shape. Geophys, 35: 203–225.
25 Nagy D. (1966) The gravitational attraction of a right rectangular prism. Geophys, 31: 2362– 2371.
26 Plou D. (1976) Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophys, 41: 727–741.
27 Aster R., Borchers B., and Thurber C. (2005) Parameter estimation and inverse problems. 1 Ed., Elsevier Academic Press.
28 Snieder R. and Trampert J. (1999) Inverse problems in geophysics. Wavefield inversion, edited by A. Wirgin. Springer Verlag. 119–190.
29 Guillen A., Calcagno P., Courrioux G., Joly A., and Ledru P. (2008) Geological modeling from field data and geological knowledge: Part II. Modeling validation using gravity and magnetic data inversion. Phys Earth Planet Interi, 171: 158–169.
30 Wang G., Garcia D., Liu Y., de Jeu R., and Johannes D.A. (2012) A threedimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environ Model Software, 30: 139–142.
31 Barbosa V.C.F., Silva J.B.C., and Medeiros W.E. (2002) Practical applications of uniqueness theorems in gravimetry. Part II – pragmatic incorporation of concrete geological information. Geophys, 67: 795–800.
32 Bott M.H.P. (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J Royal Astron Soci, 3: 63–67.
33 Pedersen L.B. (1979) Constrained inversion of potential field data. Geophys Prosp, 27: 726– 748.
34 Pilkington M. (2009) 3D magnetic dataspace inversion with sparseness constraints. Geophys, 74: L7–L15.
35 Safon C., Vasseur G., and Cuer M. (1977) Some applications of linear programming to the inverse gravity problem. Geophys, 42: 1215–1229.
36 Zhdanov M.S. (1988) Integral Transforms in Geophysics. Springer.
37 Lowrie W. (2007) Fundamentals of Geophysics. 2 Eds., Cambridge University Press.
38 Won I.J. and Bevis M. (1987) Computing the gravitational and magnetic anomalies due to a polygon: algorithms and Fortran subroutines. Geophys, 52: 232–238.
39 Nettleton L.L. (1971) Elementary gravity and magnetics for geologists and seismologists. Society of Exploration Geophysicists Geophysical Monograph Series Volume 1. 1 Ed., Society of Exploration Geophysicists.
40 Telford W.S., Geldart L.P., and Sheri R.E. (1990) Applied Geophysics. 2 Eds., Cambridge University Press.
41 Roy L., Sen M., McIntosh K., Sto a P., and Nakamura Y. (2005) Joint inversion of first arrival seismic traveltime and gravity data. J Geophys Engin, 2: 277–289.
42 Skeels D.C. (1947) Ambiguity in gravity interpretation. Geophys, 12: 43–56.
43 Argaez M. and Tapia R. (2002) The global convergence of a modified augmented Lagrangian linesearch interiorpoint Newton method for nonlinear programming. J Optim Theory App, 114: 255–272.
44 Nocedal J. and Wright S.J. (2006) Numerical Optimization. 2 Eds., Springer Verlag.
45 Wright S.J. (1997) Primaldual interiorpoint methods. Society for Industrial and Applied Mathematics.
46 AlChalabi M. (1972) Interpretation of gravity anomalies by nonlinear optimization. Geophys Prosp, 20: 1–16.
47 Musil M., Maurer H.R., Green A.G., Horstmeyer H., Nitsche F.O., Vonder Muhll D., and Springman S. (2002) Shallow seismic surveying of an alpine rock glacier. Geophy, 67: 1701–1710.
48 Gallardo L.A. and Meju M.A. (2004) Joint twodimensional DC resistivity and seismic travel time inversion with crossgradients constraints. J Geophys Re, 109: 1–11.
49 Maceira M. and Ammon C.J. (2009) Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure. J Geophys Resh, 114: 1–18.
50 Maceira M., Zhang H., Modrak R.T., Rowe C.A., and Begnaud M.L. (2010) Advanced multivariate inversion techniques for high resolution 3D geophysical modeling. Proceedings of the 2010 Monitoring Research Review: GroundBased Nuclear Explosion Monitoring Technologies, 97–107.
51 Moorkamp M., Heincke B., Jegen M., Roberts A.W., and Hobbs R.W. (2011) A framework for 3D joint inversion of MT, gravity and seismic refraction data. Geophys J Int, 184: 477–493.
52 Haber E. and Oldenburg D. (1997) Joint inversion: a structural approach. Inverse Prob, 13: 63–77.
53 Sosa A., Thompson L., Velasco A.A., Romero R., and Hermann R. (2014) 3D Structure of the southern Rio Grande Rift from 1D constrained joint inversion of receiver functions and surface wave dispersion. Earth Planet Sci Lett, 402: 127–137.
Copyright Info: © 2016, Azucena Zamora, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)