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Abstract: Structural inversion of gravity datasets based on the use of density anomalies to derive
robust images of the subsurface (delineating lithologies and their boundaries) constitutes a fundamen-
tal non-invasive tool for geological exploration. The use of experimental techniques in geophysics
to estimate and interpret differences in the substructure based on its density properties have proven
efficient; however, the inherent non-uniqueness associated with most geophysical datasets make this
the ideal scenario for the use of recently developed robust constrained optimization techniques. We
present a constrained optimization approach for a least squares inversion problem aimed to characterize
2-Dimensional Earth density structure models based on Bouguer gravity anomalies. The proposed for-
mulation is solved with a Primal-Dual Interior-Point method including equality and inequality physical
and structural constraints. We validate our results using synthetic density crustal structure models with
varying complexity and illustrate the behavior of the algorithm using different initial density structure
models and increasing noise levels in the observations. Based on these implementations, we conclude
that the algorithm using Primal-Dual Interior-Point methods is robust, and its results always honor
the geophysical constraints. Some of the advantages of using this approach for structural inversion
of gravity data are the incorporation of a priori information related to the model parameters (coming
from actual physical properties of the subsurface) and the reduction of the solution space contingent
on these boundary conditions.

Keywords: inverse theory; computational geophysics; gravity anomalies; 2-D Earth imaging;
computational science; optimization.
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1. Introduction

Efficient and robust computational techniques for the inversion of geophysical datasets are essen-
tial for the development of meaningful density and velocity models of the Earth’s substructure. Many
global optimization methods have been developed and implemented for inverse problems in geophysics
(e.g. genetic algorithms [1–4], simulated annealing [5, 6], neighborhood algorithm [7, 8], and Monte
Carlo methods [9]) with the conventional formulation of the inverse problem posed as an unconstrained
optimization formulation. Novel computational optimization techniques take advantage of the inclu-
sion of equality and inequality constraints placed on the variables which restrict the model parameters
to a smaller range of values shrinking the feasible space [10, 11]. The use of a priori information
reduces model ambiguity and allows us to focus only on those feasible models that provide a good
fit to the data while satisfying the physical constraints [12]. The standard implementation of equality
and inequality constraints uses a Lagrangian method with a powerful constrained optimization method
known as Primal-Dual Interior-Point (PDIP) [11]. This framework has been an alternative to solve lin-
ear programming problems for single and joint inversion of different geophysical data sets [11, 13, 14]
but not for the inversion of gravity anomalies in a constrained optimization framework.

Gravity and magnetic fields, also known as “potential fields”, are widely used in the exploration of
the Earth’s substructure. Changes in the gravitational field constitute a passive source of data used to
determine the structure of the Earth’s subsurface by sensing the distribution of density in rocks. Gravity
surveying constitutes a cheap, non-invasive, and non-destructive remote sensing method that helps
associate the variations in the gravity field with subsurface density distributions and ultimately rock
types. Through the interpretation of the changes observed in a gravitational survey, we can determine
the distribution of stratum in a region of study. The juxtaposition of rocks of different densities can help
determine the geological processes that have taken place at different locations and be used to locate
faults, mineral or petroleum resources, and ground-water reservoirs [15].

The gravitational potential energy measures the force of attraction between two bodies (such as the
Earth and an object); its strength is proportional to the mass responsible for the gravitational field and
inversely proportional to the square of the distance between any part of that mass (usually the center
of mass) and the observation point. Surveys using gravitational data focus on minuscule changes in
gravity that occur from place to place caused by dissimilarities in the rock density of the subsurface
(anomalies). Getting rid of unwanted gravity effects due to known sources, observations from gravity
meters get corrected to isolate for regional or local structures (the unknown sources) [15]. This paper
considers Complete Bouguer anomalies which focus on the effects in gravity corresponding directly to
the density contrasts found in the subsurface.

Most methodologies used for the calculation of gravity anomalies can focus on 2-, 2.5-, and 3-D
bodies. Available modeling techniques can be extended to 3-D using an approximation to irregularly
shaped bodies with several smaller bodies represented by regular shapes whose gravitational field is
easier to compute. Published works contain computations for gravity anomalies of basic geometrical
forms such as spheres and cylinders [16–19] and polygonal prisms [20–24], while additional pub-
lications examine the gravitational attraction originated by a right rectangular prism [25, 26]. Now
consider our problem: Given a single 2-D profile of a gravitational anomaly, what is the density dis-
tribution or shape of a two-dimensional mass with constant density ρ that produces this anomaly? In
general, the goal of inverse problems consists of finding the model parameters that allow the optimal
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reproduction of our set of observed measurements (the 2-D profile of gravity anomalies). Ideally, the
exact theoretical framework prescribing how to transform the data in order to reproduce the model
exists; in reality, an exact solution may not exist, but it may be sufficient to find the best approximate
solution that produces a minimum misfit or residual using a predetermined norm [27, 28]. A primary
goal of gravity anomaly inversion consists of the detection and quantification of changes in the mass
properties at different depths [29]. Here, even small changes in the model tend to greatly affect the out-
come obtained from the inversion. Furthermore, the multi-dimensionality of the different geological
density structures makes the problem at hand very complex from a mathematical point of view [30].

For many years, the optimization of this inverse problem – varying the structure and physical prop-
erties of the subsurface model until the residual at each station on the surface is minimized – was based
on trial-and-error methods where the shape of the initial starting structure was perturbed. These algo-
rithms, although useful and easy to implement, did not exhaust the possiblity of finding the most opti-
mal model parameters within the solution space. Recently, many potential fields inversion algorithms
have been developed [14, 29, 31–36]. Some of these algorithms use a priori information in the form
of positivity constraints for the density values, empirical laws, and upper and lower density bounds;
the inclusion of this information in the formulation of the optimization problem produces a reduction
of the ambiguity originated from the inherent non-uniqueness. In this paper, we analyze the use of
Interior-Point methods to improve the accuracy of the Earth’s 2-D density distribution models through
the inclusion of physical constraints coming from a priori information obtained from alternative geo-
physical surveys. We test our approach using different synthetic cases with varying complexity noise
levels to show that our constrained optimization can be as accurate as commonly used unconstrained
formulations of the problem while satisfying the physical constraints. We discuss the feasibility of
our approach through the analysis of our results and conclude with the potential applications of this
optimization scheme.

2. Methodology

Surveys using gravitational data focus on minuscule changes in gravity caused by dissimilarities in
the rock density of the subsurface called gravity anomalies. These anomalies – the differences between
the corrected measured gravity and the theoretical gravity associated with a homogeneous ellipsoid –
originate from the vast multifarious structure of the Earth’s interior and are the basis to understand the
internal structure of the planet. Starting with the measured absolute gravity values (as recorded with
gravimeters on the surface of the Earth), gravity datasets are corrected for all known sources of gravity;
after all corrections have been implemented, the resulting dataset corresponds to the gravity anomalies
associated with lithology changes based on density contrasts. The Bouguer gravity anomaly is defined
as

∆gB = gobs + (gFA − gBP + gTC) − gn, (1)

where gobs is the measured absolute gravity value, gn is the theoretical (or normal) gravity value, and
we have the free-air (∆gFA), Bouguer plate (∆gBP), and terrain (∆gTC) corrections [37].

2.1. Interpretation of gravity anomalies

Gravity anomalies result from the irregular distribution of density within the Earth. The density
contrast of a body is the difference between the density of rocks in an anomalous body ρ and the density
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of the surrounding rocks: ∆ρ = ρ − ρ0 [37]. Anomalous bodies with higher density than host rock
have positive density contrasts while bodies with lower density than host rock have negative density
contrasts. A positive gravity anomaly is obtained over high-density bodies where the measured gravity
is augmented; likewise, negative anomalies result over low-density bodies [37]. Therefore, analyzing
the sign of an anomaly helps to determine the sign of the density contrast and whether the density of
the geological body should be higher or lower than the surrounding rocks. The apparent “wavelength”
of an anomaly refers to its horizontal extent and can be used to determine the depth of its anomalous
mass [37]. Usually, a Bouguer gravity anomaly map contains superposed anomalies coming from
several sources (in a 3-D sense). Long-wavelength anomalies (caused by deep density contrasts) called
regional anomalies relate to large-scale structures of the Earth’s crust such as mountain ranges, oceanic
ridges, and subduction zones. Short-wavelength anomalies (due to shallow density constrasts) called
residual anomalies often relate to shallow anomalous masses such as near-surface mineralized bodies
[37]. Although this can be helpful to model the density distributions of the subsurface and determine
the approximate location of the sources (large deep bodies often associate to broad long-wavelengths
and low-amplitude anomalies while shallow bodies associate with narrow short-wavelength and sharp
anomalies), a priori information from additional geophysical surveys is required to resolve ambiguities
from non-uniqueness. After the removal of regional anomalies, residual gravity should be interpreted
in terms of its approximate density distribution using iterative 2- and 3-D techniques.

2.2. 2-D modeling of gravity anomalies

We used a 2-D polygonal prisms algorithm [23, 26, 38] as our forward operator for the calculation of
the gravity anomalies associated with 2-D density structure models (or profiles). Each density structure
model contains a variety of n-sided polygons depicting the geometry of each body of constant density
found in the subsurface. We used these polygons projected in the y axis (in and out of the page) based
on the geology of the deposit in order to reproduce the gravity anomalies recorded for each gravity
station. The Bouguer anomaly associated with the density structure model is a function of the density
contrasts, the geometrical shapes of the bodies (x and z-coordinates of its vertices), the depths of the
bodies, and the location of the gravity stations [39, 40].

The total gravity anomaly associated with a gravity station is the sum of all contributions of all the
vertices of all the polygons used to illustrate the substructure [23, 26, 38]. Placing each gravity station
at the origin of an xz coordinate system and following the geometrical convention shown in Figure 1
(in a strict clock-wise direction), we express the total vertical component of gravity anomaly at station
P as

∆gz = 2γ
l∑

j=1

(
∆ρ j

n j∑
i=1

Bi

[
(θi − θi+1) +

(zi+1 − zi)
(xi+1 − xi)

ln
( √

xi+1
2 + zi+1

2√
xi

2 + zi
2

)])
(2)

with

Bi =
(xi+1 − xi)(xizi+1 − xi+1zi)
(xi+1 − xi)2 + (zi+1 − zi)2 and θi = tan−1

( zi

xi

)
where γ is the gravitational constant 6.673 848 × 10−11 m3/kg s2, l is the number of bodies in the den-
sity structure model, ∆ρ j is the density contrast of the jth polygon, and n j is the number of sides of the
jth polygon.
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Figure 1. Geometrical convention for calculation of ∆gz

vertical component of gravity anomaly [23].

It is important to distinguish between the origin of the actual density structure and the origin used
for the calculation of gravity anomalies. As stated before, in order to calculate the gravity anomaly for
a given station, it must be placed at point (0, 0) such that all distances from this point to the vertices of
all bodies can be easily determined following the scheme in Figure 1. On the other hand, the location
of the origin for the actual density structure can be placed at the beginning of the profile on the surface
or a base station where absolute gravity is known. For our purposes, the origin is placed at the far left
side on the surface of our 2.5-D density profiles.

Using forward operator (2), we calculate the gravity anomaly associated with the given density
structure model. The calculation of the density distribution in the Earth’s substructure based on the
measurements of its gravity field constitutes an example of an inverse problem in which we infer the
causal factors that produce a set of observations.

2.3. Inversion of gravity anomalies

Most inverse methods approximate the values to the parameters of the source corresponding to the
observed anomaly by iteratively solving equations related to the forward operator for the anomalies and
inherent physical laws until ‖∆gobs − ∆gcalc‖ ≤ ε mGals. There are three important aspects that must
be considered when solving inverse problems: solution existence, solution uniqueness, and instability
of the solution process [27]. In theory, the calculated structure of the bodies associated with a gravity
anomaly signature obtained from the inversion of surface observations would correspond to the “real”
geological substructure of a region. However, the discrete nature of the observational data, the errors
incurred in mathematical methods, equipment, and data corrections, and the assumptions made in geo-
logical and geophysical settings makes finding mathematically acceptable answers to inverse problems
a non-trivial task. The ambiguity of geophysical data can lead to geologically unfeasible models that
show a great level of agreement between observed and computed data, which translates to infinitely
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many models that fit the data in an adequate way [41, 42]. Instability relates to ill-posedness where
small alterations to the data result in large changes in the inferred models [27].

Using nonlinear integral equations, we assume the density contrasts associated with the 2-D den-
sity structure models and solve our system of equations for the geometrical characteristics (depths
from the surface to each of the vertices in the polygonal prisms) associated with our synthetic multi-
interfaced Earth structures. Assuming information regarding the mass distribution (source bodies’
configurations), we assemble an initial structural model to start the inversion. Additional independent
geophysical datasets can be used to constrain theoretical density models, reduce the solution space,
and focus only on geologically feasible models. The inclusion of upper and lower bounds on the inver-
sion parameters help us to find feasible models that will suit our needs and that conserve the accuracy,
feasibility, and consistency associated with well-behaved inverse problems [27].

2.4. Using Primal-Dual Interior-Point methods

The adapted characterization of the constrained optimization framework solves a linearized version
of the inverse problem by adding bound constraints over the model parameters. We define Z as a density
structure model with its elements specifying the location of the vertices of the geometrical shapes
(depths or z-coordinates of each vertex) delineating the various bodies in the subsurface. Physical
constraints preserve the relationships between the different bodies, the consistency of their boundaries,
and the integrity of the final density structure models. These restrictions relate to the appropriate
geometrical bounds pertaining the model parameters Z in the inverse problem. Since each Z in the
parameter space relates to a geological model, each minimum point located within the solution space
represents a possible structure.

From gravity prospecting, we create a hypothetical density structure model Z ∈ Rn and evaluate
the non-linear forward operator G ∈ Rm; G(Z) represents the Earth’s response or the calculated gravity
anomaly. The relationship between the forward operator G and the density structure dataset is given by

G(Z) = [G1(Z),G2(Z), . . . ,Gm(Z)], for Z = (z1, z2, . . . , zn),

where m is the number of observations and n is the total number of vertices in the density distribution.
For any dataset of gravity anomaly observations A ∈ Rm, the inverse problem consists of finding the
unknown density structure model Z, which allows the best approximation of G(Z) to A, that is,

min
Z

1
2
‖G(Z) − A‖2 = min

Z

1
2

m∑
i=1

(Gi(Z) − Ai)2 , (3)

which is usually posed as an unconstrained weighted non-linear least squares (NLSQ) problem.
The complexity of the non-linear operator G makes the use of an iterative linearized least squares

approach an alternative to avoid the computation of higher order derivatives in the minimization prob-
lem. In least squares problems, the objective function F has the form

F(Z) =
1
2
‖R(Z)‖22,

with the residual vector R : Rn → Rm defined as R(Z) = G(Z) − A.
The best match between model and data comes from minimizing function F(Z) with respect to the

desired parameters. We implement the constrained optimization framework proposed by [11, 43–45] to
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solve the linearized version of the non-linear inverse problem. The constrained optimization problem
is given by

min
Z

F(Z)

s.t. hE(Z) = 0
hI(Z) ≥ 0,

(4)

where hI(Z) ∈ Rp are the inequality constraints and hE(Z) ∈ Rq are the equality constraints associated
to Z. The inequality constraints hI(Z) represent the physical bounds that correspond to the minimum
and maximum depths of the vertices of the polygonal prisms and/or relationships between the different
vertices used to conserve the integrity of the structural model. The equality constraints in hE(Z) repre-
sent the appropriate end-body conditions and the lower and upper boundaries for the top and bottom
bodies in the cross-sections.

Problem (4) is redefined in the standard non-linear programming form

min
Z

F(Z)

s.t. hE(Z) = 0
hI(Z) − s = 0

s ≥ 0,

(5)

with s ∈ Rp so called slack variable. We define S = diag(s1, s2, . . . , sp) (a matrix with the elements of
s in the diagonal).

We solve (5) using Primal-Dual Interior-Point (PDIP) methods, starting with the Lagrangian func-
tion

L(Z, s, yE, yI) = F(Z) − hE
T (Z)yE −

(
hI(Z) − s

)T yI , (6)

where yE ∈ R
q and yI ∈ R

p are the Lagrange multipliers associated to the equality and inequality
constraints, respectively, and (s, yI) > 0.

We define the Karush-Kuhn-Tucker (KKT) or necessary conditions for the optimization of this
nonlinear programming problem as

∇F(Z) −
(
∇hE(Z)

)T yE −
(
∇hI(Z)

)T yI = 0,
S yI = 0,

hE(Z) = 0,
hI(Z) − s = 0.

The second condition, S yI = 0, also known as the complementarity condition for the minimization
problem, implies that one of the components of each product

(
si · (yI)i

)
must be equal to zero for each

i = 1, 2, . . . , p (and nonzeros of s and yI should appear in complementary locations) [44, 45].
We address the nonlinear programming problem with PDIP methods solving a sequence of approxi-

mate linear minimization problems iteratively [44]. As a first step we include a perturbation parameter
µ to the complementarity condition (and use the notation ∇ as the gradient operator) such that the
perturbed Karush-Kuhn-Tucker (PKKT) conditions become

∇zL(Z, s, yE, yI)
S yI − µe

∇yEL(Z, s, yE, yI)
∇yIL(Z, s, yE, yI)

 =


∇F(Z) − ∇hE

T (Z)yE − ∇hI
T (Z)yI

S yI − µe
hE(Z)

hI(Z) − s

 =


0
0
0
0

 , (7)

AIMS Geosciences Volume 2, Issue 2, 116–151



123

where e = (1, 1, . . . , 1) ∈ Rp, and (s, yI) > 0.
Interior-point methods solve the PKKT conditions for a sequence of positive parameters µk that

converges to zero while (s, yI) > 0 [44]. Letting sequence µ be strictly positive forces variables s and
yI to stay strictly positive, keeping the iterates away from the boundaries and in the interior of the
constraints while converging to the optimal solution (Z∗, s∗, y∗E, y

∗
I ) as µ → 0 and satisfying the KKT

conditions for (5) [44]. By respecting the bounds, interior-point methods avoid spurious solutions –
those minimizing the objective function but not meeting (s, yI) > 0 [45].

Applying Newton’s Method, the primal-dual system associated with (7) becomes
∇2LZZ 0 −∇hE

T (Z) −∇hI
T (Z)

0 YI 0 S
∇hE(Z) 0 0 0
∇hI(Z) −I 0 0




∆Z
∆s
∆yE

∆yI

 = −


∇ZL(Z, s, yE, yI)

S yI − µe
hE(Z)

hI(Z) − s

 , (8)

in the variables Z, s, yE, yI with (s, yI) > 0. Here, YI = diag(y1, y2, . . . , yp), L denotes the Lagrangian
(6), and ∇2LZZ is the Hessian of the Lagrangian.

The primal-dual system can be rewritten in symmetric form
∇2LZZ 0 ∇hE

T (Z) ∇hI
T (Z)

0 Σ 0 −I
∇hE(Z) 0 0 0
∇hI(Z) −I 0 0




∆Z
∆s
−∆yE

−∆yI

 = −


∇ZL(Z, s, yE, yI)

yI − µS −1e
hE(Z)

hI(Z) − s

 , (9)

where Σ = S −1YI .
In order to ensure that the function value is decreasing at each step towards the solution Z∗, we can

use a merit function to determine whether a step is productive and should be accepted [44]. Our merit
function has the form

φv =

(
F(Z) − µ

p∑
i=1

log(si)
)

+ v‖hE(Z)‖ + v‖hI(Z) − s‖, (10)

where v is a penalty parameter used to force the solution towards feasibility (attempting a shorter step
whenever the original step fails to decrease the merit function). Using µ > 0 and the logarithmic barrier
term prevents the component of s from getting too close to zero (since each −µlog(si)→ ∞ as si → 0)
[44].

PDIP methods characterize by having a procedure to determine the step to take in an iteration and
a measure of desirability of points in the search space [44]. At each iteration, the system advances to
the next solution by taking the step ∆d = (∆Z,∆s,−∆yE,−∆yI) from the current point (also called the
Newton direction); however, if the condition (s, yI) > 0 is violated, the full step is not a feasible or
desired step [45]. A way around this problem consists in performing a line search along the Newton
direction such that the new iteration becomes

Zk+1 = Zk + α∆Z,
sk+1 = sk + α∆s,

yEk+1 = yEk + α(−∆yE),
yIk+1 = yIk + α(−∆yI),

(11)
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for some α ∈ (0, 1] called the line search parameter.
We use parameter τ ∈ (0, 1) (usually equal to 0.995) to avoid moving to the boundaries too quickly

[44] and define
αs

max = max{α ∈ (0, 1] : s + α∆s ≥ (1 − τ)s},
and αyI

max = max{α ∈ (0, 1] : yI + α∆yI ≥ (1 − τ)yI}.

Using our merit function (10), we compute step lengths αs ∈ (0, αs
max] and αyI ∈ (0, αyI

max] that
satisfy

φv(Zk + αs∆Z, sk + αs∆s) ≤ φv(Zk, sk) + ηαsDφv(Zk, sk; ∆Z,∆s) (12)

The implementation of the line search and (12) ensures finding the values of (αs, αyI ) that guarantee
a sufficient decrease of the merit function [44]. The new iteration values are defined as

Zk+1 = Zk + αs∆Z,
sk+1 = sk + αs∆s,

yEk+1 = yEk + αyI ∆yE,

yIk+1 = yIk + αyI ∆yI .

(13)

Our algorithm contains optimized MATLAB functions to solve the approximated problem (10)
using either a direct step (with Newton’s method) or a Conjugate Gradient (CG) step. The direct step
uses an LDL factorization of the matrix if the Hessian is positive definite; otherwise, the algorithm
uses a CG step. In the CG approach, the problem is posed as minimizing a quadratic approximation to
the barrier problem in a trust region subject to linearized constraints (more in [44]).

Gravity problems usually contain a large number of local minimum points each of them related to a
geological structure (either well-defined or ill-defined) [46]. Using constraints for the parameter values
and incorporating them into the optimization formulation allows us to focus only on those points within
the feasible region that minimize our objective function.

3. Results

As previously stated, gravity data is mainly sensitive to the density distribution of anomalous bodies
and their locations. Assuming constant values for the density contrasts located in the area, the forward
operator G used in the optimization algorithm depends non-linearly in the model parameters, Zi (for
i = 1, . . . , n) that represent the depths from the surface (at sea-level) to the n vertices of the polygonal
prisms.

The inversion begins with an initial guess of the density structure model, Z0, based on a priori
geological information available for the area of study. Once the gravity anomaly has been calculated
for the initial density structure model (G(Z0)) and compared to the observation vector A, we obtain
the residual vector R(Z0) and iterate the evaluation of the inverse problem to obtain different approx-
imations of Zk using our constrained optimization method. The algorithm runs until it meets one of
the stopping criteria: 1) the residual error is less than a tolerance ε1, 2) the relative error (rms) is less
than a tolerance ε2, 3) the maximum number of iterations is reached, or 4) the difference between two
consecutive iterations is less than a tolerance ε3. The last iteration returns the latest updated model Zk

which represent the best density structure model – since the line search and sufficient decrease schemes
included in the algorithm guarantee that the objective function F(Z) decreases at each iteration. Our
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goal consists in finding the optimal Zk that resembles the hypothetical model as closely as possible (e.g.
rms=

∥∥∥Zk−Z∗

Z∗

∥∥∥ < ε3) [11]. Moreover, at an optimal Zk, the residual error between the predicted gravity
anomaly (corresponding to the final density structure model from the inversion) and the observations
(or gravity anomaly values associated to a hypothetical model) is less than a given tolerance (e.g.
residual error=

∥∥∥G(Zk)−A
A

∥∥∥ < ε1) and all the elements of Zk strictly meet the constraints (guaranteeing
feasibility) [11, 46].

3.1. Comparison with non-linear least squares

We compare the behavior of the proposed PDIP methods and the usual unconstrained non-linear
least squares for the optimization of Bouguer gravity anomalies using the synthetic dataset for a simple
structure. We used a total of 11 gravity observation points on the surface separated every kilometer.
The structure consisted of two contiguous bodies: body B1 with density contrast 1000 Kg/m3 and
composed of tree vertices, and body B2 with density contrast 1870 Kg/m3 and four vertices. However,
we recorded each vertex only once and used these “unique” vertices as parameters for the optimization
(adjusting the calculations of individual contributions of vertices to the total gravity anomaly and car-
rying out the calculations based on the unique vertices). Throughout the inversion the x-coordinates
remained constant while the z-coordinates moved freely vertically. We had inequality conditions asso-
ciated to {∀zi ∈ Z : zi ∈ [−5, 0]} and no equality constraints. Figure 2 shows the gravity profiles and
2-D density distributions of (a) the initial structural model Z0, (b) the final structural model obtained
using an unconstrained non-linear least squares approach, and (c) the final structural model resulting
from our constrained PDIP method approach.
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Figure 2. Gravity profile and 2-D cross section corresponding to (a) initial density structure
model Z0, (b) final NLSQ density structure model, and (c) final PDIP density structure model.
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Figure 2 shows both methods seemingly recovering the actual gravity anomaly values recorded
at each observation point. The residual error (a measure of the differences between final calculated
and observed gravity values) is 1 × 10−9 for the structural model recovered by the PDIP algorithm and
4 × 10−2 for the NLSQ algorithm; however, only the PDIP method recovers the exact observations
associated with the target density structure model. Comparing the final density structure models for
both methods to the actual parameter values Z∗ (associated with the target geological structure), the
relative error (rms) related to ZPDIP is 1 × 10−9, while that of the ZNLS Q is 1.7584. Moreover, from
the bottom parts of Figure 2(b) and 2(c) we can see that some of parameters in ZNLS Q are outside the
boundary conditions (a spurious solution) and far away from the values of Z∗ (dotted red lines included
in xz plane at the bottom of Figure 2(b) and 2(c)) while ZPDIP coincide exactly with Z∗.
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Figure 3. Iteration Vs. value of the objective function for both NLSQ and PDIP algorithms.

An additional advantage of the optimization with PDIP methods is its fast convergence to the final
model. Figure 3 shows the number of iterations versus the value of the objective function for both
the NLSQ and the PDIP methods associated with this synthetic example. While the NLSQ algorithm
takes almost 600 iterations to converge to a final density structure model (since it looks at all possible
solutions even if they lie outside the boundaries) with a final objective function value of 3.3205, the
PDIP algorithm takes 20 iterations to converge to a solution with a final objective function value of
6.7190 × 10−9.

From our results, the inclusion of inequality constraints in our formulation forced the inversion using
PDIP methods to stay in the feasible region (below the surface) while minimizing the residual between
observed and calculated gravity anomalies – a feature not accomplished by the NLSQ approach whose
final structural model was a spurious solution outside the physical parameter constraints.

With respect to the equality and inequality constraints for the inversion parameters, special care
must be placed on the formulations to avoid excessive severity that may exclude potential solutions.
Moreover, for a more complex density structure model, it would be necessary to include constraints to
preserve the structural composition of each one of its bodies and accurately represent the appropriate
formation features. Figure 4 illustrates an example where the structural composition of a body has
been compromised; this occurs when a vertex (in this case vertices 2 and 9) cross-cuts a side of a body
beyond the limits imposed by its corresponding vertices (e.g., vertex 2 of model Final Zf is smaller than
vertices 11 and 12 and cuts the line formed by them and vertex 9 is larger than vertices 4 and 5 and goes
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beyond the line formed by them). These conditions can easily be included in the formulation for PDIP
methods using boundary constraints; however, the situation differs for NLSQ where such conditions
should be excluded from the optimization and final density structure models for very complex areas
suffer this kind of problem.
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Figure 4. Example of a failure in structural composition.

The representations used to depict different geological anomalous bodies may contain any finite
number of vertices; using many vertices to represent a body can help to better model the structure
while too small a number can compromise the final result or produce unacceptable solutions. However,
total computation time increases with the number of vertices, hence, the trade-off should be considered
when prioritizing desired outcomes from the optimization.

3.2. Synthetic examples

We implemented our constrained optimization using PDIP methods for three different synthetic
models with varying complexity. We start with a simple geometrical representation for a sedimentary
basin and move to two multi-interfaced continuous structures with higher intricacies in their density
distribution and body inter-dependence; all synthetic datasets were created noise free.

3.2.1. Sedimentary basin

The sedimentary basin model has densities 2670 kg/m3 for granites and 2960 kg/m3 for green-
stones. A total of 51 gravity observation points every kilometer helped us to determine the density
distribution of the subsurface. We used 47 vertices to model bodies B1 and B2 and endbodies B3 and
B4 (included in the density structure models to improve accuracy at the endpoints). 27 non-repeated
vertices out of the total were used as parameters for the inversion. Throughout the inversion, only the
z-coordinates varied freely. Bounds {∀zi ∈ Z : zi ∈ [−2, 0]} were used as inequality constraints; the
equality constraints were related to the vertices on the surface and end-body structures and may have
forced z-coordinates to remain constant during the inversion to ensure feasible boundary representa-
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tions for all bodies. A base station with known absolute gravity was situated at x = 30 Km and used
to determine the gravity anomaly of the rest of the stations (the difference between the hypothetical
and calculated gravity anomalies at this point is 0). In real applications base stations can be placed
anywhere in the profile (by using well-known base stations or in-site base stations) and are important
features used to ensure the accuracy of the calculated gravity anomalies.

Figure 5 includes: (a) the hypothetical model of the sedimentary basin and the gravity observations
corresponding to each gravity station, (b) the initial 2.5-D model for the basin (usually based on a
priori information but created randomly for our synthetic examples), its gravity signature, and hypo-
thetical gravity observations, and (c) the final model obtained using our PDIP method as part of the
optimization, its gravity signature, and the hypothetical gravity observations (densities are in kg/m3).
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Figure 5. Gravity profiles and cross sections for: (a) hypothetical, (b) initial, and (c) final density
structure models for the sedimentary basin.

The final density structure model obtained from the inversion, Z, recovers the hypothetical density
structure model Z∗ almost exactly while also minimizing the objective function (F(Z) = 1.77 × 10−3).
In fact, the relative error (rms) of Z with respect to model Z∗ is 5.92 × 10−2 and the residual error
between the final calculated gravity anomalies (G(Z)) and the observations (in this case G(Z∗)) equals
6 × 10−4.

From our results, we show that the algorithm converged to the optimal solution of the minimization
problem when starting the inversion with a particular density structure model Z0 (Figure 5(b) bottom).
However, considering the non-uniqueness inherent to gravity inversion problems, starting the algorithm
with a different Z0 may result in different values for the final Z f that minimizes the objective function.
Figure 6(a) shows the values of Z0 for the vertices associated with ten different initial density structure
models. Figure 6(b) contains the Z f values (and the resulting density distributions) derived from the
optimizations. All inversions were tied to the base station at x = 30 Km – such that |G(Z0)−G(Z∗)| = 0
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for all Z0.

(a) Sedimentary basin 10 different initial Z0 values
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(b) Sedimentary basin 10 different final Z values
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Figure 6. (a) Parameter values of ten different initial Z0 and (b) final values for
Z f obtained from the optimizations. All ’+’ signs of the same color represent
the depths to the vertices for a particular starting density structure model Z0

(black dots represent the actual Z∗ values). The combination of all the vertices
of the same color represent a particular density structure model Z.

From Figure 6, we can observe that most inversions converged to the actual parameter values Z∗

(Figure 6(b)) even though they started at different initial models Z0 (Figure 6(a)). Those final density
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structure models Z f that did not converge to Z∗ still had objective function values F(Z f ) < 1 × 10−2. All
parameters associated with the final models met the boundary and the structural constraints, therefore,
even though some of the initial values of the parameters of the ten Z0 were outside the boundaries, all
final values associated with all the inversions lie within the feasible region.

(a) Sedimentary basin 10 initial calculated gravity profiles G(Z0)
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(b) Sedimentary basin 10 final calculated gravity profiles G(Z f )
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Figure 7. (a) Initial calculated gravity profiles associated with starting Z0

values and (b) final calculated gravity profiles G(Z f ). All G(Z f ) values lie at
the same points and overlap the observed gravity anomalies G(Z∗).

Figure 7 shows the ten initial calculated gravity profiles, G(Z0), and the final calculated gravity
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profiles, G(Z f ), for the density structure models derived from the inversions; notice all G(Z0) = G(Z∗)
at x = 30 Km. Although none of the initial calculated gravity profiles associated with the ten initial
density structure models coincide with the observed gravity anomaly at each station (G(Z∗) or A) as
shown in Figure 7(a), all the final calculated gravity anomaly profiles (corresponding to the final
density distributions Z f in Figure 6(b)) are very close; therefore, all the final density structure models
lie in the feasible space (a subspace of the solution space where all equality and inequality constraints
hold), minimize the objective function, and recover the actual (or hypothetical) density structure model
to some extent. A summary of the initial and final objective function values, and relative and residual
errors of these implementations is included in Table 1 (only the inversions with highest final objective
function values are shown).

Table 1. Objective function values, relative rms, and residual errors as-
sociated to final optimization results Z f .

F(Z0) F(Z f ) Final rms Final Residual error

Z 2 241421.85 3.79 × 10−3 1.61 × 10−1 8.58 × 10−4

Z 5 60951.67 2.78 × 10−2 1.07 × 10−1 2.32 × 10−3

Z 6 19559.76 1.64 × 10−3 4.80 × 10−2 5.64 × 10−4

Z 8 235602.13 1.36 × 10−3 3.88 × 10−2 5.13 × 10−4

Z 9 93624.07 2.14 × 10−3 4.83 × 10−2 6.45 × 10−4

3.2.2. Multiple-bodies continuous structure

The next structure consisted of seven inter-dependent bodies with density contrasts in the range
[−200, 700] Kg/m3. We used 21 surface gravity observation points every 100 meters and modeled
bodies B1 through B7 and endbodies B8 and B9 with a total of 43 vertices; 24 unique vertices served
as parameters for the inversion where only the z-coordinates varied freely. We apply the following
inequality constraints: {Z + 1 ≥ 0,−Z ≥ 0}. Additional equality and inequality constraints were
included to preserve structural integrity in all the bodies during the inversion. Figure 8 shows (a) the
hypothetical model and its actual calculated gravity anomaly (A∗) and (b) the initial and (c) the final
density models related to the optimization and their corresponding gravity anomalies. No base stations
were used in this example.

The final density structure model from the inversion Z f did not recover the hypothetical density dis-
tribution model exactly (bottom of Figure. 8(c) and (a) respectively) even though the residuals between
the observed and calculated gravity anomalies were minimal (top of Figure 8(c)). Although lateral
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bodies B1 and B7 have been completely recovered, the rest of the bodies were close but not quite the
expected result.
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Figure 8. Gravity profile and 2-D cross section corresponding to the (a) hypothetical, (b) initially
assumed, and (c) final density distribution models.

We implemented our algorithm using 10 different initial models Z0 for this synthetic example; Fig-
ure 9 illustrates the values of all vertices associated with the initial and final density structure models.
Some of the parameters from the different Z0 lie outside the constraints while all parameters of the final
Z meet the constraints and preserve the structural integrity of all the bodies (Figure 9(b)). Moreover,
all final density structure models are guaranteed to lie in the feasible space (meeting the equality and
inequality constraints), hence, no spurious solutions are included in our results. Although the exact
density structure Z∗ was not recovered by the final inversion models Z f , most of the parameter values
ended up clustered together close to the actual parameter values.

Figure 10 contains the initial and final calculated gravity profiles (G(Z0) and G(Z f ) respectively)
for all inversions. Figure 10(a) shows that none of the initial calculated gravity profiles matched the
gravity anomaly associated with the actual Z∗. Figure 10(b) shows that all inversions minimized the
objective function value F(Z) – given that all G(Z f ) coincide everywhere with the actual gravity profile
(G(Z∗) or A).

Table 2 contains a summary of the inversion results associated with the ten implementations; only
the results for the five implementations with the highest final objective function values (F(Z f )) are
included.
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(a) Multi-bodied structure 10 different initial Z0 values
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(b) Multi-bodied structure 10 different final Z values
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Figure 9. (a) Parameter values for ten different initial Z0 and (b) final param-
eter values for Z obtained from the inversions. Same colored ’+’ represent a
particular initial or final density structure model.
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(a) Multi-bodied structure 10 initial calculated gravity profiles
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(b) Multi-bodied structure 10 final calculated gravity profiles
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Figure 10. (a) G(Z0) associated with initial density structure models shown in
Figure 9(a) and (b) final calculated gravity anomalies associated to all final
inversion models Z. Notice all G(Z) values located at the same points and
overlapping the observed gravity anomalies G(Z∗).
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Table 2. Objective function values, relative rms, and residual errors related to five
final density models Z f .

F(Z0) F(Z f ) Final rms Final Residual error
Z 1 619.07 5.10 × 10−5 1.92 × 10−1 6.46 × 10−4

Z 2 589.28 4.00 × 10−4 2.33 × 10−1 1.81 × 10−3

Z 6 1061.48 4.00 × 10−4 2.33 × 10−1 1.81 × 10−3

Z 8 1793.82 4.00 × 10−4 2.33 × 10−1 1.81 × 10−3

Z 10 1762.36 1.29 × 10−3 2.30 × 10−1 3.26 × 10−3

3.2.3. Faulted structure

The last synthetic structure consisted of six inter-dependent bodies representing a 3 layer fault
with densities in the range [0, 2000] Kg/m3. We used 21 surface gravity observation points separated
every kilometer. Bodies B1 through B6 and seven endbodies were modeled using 112 vertices; the
inversion had 55 unique vertices as variables. Only the z-coordinates varied freely within the feasible
space given by {∀zi ∈ Z : zi ∈ [−5, 0]}. We included additional equality and inequality constraints in
the formulation to ensure structural integrity for all bodies in the density distribution model. Figure
11 shows the hypothetical, initial, and final density structure models and their corresponding gravity
anomaly profiles for a layered fault structure. The initial model was obtained analyzing the structure
of the hypothetical model and adding random noise. A base station was included at x = 10 Km where
G(Z∗) = 0 mGals.
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Figure 11. Gravity profile and 2-D cross section for (a) hypothetical, (b) initially assumed (for
inversion), and (c) final density distribution models for a synthetic fault example.
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(a) Three layer fault structure 10 different initial Z0 values
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(b) Three layer fault structure 10 different final Z values
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Figure 12. (a) Parameter values for ten different initial Z0 and (b) final param-
eter values for Z obtained from the inversions. Same colored ’+’ represent a
particular initial or final density structure model.

Analyzing the final 2-D density structure model recovered from the inversion, we can see that it
differs slightly from the hypothetical density model (bottom parts of Figure 11(c) and Figure 11(a) re-
spectively), even though the hypothetical and final calculated gravity anomalies (G(Z∗) and G(Z f )) are
practically the same. The objective function decreased from F(Z0) = 2549.96 to F(Z f ) = 1.61 × 10−3,
while the relative and residual errors associated with the final density structure model were equal to
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4.18 × 10−1 and 2.0 × 10−3 respectively. Therefore, although the optimization algorithm did not re-
cover Z∗ exactly, it minimized the objective function by converging to a feasible solution Z close to
it.

The results of the implementation of the optimization algorithm using ten different initial density
structure models Z0 are shown in Figure 12. The boundaries and their corresponding equality and in-
equality constraints remained the same for all the inversions. Note that some of the parameter values
associated with the initial density structure models Z0 lie outside the boundaries while the final pa-
rameter values associated with all Z f lie within the reduced solution space defined by the boundaries.
Figure 12(b) shows the ten final Z f models obtained from the inversions. Analyzing the parameter
values associated with these density structure models, we see that all the final values for Z f obtained
from the inversions meet the constraints and are actually close to Z∗ (black dots in the figure) although
none of them gets to the true parameter values. Therefore, most of the density structure models result-
ing from the inversion did not recover the synthetic density structure even though their final objective
function values were close to zero. Looking carefully at Figure 12(b), we see that most of the final
parameter values associated to Z f converge to the same solution and, in fact, form small clusters within
the model of the structure; therefore, although we do not have convergence to the actual model, the
majority of our inversions converged to the same values even when starting from different Z0. Table 3
shows a summary of the inversion results.

Table 3. Objective function values, relative rms, and residual errors from five final
density models Z f .

F(Z0) F(Z f ) Final rms Final Residual error
Z 1 5072.14 2.74 × 10−3 2.51 × 10−1 2.60 × 10−3

Z 4 52718.95 3.13 × 10−3 2.51 × 10−1 2.78 × 10−3

Z 8 1945.77 3.19 × 10−3 2.49 × 10−1 2.81 × 10−3

Z 9 10513.24 2.61 × 10−3 2.51 × 10−1 2.54 × 10−3

Z 10 10818.78 2.77 × 10−3 2.52 × 10−1 2.61 × 10−3

Figure 13 illustrates the differences between the calculated gravity profiles associated to all Z0 in
Figure 12(a) and compares them to the observed dataset G(Z∗) associated with the hypothetical density
distribution. Note they are different at all points except at x = 10 Km where a base station with known
absolute gravity value is located. All the final calculated gravity profiles for the ten final Z f models
coincide with F(Z∗) at all points; hence, the objective function F(Z) has been minimized by all the
inversions.

Table 3 and Figures 12 and 13 show that although the objective function was minimized for all
the different initial density structure models Z0, the final structures obtained from the inversions did
not recover the hypothetical (actual) density structure model Z∗ shown in Figure 11(a). However, the
use of constraints in the formulation of our problem allowed the algorithm to converge to similar final
density structure models as illustrated in Figure 12(b) and avoided convergence to unfeasible spurious
solutions.
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(a) Three layer fault structure initial calculated gravity profiles
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(b) Three layer fault structure 10 final calculated gravity profiles
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Figure 13. (a) G(Z0) associated with Z0 shown in Figure 11(a) and (b) final
calculated gravity anomalies associated to resultant models Z (results from
the optimizations).

3.3. Noisy synthetic examples

The most common interferences in gravitational datasets are often caused by ambient, geologic, and
cultural conditions (e.g. spatial variations in density, earthquakes, earth tides, extreme temperatures,
vibration of vehicles, heavy equipment, etc.). In order to show how noise would affect our results,
we added realistic noise (random Gaussian noise) to the vector of gravity anomaly observations A and
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checked the robustness of the method. We used noise levels of 2.5%, 5%, and 10% to the observed
gravity anomalies A (or G(Z∗) for our synthetic models). Initial density structure models and all equal-
ity and inequality constraints remained the same as in part (b) in Figure 5, 8, and 11. Figures 14
through 16 illustrate the numerical results for five tests performed for each noise level: parts (a), (c),
and (e) show the final density structure models recovered with the resulting Z from all inversions while
parts (b), (d), and (f) show the final calculated gravity anomalies associated with the resulting models.
Some of the results obtained from these implementations using 10% noise are summarized in table 4.

Table 4. Objective function values, relative rms, and residual errors from five final
density models Z using 10% noise in the gravity observations.

Sedimentary Basin
F(Z0) F(Z f ) Final rms Final Residual error

2177.83 785.89 8.06 × 10−1 3.63 × 10−1

1867.71 612.25 1.02 3.24 × 10−1

1582.44 640.74 1.07 3.33 × 10−1

2177.05 684.93 6.72 × 10−1 3.47 × 10−1

1635.52 694.24 1.46 3.38 × 10−1

Multiple Bodies
F(Z0) F(Z f ) Final rms Final Residual error

223.65 3.39 3.30 × 10−1 1.61 × 10−1

222.54 4.55 3.22 × 10−1 1.89 × 10−1

196.04 5.59 3.23 × 10−1 2.15 × 10−1

242.40 3.89 2.94 × 10−1 1.68 × 10−1

207.53 4.82 3.40 × 10−1 1.96 × 10−1

Faulted Layers
F(Z0) F(Z f ) Final rms Final Residual error

2554.61 2.01 2.71 × 10−1 7.09 × 10−2

2526.33 1.87 6.04 × 10−1 6.74 × 10−2

2468.75 3.22 5.79 × 10−1 8.41 × 10−2

2534.23 2.32 6.23 × 10−1 7.46 × 10−2

2358.72 2.16 5.88 × 10−1 7.30 × 10−2

Our results show that the density structures were well characterized by the PDIP method aided with
the use of constraints in the inversion formulation. Out of the three structures, the sedimentary basin
was the most affected by the addition of random noise; the range of gravity anomaly values for this
cross-section was between [−110,−70] mGals such that the noise represents a maximum of 11 mGals
for each station (the maximum noise added to each station for the multi-bodied structure was around
1.8 mGals and around 3 mGals for the faulted structure).
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(a) 2.5% Noise Final Z Values
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(b) 2.5% Noise Final Calculated Gravity Profiles
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(c) 5% Noise Final Z Values
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(d) 5% Noise Final Calculated Gravity Profiles
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(e) 10% Noise Final Z Values
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(f) 10% Noise Final Calculated Gravity Profiles
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Figure 14. Sedimentary basin structure inversion results; noise levels 2.5%, 5%, and 10%.
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(a) 2.5% Noise Final Z Values
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(b) 2.5% Noise Final Calculated Gravity Profiles
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(c) 5% Noise Final Z Values

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

x (Km)

z 
(K

m
)

Original Z*
Final Zf 1
Final Zf 2
Final Zf 3
Final Zf 4
Final Zf 5

(d) 5% Noise Final Calculated Gravity Profiles
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(e) 10% Noise Final Z Values
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(f) 10% Noise Final Calculated Gravity Profiles
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Figure 15. Multiple bodies’ structure inversion results; noise levels 2.5%, 5%, and 10%.
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(a) 2.5% Noise Final Z Values
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(b) 2.5% Noise Final Calculated Gravity Profiles
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(c) 5% Noise Final Z Values
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(d) 5% Noise Final Calculated Gravity Profiles
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(e) 10% Noise Final Z Values
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(f) 10% Noise Final Calculated Gravity Profiles
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Figure 16. Faulted layers structure inversion results; noise levels 2.5%, 5%, and 10%.
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From Table 4, we can see that even though the values of the final optimization function F(Z f ) for all
the implementations are very high, the ones for the sedimentary basin are the highest. The sedimentary
basin representations recovered by the inversion algorithm for all noise levels are close to the actual
density structure given by Z∗; moreover, their corresponding final calculated gravity anomalies are
very close to the actual values G(Z∗). However, for the sedimentary basin examples the final calculated
gravity anomalies were not close to the noisy observations even though they were close to the original
observations (without noise).

Even though the complexity associated with both the multi-bodied and faulted-layers models is
higher with respect to the sedimentary basin model (since there are more bodies and they depend on
each other) the use of physical and structural constraints in the parameter values of Z helped us to
stabilize the algorithm; keeping the final density structure models in the feasible region and allowing
variation in the parameters only within the boundaries. Without these bounds, the parameters vary
freely within the whole region and may converge to a spurious solution. Therefore, although noise in
our gravity observations affects our results (since our final density structure models Z f are very different
from each other), parameter constraints help us to ensure feasibility and structural composition at all
times.

3.4. Additional Results

In order to determine the sensitivity of the algorithm to changes in the initial density structure
models, we are including the mean and standard deviations associated with the final models obtained
in sections 3.2 and 3.3. Parts (a)-(f) in Figure 17 through 19 include: (a) final Z values (Z f ) versus
Initial Z values (Z0) obtained from the inversion of 30 different initial density structure models – ’+’
signs of the same color represent all the values associated with the same inversion parameter (variable)
while vertical gray lines are the actual values for all those parameters – and (b) the mean and standard
deviation calculated from all 30 inversions compared to the actual Z∗ values.

In part (a) of these figures, the more spread out in the y-axis (vertically) a variable is the higher the
change in the initial density structure experimented in the parameter. As an example, consider all the
values associated with the final parameter of Z f at −1.1 Kms in Figure 17(a); the values of all used
Z0 at this particular point ranged between [−2.8, 0.55] while the final values associated with each one
of the inversions (Z f ) for this parameter range between [−1.15,−1.05] (however, most of the values lie
on the exact value or vertical gray line).

With respect to part (b) of these figures, we see that even when we start from different initial density
structure models, the mean values (values associated with the mean density structure model ZM of all
30 final Z f ) of the parameters obtained from all inversion results lie very closely to the actual values
associated with Z∗ (e.g. ZM ≈ Z∗)). Therefore, we can further show that our final density structure
models converge to the most optimal solution by repeatedly implementing our algorithm and analyzing
its behavior even in the presence of noise in the observations.
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(a) Z f vs. Zo
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Figure 17. (a) Zf vs Zo and (b) mean and standard deviation of all final density structure models
corresponding to the sedimentary basin synthetic model.
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Figure 18. (a) Zf vs Zo and (b) mean and standard deviation of all final density structure models
corresponding to the multiple bodies’ structure model.
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Figure 19. (a) Zf vs Zo and (b) mean and standard deviation of all final density structure models
corresponding to faulted layers’ synthetic structure model.
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4. Discussion

We implemented Primal-Dual Interior-Point methods in our optimization scheme for the inversion
of Bouguer gravity anomaly datasets. We used this approach in conjunction with a 2-D polygonal
prisms’ forward model for the imaging of the Earth’s shallow subsurface. Using both equality and in-
equality constraints helped reduce the solution space by advancing towards an optimal solution while
moving within its interior feasible region. The use of a perturbation parameter, a merit function based
on the barrier problem, a line search sufficient decrease condition for the merit function, and additional
techniques within the optimization of our constrained minimization problem allows us to ensure that
our sequence of approximate linear minimization problems will iteratively and efficiently converge
to an optimal solution. Unlike conventional non-linear least squares inversion methods, using a con-
strained optimization scheme allows us to ensure that the final 2-D density distribution models conserve
their integrity and meet the boundary and structural conditions associated to the area. The formulation
of the primal-dual system allows us to work with a symmetrical system (9) that is considerably better
conditioned with respect to the original non-symmetric and usually highly indefinite system (8). Fur-
thermore, additional modifications can be performed to our system of equations to reduce its size and
improve its performance [44].

We applied our MATLAB algorithm to three synthetic examples with varying body inter-
dependence and complexity levels. The use of a priori information by adding physical bounds over
our body parameter Z coming from the known structure (both seismic and non-seismic datasets in real
life applications) makes the inversion more stable and reliable, reduces the model space, and avoids
spurious solutions that although geologically unfeasible still satisfy the imposed mathematical condi-
tions (e.g. minimization of the objective function). We used relative and residual error measurements
comparing the final and initial structural models for different examples to determine the effectiveness
demonstrated by our algorithm in terms of the recovery of the actual density distributions. We tested
the nonuniqueness inherent to this type of dataset by running our algorithm using different initial den-
sity structure models Z0 for each optimization and using different levels of noise in the observations.
Our algorithm allows us to have starting density structure models Z0 with elements outside of the
boundaries; those unfeasible values are moved to the feasible region during the first iteration.

In order to validate our results, we compared the final structural models Z and their correspond-
ing calculated gravity profiles obtained from using our constrained optimization approach with those
coming from a conventional unconstrained formulation using non-linear least squares. Under a variety
of conditions, the inversions using PDIP methods were found to be more robust when compared to
their NLSQ counterpart mainly due to the substantially improved conditions obtained from the a priori
equality and inequality model constraints. The physical bounds included in the formulation of this
problem helped us to bound the variability of the model parameter, Z, which reduced the model space
to avoid spurious solutions that may minimize the objective function while being physically unfeasible.
In order to improve the convergence to an optimal model that further minimizes the objective function
and residuals, additional analysis to find the “ideal” perturbation parameters, merit function, and line
search sufficient decrease conditions should be performed.

All our synthetic representations suffered from the non-uniqueness inherently associated with grav-
ity anomaly inversions which affected our final results. The higher inter-dependence within the bodies
in some of the density structure models may have played a role in the final results. Note that the
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bounds used for the values of Z covered a fairly large range and the effect of small changes in the phys-
ical characteristics of a body may greatly affect its gravity signature; therefore, tighter individualized
constraints for each vertex may help us converge closer to the hypothetical density structure model, Z∗,
rather than going to a non-optimal feasible solution (as was the case for the NLSQ algorithm). How-
ever, placing too many constraints on the parameter values would further reduce our feasible region
making it harder to locate a feasible solution which also minimizes the objective function.

Throughout the paper we mentioned the advantages and disadvantages observed in the implemen-
tation of the PDIP methods for the inversion of Bouguer gravity anomalies, which are summarized in
Table 5.

Table 5. Advantages and disadvantages associated with optimization using PDIP methods.
Advantages Disadvantages

• Use a priori structural information to
construct appropriate constraints for
the variables and initial model.
• Shrink solution space based on con-

straints.
• Improve the optimized solution at each

step based on additional techniques
used in the algorithm (e.g. merit func-
tion, sufficient decrease condition, etc.)
• Algorithm can be used for any type of

structure regardless of complexity.
• Algorithm can be adapted to 3-D opti-

mization of gravity anomalies.
• Use boundary conditions to ensure in-

tegrity and feasibility of density struc-
tures.

• Need a good initial model to converge
to an optimal solution.
• May place too restrictive conditions for

the variables.
• Algorithm works based on the assump-

tion that gravity is 2- or 2.5-D which
may influence the results for actual
complex structures.
• Very complex structures can be compu-

tationally expensive to optimize given
the higher number of required vertices
to portray more details (e.g. more vari-
ables to solve for).

In this paper, we focused on the use of PDIP methods for the inversion of 2-D Bouguer grav-
ity anomalies, however, the technique may also be used for the optimization of 3-D Bouguer gravity
anomalies for the location and delineation of ore bodies and additional anthropogenic features in ar-
chaeological prospecting through the implementation of a rectangular prisms algorithm as a forward
model. Furthermore, the general technique can be extended to a wide variety of other geophysical data
sets for which adequate a priori knowledge exists by applying the optimization algorithm to the joint
inversion of distinct complementary datasets [11, 47]. The current limits for the applicability of this
method to big problems lay mainly on the reliability of gravity datasets and their resolution. Given
the non-uniqueness associated with this type of datasets, it is important to employ other geological or
geophysical information in order to draw definite conclusions about the area under study. Due to their
reliability, resolution, and stability, different seismic datasets are often used in conjunction with grav-
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ity. As stated previously, the existence and uniqueness of a solution, and the stability of the solution
process are essential elements of inverse problems; hence, we have to guarantee that these conditions
exist even when integrating disparate data sets in the joint inversion (relating both types of datasets
through a common structure [12] or similar structural variations of different medium properties [48]).

Future work will focus on the inclusion of this methodology into a joint inversion scheme for the
inversion of gravity anomalies and compatible seismic datasets (i.e. receiver functions and surface
wave dispersion data [49–51]). Adding explicit constraints of the physical structures within the Earth
into our inverse problem formulation will help us to enforce structural similarity [11, 48, 52, 53] to
improve the stability of our joint inversion scheme.

5. Conclusion

We present a constrained formulation for the inversion of Bouguer gravity anomalies solved using
Primal-Dual Interior-Point methods. We show that a priori geological and/or geophysical information
can be added into the objective function through the inclusion of explicit equality and inequality phys-
ical constraints. This approach helps to reduce ambiguities raised by the inherent non-uniqueness of
gravity datasets. Our work consists in the application of well-known constrained optimization tech-
niques to this popular geophysical inverse problem often solved using alternative methods. Given the
ease of use of our MATLAB algorithm and the behavior of our inversion method, we believe that our
approach provides a good alternative for the optimization of Bouguer gravity anomalies.
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