
Citation: Carlos García-Padilla, Amelia Aránega, Diego Franco. The role of long non-coding RNAs in cardiac development and disease[J]. AIMS Genetics, 2018, 5(2): 124-140. doi: 10.3934/genet.2018.2.124
[1] | Larysa Dokiienko, Nataliya Hrynyuk, Igor Britchenko, Viktor Trynchuk, Valentyna Levchenko . Determinants of enterprise's financial security. Quantitative Finance and Economics, 2024, 8(1): 52-74. doi: 10.3934/QFE.2024003 |
[2] | Adam Metzler, Yuhao Zhou, Chuck Grace . Learning about financial health in Canada. Quantitative Finance and Economics, 2021, 5(3): 542-570. doi: 10.3934/QFE.2021024 |
[3] | Xue Chang . Impact of risks on forced CEO turnover. Quantitative Finance and Economics, 2022, 6(2): 177-205. doi: 10.3934/QFE.2022008 |
[4] | Kuashuai Peng, Guofeng Yan . A survey on deep learning for financial risk prediction. Quantitative Finance and Economics, 2021, 5(4): 716-737. doi: 10.3934/QFE.2021032 |
[5] | Monique Timmermans, Ronald Heijmans, Hennie Daniels . Cyclical patterns in risk indicators based on financial market infrastructuretransaction data. Quantitative Finance and Economics, 2018, 2(3): 615-636. doi: 10.3934/QFE.2018.3.615 |
[6] | Chen Li, Xiaohu Li . Stochastic arrangement increasing risks in financial engineering and actuarial science – a review. Quantitative Finance and Economics, 2018, 2(1): 675-701. doi: 10.3934/QFE.2018.1.190 |
[7] | Akash Deep . Advanced financial market forecasting: integrating Monte Carlo simulations with ensemble Machine Learning models. Quantitative Finance and Economics, 2024, 8(2): 286-314. doi: 10.3934/QFE.2024011 |
[8] | Takashi Kanamura . Diversification effect of commodity futures on financial markets. Quantitative Finance and Economics, 2018, 2(4): 821-836. doi: 10.3934/QFE.2018.4.821 |
[9] | Osarumwense Osabuohien-Irabor, Igor M. Drapkin . FDI Escapism: the effect of home country risks on outbound investment in the global economy. Quantitative Finance and Economics, 2022, 6(1): 113-137. doi: 10.3934/QFE.2022005 |
[10] | Dimitra Loukia Kolia, Simeon Papadopoulos . The levels of bank capital, risk and efficiency in the Eurozone and the U.S. in the aftermath of the financial crisis. Quantitative Finance and Economics, 2020, 4(1): 66-90. doi: 10.3934/QFE.2020004 |
Huanglongbing (HLB), more commonly known as citrus greening disease, is one of the most dangerous and devastating diseases of citrus worldwide [1,2]. Two decades ago, it invaded the Western Hemisphere, primarily Florida and Brazil, where it has spread rapidly and caused major damage to global citrus production. It is estimated that citrus acreage in Florida has decreased by 40% and production by 49% since their historical peaks, all of which occurred in the last 20 years [3]. Up to 2015, 20% of Brazil's commercial citrus species has been infected with HLB, and the disease caused great damage to citrus industry by shortening tree lifespan and poor yield and quality [4]. In S$ \tilde{a} $o Paulo, 64.1% of the commercial citrus blocks and 6.9% of the citrus trees were affected by HLB in 2012 [5]. In addition, Ganzhou is the top citrus producing area in Jiangxi Province, China, with an annual production of approximately 1.2 million tons [6,7]. However, the producing-area has also suffered from the widespread out of HLB and the output has significantly decreased in recent years [8]. The citrus acreage in Ganzhou had decreased from 2.48 million acres in 2013 to 1.00 million acres in 2018.
HLB is caused by phloem-restricted bacteria of the Candidatus Liberibacter group, which can be transmitted by two species of citrus psyllids, the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, and the African citrus psyllid, Trioza erytrae [3]. ACP is divided into eggs, $ 1^{st} $ through $ 5^{th} $ nymphal instars and adults [9]. The five nymphal instars of ACP can be differentiated by their distinct morphological characteristics [10]. Adults and nymphs are capable of acquiring the HLB pathogen after feeding on an infected plant for 30 min or longer [11]. Although the nymphs hardly move, they soon become Las-carrying (Candidatus Liberibacter asiaticus) adults with the ability to fly and transmit Las to other citrus plants. Thus the control period of vector psyllid should include the nymphal stages [10]. The results from [10] reported that psyllids can carry Las in either adult or nymphal stages, expect in the $ 1^{st} $ and $ 2^{nd} $ instars, the $ 3^{rd} $ through $ 5^{th} $ instars have stronger transmission ability than adults.
Generally a healthy citrus tree is inoculated by infected nymphs and adults, there is an incubation period in which the tree exhibits no symptoms but may act as a source of the disease [2]. The survey results from [12,13] indicated that the incubation period from grafting to development of HLB symptoms is 3 to 12 months under greenhouse conditions. Since incubation period is long and diagnosis is difficult, citrus trees can not be easily found in time after infection. This issue reduces the effectiveness of control strategy in which infected trees are removed to eliminate sources of HLB [14].
Recently, mathematical modeling has become an important and useful tool in understanding the epidemiology of vector-transmitted plant pathogens [15,16,17,18,19]. For citrus HLB, a few mathematical models currently exist which analyze how HLB spreads within individual trees [20], within a citrus grove [21,22,23,24,25], or from grove to grove [26]. In [21], the authors reviewed how mathematical models have yielded useful insights into controlling disease spread for vector-borne plant diseases, especially HLB. Note that, for citrus psyllid, different stages have different biological characters, such as reproductive potential, growth, temperature tolerance, transmission efficiency. Therefore, it is very necessary to consider the stage structure of psyllid in mathematical model, including eggs, the $ 1^{st} $ and $ 2^{nd} $ nymphal instars, the $ 3^{rd} $ through $ 5^{th} $ nymphal instars and adults. However, the stage structure of psyllid has not been discussed in the previous HLB models. Motivated by the preceding discussion, our first purpose of this paper is to formulate and investigate a HLB model, in which the incubation period of citrus tree and the stage structure of psyllid are taken into consideration.
There is no good source of genetic resistance to HLB in the genus citrus, and the disease cannot be cured once the trees are infected [2,27]. Current programs for HLB have focused on nutrient solution injection to reduce the infection of the bacteria, removal of infected trees to reduce sources of the disease and insecticide spraying control of the psyllid vector and planting with HLB-free nursery stock [2]. The second aim of this paper is to achieve awareness about the most desirable technique for minimizing the transmission of HLB by using the optimal control theory.
In this paper, different from the previous simple classification of psyllid into susceptible and infected populations, we consider that citrus psyllid in different stages have different abilities and ways to transmit HLB. Based on the above facts, in the next section, we establish a stage-structured HLB model, and obtain the basic reproductive number $ R_0 $ of the model. In Section 3, we obtain the equivalent threshold condition $ T_0 $ of the basic reproductive number $ R_0 $, and prove extinction of the disease when $ R_0\leq1 $ while persistence of the disease when $ R_0 > 1 $. In Section 4, we apply the optimal control technique to minimize the population of infected citrus trees, dead trees and total number of vector population. Different control strategies should be used for the elimination of infection in the population of citrus trees. In Section 5, we use numerical simulation to demonstrate and support the theoretical results. In the last section, we give a brief conclusion.
In this subsection, Citrus HLB model where transmission is via vector psyllids is formulated. The notation used in the mathematical model includes four states for citrus tree population. $ S $ denotes susceptible trees (individuals who can be infected by disease) and $ R $ represents dead trees. Due to the latency delay we split the infected trees into a latent stage, $ E $ (individuals who infected and asymptomatic but no infectious) and an infectious stage, $ I $ (individuals who have the ability to transmit the disease to others). Let $ N(t) $ be the total numbers of citrus tree population at time $ t $ in a grove, that is, $ N(t) = S(t)+E(t)+I(t)+R(t) $. Based on the fact that $ 3^{rd} $ through $ 5^{th} $ nymphal instars can transmit HLB, the citrus psyllid population is divided into six state variables. We let $ X_e $ represent eggs (produced by susceptible adults of psyllids), $ X_r $ denote $ 1^{st} $ and $ 2^{nd} $ nymphal instars (individuals who do not have the ability to transmit the disease to other susceptible trees), $ X_i $ and $ Y_i $ denote $ 3^{rd} $ through $ 5^{th} $ susceptible and infected nymphal instars, respectively. $ X_m $ and $ Y_m $ denote susceptible and infected adults of psyllid, respectively. We assume that the grove is subject to roguing and replanting management strategy. Moreover, we ignore the natural mortality rate of the citrus tree. The model flow diagram is depicted in Figure 1. Considering HLB transmission between citrus trees and psyllids, we establish the following HLB model.
$ dSdt=fρR−α1YiSN−β1YmSN,dEdt=α1YiSN+β1YmSN−η1E+(1−f)ρR,dIdt=η1E−η2I,dRdt=η2I−ρR,dXedt=rXm−γ1Xe−d1Xe,dXrdt=γ1Xe−γ2Xr−d2Xr,dXidt=γ2Xr−α2XiIN−γ3Xi−d3Xi,dXmdt=γ3Xi−β2XmIN−d4X2m,dYidt=α2XiIN−γ4Yi−d3Yi,dYmdt=γ4Yi+β2XmIN−d4Ym. $
|
(1) |
In model (1), dead trees are rogued at a rate $ \rho $ and the corresponding spots are replanted with new trees. We assume that a proportion $ f\in [0, 1] $ of the newly planted trees will be healthy and a proportion $ 1 - f $ will become infected to a latent stage immediately. We also assume $ \eta_1, \gamma_1, \gamma_3 $ and $ \gamma_4 $ are the conversion rates, $ \eta_2 $ is the disease-induced mortality rate of tree, $ r $ denotes oviposition rates of susceptible adult psyllid, $ d_1 $ and $ d_2 $ represent the natural mortality rates of eggs and $ 1^{st} $ through$ 2^{nd} $ nymphal, respectively, $ d_3 $ is the natural mortality rate of $ 3^{rd} $ through $ 5^{th} $ nymphal, $ d_4 $ is the natural mortality rate of adult psyllid. Let $ \alpha_1 $ be the infection rate from $ 3^{rd} $ through $ 5^{th} $ infected nymphals to susceptible trees, $ \alpha_2 $ be the infection rate from infected trees to $ 3^{rd} $ through $ 5^{th} $ susceptible nymphals, $ \beta_1 $ be the infection rate from infected adult psyllid to susceptible trees, and $ \beta_2 $ be the infection rate from infected trees to susceptible adult psyllids.
Subject to the restriction $ \frac{dN(t)}{dt} = \frac{dS(t)}{dt}+\frac{dE(t)}{dt}+\frac{dI(t)}{dt}+\frac{dR(t)}{dt}\equiv 0 $, without loss of generality, let $ N(t) = 1 $, and now $ S+E+I+R = 1 $. Here $ S $, $ E $, $ I $ and $ R $ are defined separately as susceptibility rate, latent rate, infection rate and removal rate, respectively. Thus, system $ (1) $ can be reduced to the form:
$ dSdt=fρR−α1YiS−β1YmS,dEdt=α1YiS+β1YmS−η1E+(1−f)ρR,dIdt=η1E−η2I,dRdt=η2I−ρR,dXedt=rXm−γ1Xe−d1Xe,dXrdt=γ1Xe−γ2Xr−d2Xr,dXidt=γ2Xr−α2XiI−γ3Xi−d3Xi,dXmdt=γ3Xi−β2XmI−d4X2m,dYidt=α2XiI−γ4Yi−d3Yi,dYmdt=γ4Yi+β2XmI−d4Ym. $
|
(2) |
From biological considerations, we study $ (2) $ in the closed set $ \Gamma = \{(S, E, I, R, X_e, X_r, X_i, X_m, Y_i, Y_m)\in R^{10}\; |\; S, E, I, R\geq 0, S+E+I+R = 1, X_e, X_r, X_i, X_m, Y_i, Y_m\geq 0\} $, which is invariant set under nonnegative initial conditions. It is easy to proof the boundedness of the solutions of system (2). We omit it.
The system $ (2) $ always exists a disease-free equilibrium (DFE) $ P_0 = (S^0, 0, 0, 0, X^0_e, X^0_r, X^0_i, X^0_m, 0, 0) $, where
$ S0=1,X0e=rγ1+d1X0m,X0r=rγ1(γ1+d1)(γ2+d2)X0m, $
|
$ X0i=rγ1γ2(γ1+d1)(γ2+d2)(γ3+d3)X0m,X0m=rγ1γ2γ3(γ1+d1)(γ2+d2)(γ3+d3)d4. $
|
The basic reproductive number $ R_0 $ of an infectious disease is a fundamental concept in the study of disease transmissions. It represents the average number of secondary cases produced, in a completely susceptible population, by a typical infective individual [28]. If $ R_0 < 1 $, then on average an infected individual produces less than one new infected individual over the course of its infectious period, and the infection cannot grow. Conversely, if $ R_0 > 1 $, then each infected individual produces, on average, more than one new infection, and the disease can invade the population [29]. Diekmann et al. [29] define $ R_0 $ as the spectral radius of the next generation matrix. That is, we rewrite the vector field of $ (2) $ as
$ dxidt=Fi(x)−Vi(x),i=1,2,...,10. $
|
and $ \mathscr{V}_i(x) = \mathscr{V^-}_i(x)-\mathscr{V^+}_i(x) $, where $ x = (E, I, R, Y_i, Y_m, S, X_e, X_r, X_i, X_m), $
$ \mathscr{F}(x) = \left( α1YiS+β1YmS+(1−f)ρR00α2XiIβ2XmI00000 \right)\quad \text{and} \quad \mathscr{V}(x) = \left( η1Eη2I−η1EρR−η2Iγ4Yi+d3Yid4Ym−γ4Yiα1YiS+β1YmS−fρRγ1Xe+d1Xe−rXmγ2Xr+d2Xr−γ1Xeα2XiI+γ3Xi+d3Xi−γ2Xrβ2XmI+d4X2m−γ3Xi \right). $
|
$ F, V $ are defined as
$ F = {\left( {∂Fi∂xj(ˆP0) } \right)_{1 \le i, j \le 5}}, \ \;\;V = {\left( {∂Vi∂xj(ˆP0) } \right)_{1 \le i, j \le 5}}, $
|
where $ \hat{P}_0 = \left(0, 0, 0, 0, 0, S^0, X_e^0, X_r^0, X_i^0, X_m^0\right) $. Thus
$ F = \left( 00(1−f)ρα1β100000000000α2X0i0000β2X0m000 \right) \quad \text{and} \quad V = \left( η10000−η1η20000−η2ρ00000γ4+d30000−γ4d4 \right). $
|
Obviously, $ -V $ is cooperative. By simple computation, we get
$ FV^{-1} = \left( 1−f1−f1−fα1γ4+d3+β1γ4(γ4+d3)d4β1d40000000000α2X0iη2α2X0iη2000β2X0mη2β2X0mη2000 \right). $
|
The eigenvalues of $ FV^{-1} $ are determined by
$ λ3[λ2−(1−f)λ−(α1γ4+d3+β1γ4(γ4+d3)d4)α2X0iη2−β2X0mη2β1d4]=0. $
|
(3) |
It is easy to obtain that the spectral radius of $ FV^{-1} $ is:
$ ρ(FV−1)=R0=1−f2+√(1−f)24+R1+R2 , $
|
where
$ R1=(α1γ4+d3+β1γ4(γ4+d3)d4)α2η2X0iand R2=β1β2η2d4X0m. $
|
(4) |
In order to give a more reasonable biological interpretation, we give an equivalent threshold quantity as
$ T0=R1+R2+1−f, $
|
where $ R_1 $ and $ R_2 $ are defined in (4). The biological meaning of quantity $ T_0 $ can be explained as follows. Suppose that a single infected tree in stage $ E $ is introduced into a completely susceptible grove. The average number of secondary infections resulting from the psyllid in stage $ X_i $ (that is susceptible $ 3^{rd} $ through $ 5^{th} $ nymph) contact infected tree is,
$ R_1 = \left(\dfrac{\alpha_1}{\gamma_4+d_3}+\dfrac{\beta_1\gamma_4}{(\gamma_4+d_3)d_4}\right)\dfrac{\alpha_2}{\eta_2}X^0_i. $ |
Further, the average number of secondary infections resulting from the psyllid in stage $ X_m $ (that is susceptible adult psyllid) contact infected tree is,
$ R_2 = \dfrac{\beta_1\beta_2}{\eta_2d_4}X^0_m. $ |
The citrus tree will necessarily be removed in the $ R $ stage and will on average produce $ 1-f $ newly infected $ E $ trees. Thus the expected number of secondary infections is exactly $ T_0 $. In the following, we will prove the equivalence of $ T_0 $ and $ R_0 $ for the local stability of the DFE $ P_0 $.
Theorem 3.1. (ⅰ) $ R_0 < 1 $ if and only if $ T_0 < 1 $.
(ⅱ) $ T_0 < 1 $ if and only if all eigenvalues of the Jacobian matrix of system (2) evaluated at DFE $ P_0 $ have negative real parts.
Proof. It follows from (3) that the basic reproductive number $ R_0 $ is the largest positive root of
$ \rho(\lambda) = \lambda^2-(1-f)\lambda-\left(\dfrac{\alpha_1}{\gamma_4+d_3}+\dfrac{\beta_1\gamma_4}{(\gamma_4+d_3)d_4}\right) \dfrac{\alpha_2X^0_i}{\eta_2}-\dfrac{\beta_2X^0_m}{\eta_2}\dfrac{\beta_1}{d_4} = \lambda^2-(1-f)\lambda-R_1-R_2 = 0. $ |
Clearly, the leading coefficient of $ \rho(\lambda) $ is positive, and thus $ R_0 < 1 $ if and only if
$ ρ(1)=f−R1−R2>0. $
|
Therefore, $ \rho(1) > 0 $ is equivalent to $ T_0 < 1 $ and the first assertion holds.
Next, we want to prove the second assertion. Calculating the Jacobian matrix of system (2) at the DFE $ P_0 $:
$ J(P_0) = \left( η10(1−f)ρα1β100000η1η2000000000η2ρ00000000α2X0i0γ4+d30000000β2X0m0γ4d40000000fρ−α1−β100000000000γ1+d100r000000γ1γ2+d2000−α2X0i00000γ2γ3+d300−β2X0m000000γ32d4X0m \right). $
|
Clearly, $ J(P_0) $ can be seen as a block matrix of $ 2\times2 $ and each block is a $ 5\times5 $ matrix. The eigenvalues are determined by the following characteristic equation of $ J(P_0): $
$ p(λ)=λ(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+d4)(λ+2d4X0m)×[(λ+η1)(λ+η2)(λ+ρ)−η1η2(1−f)ρ]−2η1rγ1γ2γ3λ(λ+ρ)×[β1γ4α2X0i−α1α2X0i(λ+d4)−β1β2X0m(λ+d4)(λ+γ4+d3)]=0. $
|
Any root $ \lambda $ of $ p(\lambda) $ with $ Re(\lambda)\geq 0 $ is also a root of $ q(\lambda) $ defined by
$ q(λ)=p(λ)λ(λ+η1)(λ+η2)(λ+ρ)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+d4)(λ+2d4X0m)=1−2η1β1rγ1γ2γ3γ4α2X0i(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+d4)(λ+2d4X0m)−2η1α1rγ1γ2γ3α2X0i(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+2d4X0m)−2η1β1rγ1γ2γ3β2X0m(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+2d4X0m)−η1η2(1−f)ρ(λ+η1)(λ+η2)(λ+ρ). $
|
Obviously, $ q(\lambda) $ is monotone increasing in $ \lambda $ when $ \lambda > 0 $. It follows from that, since the leading coefficient of $ p(\lambda) $ is positive, we know that $ p(\lambda) $ has no positive real roots if and only if $ q(0) > 0, $ which is equivalent to
$ (α1γ4+d3+β1γ4(γ4+d3)d4)α2η2X0i+β1β2η2d4X0m+1−f<1, $
|
that is, $ T_0 < 1 $. Next, we need to prove all complex eigenvalues of $ J(P_0) $ have negative real parts. Suppose the contrary. Then we define $ G(\lambda) = 1-q(\lambda) $ and suppose $ p(\lambda) = 0 $ with $ Re(\lambda)\geq0 $ and $ Im(\lambda)\neq0. $ Then $ G(\lambda) = 1 $ where
$ G(λ)=2η1β1rγ1γ2γ3γ4α2X0i(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+d4)(λ+2d4X0m)+2η1α1rγ1γ2γ3α2X0i(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+2d4X0m)+2η1β1rγ1γ2γ3β2X0m(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+2d4X0m)+η1η2(1−f)ρ(λ+η1)(λ+η2)(λ+ρ). $
|
(5) |
We claim $ |G(\lambda)| < G(Re(\lambda)) $. From (5), we have
$ |G(λ)|≤2η1β1rγ1γ2γ3γ4α2X0i|λ+η1||λ+η2||λ+γ1+d1||λ+γ2+d2||λ+γ3+d3||λ+γ4+d3||λ+d4||λ+2d4X0m|+2η1α1rγ1γ2γ3α2X0i|λ+η1||λ+η2||λ+γ1+d1||λ+γ2+d2||λ+γ3+d3||λ+γ4+d3||λ+2d4X0m|+2η1β1rγ1γ2γ3β2X0m|λ+η1||λ+η2||λ+γ1+d1||λ+γ2+d2||λ+γ3+d3||λ+2d4X0m)+η1η2(1−f)ρ|λ+η1||λ+η2||λ+ρ|<2η1β1rγ1γ2γ3γ4α2X0iΥ(Re(λ)+γ1+d1)(Re(λ)+γ2+d2)(Re(λ)+γ3+d3)(Re(λ)+γ4+d3)(Re(λ)+d4)(Re(λ)+2d4X0m)+2η1α1rγ1γ2γ3α2X0iΥ(Re(λ)+γ1+d1)(Re(λ)+γ2+d2)(Re(λ)+γ3+d3)(Re(λ)+γ4+d3)(Re(λ)+2d4X0m)+2η1β1rγ1γ2γ3β2X0mΥ(Re(λ)+γ1+d1)(Re(λ)+γ2+d2)(Re(λ)+γ3+d3)(Re(λ)+2d4X0m)+η1η2(1−f)ρΥ(Re(λ)+ρ)=G(Re(λ)), $
|
where $ \Upsilon = (Re(\lambda)+\eta_1)(Re(\lambda)+\eta_2) $, and the second inequality is strict since $ Im(\lambda)\neq0 $. Then we get $ T_0\! < \!1\Leftrightarrow q(0)\! > \!0 \Leftrightarrow G(0)\! < \!1, $ which implies $ G(Re(\lambda)) < 1 $ since $ G $ is decreasing in $ \lambda $. Thus $ |G(\lambda)| < G(Re(\lambda)) < 1 $. This contradicts $ G(\lambda) = 1 $.
Theorem 3.2. If $ R_0 < 1 $, then the DFE $ P_0 $ of system (2) is globally attractive.
Proof. Note that $ R_0 < 1 $ implies that $ f > 0 $. Suppose $ \limsup_{t \rightarrow \infty} E(t) = m > 0. $ Then for every $ \varepsilon > 0 $ there exists $ \tau _1 > 0 $, such that
$ E(t)≤m+ε,for all t≥τ1. $
|
(6) |
It follows from the third equation of system (2) and (6) that
$ dI(t)dt≤η1(m+ε)−η2I2(t), $
|
for all $ t\geq \tau_1 $. Then there exists $ \tau_2 > \tau_1 $ such that
$ I(t)≤η1(m+ε)η2+ε, $
|
(7) |
for all $ t\geq \tau_2 $. It follows from the fourth equation of system (2) and (7) that
$ dR(t)dt≤η2(η1(m+ε)η2+ε)−ρR(t). $
|
for all $ t\geq \tau_2 $. Thus there exists $ \tau_3 > \tau_2 $ such that
$ R(t)≤η2ρ(η1(m+ε)η2+ε)+ε,for all t≥τ3. $
|
(8) |
Further, from system (2), we have
$ dXedt=rXm−γ1Xe−d1Xe,dXrdt=γ1Xe−γ2Xr−d2Xr,dXidt≤γ2Xr−γ3Xi−d3Xi,dXmdt≤γ3Xi−d4X2m. $
|
(9) |
Considering the auxiliary system of (9):
$ d˜Xedt=r˜Xm−γ1˜Xe−d1˜Xe,d˜Xrdt=γ1˜Xe−γ2˜Xr−d2˜Xr,d˜Xidt=γ2˜Xr−γ3˜Xi−d3˜Xi,d˜Xmdt=γ3˜Xi−d4˜X2m. $
|
(10) |
Clearly, (10) is a quasi-monotone system, and the unique positive equilibrium $ (X^0_e, X^0_r, X^0_i, X^0_m) $ of system (10) is globally asymptotically stable if $ R_0 < 1 $. By comparison theorem in differential equations, we obtain that there exists $ \tau_4 > \tau_3 $ such that
$ Xe(t)≤X0e+ε,Xr(t)≤X0r+ε,Xi(t)≤X0i+ε,Xm(t)≤X0m+ε, $
|
(11) |
for all $ t\geq \tau_4 $. Substituting (7) and (11) into the ninth equation of system (2), we have that
$ dYi(t)dt≤α2(X0i+ε)(η1(m+ε)η2+ε)−(γ4+d3)Yi(t), $
|
for all $ t\geq \tau_4 $. Then there exists $ \tau_5 > \tau_4 $ such that
$ Yi(t)≤α2(X0i+ε)(η1(m+ε)η2+ε)γ4+d3+ε. $
|
(12) |
for all $ t \geq \tau_5 $. Substituting (7), (11) and (12) into the last equation of system (2), we get that
$ dYm(t)dt≤γ4(α2(X0i+ε)(η1(m+ε)η2+ε)γ4+d3+ε)+β2(X0m+ε)(η1(m+ε)η2+ε)−d4Ym(t) $
|
for all $ t\geq \tau_5 $. Thus there exists $ \tau_6 > \tau_5 $ such that
$ Ym(t)≤γ4(α2(X0i+ε)(η1(m+ε)η2+ε)γ4+d3+ε)+β2(X0m+ε)(η1(m+ε)η2+ε)d4+ε. $
|
(13) |
for all $ t\geq \tau_6 $. Now, substituting (8), (12) and (13) into the second equation of system (2), we get that for $ t\geq \tau_6 $
$ dE(t)dt≤α1(α2(X0i+ε)(η1(m+ε)η2+ε)γ4+d3+ε)+β1(γ4(α2(X0i+ε)(η1(m+ε)η2+ε)γ4+d3+ε)+β2(X0m+ε)(η1(m+ε)η2+ε))d4+ε)−η1E(t)+(1−f)ρ(η2ρ(η1(m+ε)η2+ε)+ε). $
|
Then there exists $ \tau_7 > \tau_6 $ such that
$ E(t)≤α1η1(α2(X0i+ε)(η1(m+ε)η2+ε)γ4+d3+ε)+β1η1(γ4(α2(X0i+ε)(η1(m+ε)η2+ε)γ4+d3+ε)+β2(X0m+ε)(η1(m+ε)η2+ε))d4+ε)+(1−f)ρη1(η2ρ(η1(m+ε)η2+ε)+ε). $
|
(14) |
for all $ t\geq \tau_7 $. Letting $ \varepsilon\rightarrow 0 $, the inequality (14) becomes
$ E(t)≤α1η1α2X0iη1mη2(γ4+d3)+β1η1(γ4α2X0iη1mη2(γ4+d3)d4+β2X0mη1mη2d4)+(1−f)η2η1η1mη2=(α1α2X0iη2(γ4+d3)+β1α2γ4X0iη2d4(γ4+d3)+β1β2X0mη2d4+1−f)m=T0m $
|
It follows from Theorem 3.1 that, $ R_0 < 1 $ implies $ T_0 < 1 $. Thus $ \limsup_{t\rightarrow \infty}E(t) < m, $ a contradiction. So $ m = 0 $. Following (7), (8), (12)-(14) and the nonnegativity of the solutions, we have $ \lim_{t\rightarrow \infty}E(t) = \lim_{t\rightarrow \infty}I(t) = \lim_{t\rightarrow \infty}R(t) = \lim_{t\rightarrow \infty}Y_i(t) = \lim_{t\rightarrow \infty}Y_m(t) = 0 $. By the theory of asymptotically autonomous semiflows (see [30]), we have
$ limt→∞S(t)=S0, limt→∞Xe(t)=X0e, limt→∞Xr(t)=X0r, limt→∞Xi(t)=X0i, limt→∞Xm(t)=X0m. $
|
Therefore all nonnegative solutions converge to the DFE $ P_0 $.
It follows from Theorem 3.1 that DFE is locally asymptotically stable as $ R_0 < 1 $, while DFE is unstable as $ R_0 > 1 $. Theorem 3.2 in subsection 3.2 illustrates the global stable result of DEF for the case $ R_0 < 1. $
Theorem 3.3. If $ R_0 > 1 $, then the disease is uniformly persistent for system (2). That is, there is a positive constant $ \varepsilon_0 > 0 $, such that
$ lim inft→∞E(t)>ε0, lim inft→∞I(t)>ε0, lim inft→∞R(t)>ε0, lim inft→∞Yi(t)>ε0, lim inft→∞Ym(t)>ε0. $
|
(15) |
Proof. Denote $ \widetilde {K} = \{(S, E, I, R, X_e, X_r, X_i, X_m, Y_i, Y_m)\in R^{10}_+\} $, $ K_0 = \{(S, E, I, R, X_e, X_r, X_i, X_m, Y_i, Y_m)\in \widetilde {K}:S\geq 0, E > 0, I > 0, R > 0, X_e\geq 0, X_r\geq 0, X_i\geq 0, X_m\geq 0, Y_i > 0, Y_m > 0\} $, and $ \partial K_0 = \widetilde{K}\backslash K_0 $. Let $ u(t, t_0, x_0) $ be the unique solution of system (2) with the initial value $ x_0 = (S_0, E_0, I_0, R_0, X_{e0}, X_{r0}, X_{i0}, X_{m0}, Y_{i0}, Y_{m0}) $ at time $ t_0 $.
Define poincaré map $ P:\widetilde{K}\rightarrow \widetilde{K} $ associated with system (2) as follows:
$ P(x0)=u(t0+1,x0),∀x0∈˜K. $
|
Set
$ M∂={x0∈∂K0|Pm(x0)∈∂K0, ∀m∈Z+}. $
|
We claim that
$ M∂={(S,0,0,0,Xe,Xr,Xi,Xm,0,0)|S≥0,Xe≥0,Xr≥0,Xi≥0,Xm≥0}. $
|
Obviously, $ \{(S, 0, 0, 0, X_e, X_r, X_i, X_m, 0, 0)\; |\; S\geq 0, X_e\geq 0, X_r \geq 0, X_i\geq 0, X_m\geq 0\}\subseteq M_\partial $. Next, We want to show
$ M∂∖{(S,0,0,0,Xe,Xr,Xi,Xm,0,0)|S≥0,Xe≥0,Xr≥0,Xi≥0,Xm≥0}=∅. $
|
(16) |
If (16) does not hold, then there exists a point $ (S_0, E_0, I_0, R_0, X_{e0}, X_{r0}, X_{i0}, X_{m0}, Y_{i0}, Y_{m0})\in M_\partial \backslash \{(S, 0, 0, 0, X_e, X_r, X_i, X_m, 0, 0)\; |\; S\geq 0, X_e\geq 0, X_r \geq 0, X_i\geq 0, X_m\geq 0\} $. Next, for the five initial values $ E_0, I_0, R_0, Y_{i0}, $ and $ Y_{m0} $, we divided into four cases to discuss.
Case (i) One initial value is equal to zero, and the others are lager than zero. Without loss of generality, we choose $ E_0 = 0, I_0 > 0, R_0 > 0, Y_{i0} > 0 $ and $ Y_{m0} > 0. $ It is obvious that $ S(t) > 0, Y_i(t) > 0, Y_m(t) > 0 $ and $ R(t) > 0 $ for any $ t > t_0. $ Then from the second equation of system (2), we get $ \frac{dE(t)}{dt}|_{t = t_0} = \alpha_1 Y_i(t_0)S(t_0)+\beta_1Y_m(t_0)S(t_0)+(1-f)\rho R(t_0) > 0. $ Thus, $ (S, E, I, R, X_e, X_r, X_i, X_m, Y_i, Y_m)\notin \partial K_0 $ for $ 0 < t-t_0\ll 1 $. This is a contradiction. The other subcases can be similarly proved.
Case (ii) Two initial values are equal to zero, and the others are larger than zero. Let $ E_0 = I_0 = 0, R_0 > 0, Y_{i0} > 0 $ and $ Y_{m0} > 0. $ It is obvious that $ S(t) > 0, Y_i(t) > 0, Y_m(t) > 0, $ and $ R(t) > 0 $ for any $ t > t_0 $. From the second equation of system (2), we get $ \frac{dE(t)}{dt}|_{t = t_0} = \alpha_1 Y_i(t_0)S(t_0)+\beta_1Y_m(t_0)S(t_0)+(1-f)\rho R(t_0) > 0 $. So $ E(t) > 0 $ for $ 0 < t-t_0\ll 1 $. This implies that $ I(t) > 0 $ for $ 0 < t-t_0\ll 1 $. Therefore, we have $ (S, E, I, R, X_e, X_r, X_i, X_m, Y_i, Y_m)\notin \partial K_0 $ for $ 0 < t-t_0\ll 1 $. This is a contradiction. Similarly, we can prove the other subcases.
Case (iii) Three initial values are equal to zero, and the others are larger than zero. Set $ E_0 = I_0 = R_0 = 0, Y_{i0} > 0 $ and $ Y_{m0} > 0. $ Clearly, $ S(t) > 0, Y_i(t) > 0 $ and $ Y_m(t) > 0 $, for any $ t > t_0 $. It follows from the second equation of system (2) that $ \frac{dE(t)}{dt}|_{t = t_0} = \alpha_1Y_i(t_0)S(t_0)+\beta_1Y_m(t_0)S(t_0) > 0 $. So $ E(t) > 0 $ for $ 0 < t -t_0\ll 1 $. It follows from the third and fourth equations of system (2) that $ I(t) > 0 $ and $ R(t) > 0 $ for $ 0 < t -t_0\ll 1 $. Therefore, $ (S, E, I, R, X_e, X_r, X_i, X_m, Y_i, Y_m)\notin \partial K_0 $ for $ 0 < t-t_0\ll 1 $. This is a contradiction. Similarly, we can prove the other subcases.
Case (iv) Four initial values are equal to zero, and the other is larger than zero. Set $ E_0 = I_0 = R_0 = Y_{i0} = 0 $ and $ Y_{m0} > 0 $. It is easy to see that $ S(t) > 0 $ and $ Y_m(t) > 0 $ for all $ t > t_0 $. From the second equation of system (2), we can get $ \frac{dE(t)}{dt}|_{t = t_0} = \alpha_1Y_i(t_0)S(t_0) > 0 $, for $ 0 < t-t_0\ll 1 $. So $ E(t) > 0 $ for $ 0 < t -t_0\ll 1 $. It follows from the third, fourth and ninth equations of system (2) that $ I(t) > 0 $, $ R(t) > 0 $ and $ Y_i(t) > 0 $ for $ 0 < t -t_0\ll 1 $. Thus, $ (S, E, I, R, X_e, X_r, X_i, X_m, Y_i, Y_m)\notin \partial K_0 $ for $ 0 < t-t_0\ll 1 $. This is a contradiction. Similarly, we can prove the other subcases.
Thus
$ M∂={(S,0,0,0,Xe,Xr,Xi,Xm,0,0)|S≥0,Xe≥0,Xr≥0,Xi≥0,Xm≥0}. $
|
In the following, we proceed by contradiction to prove that there exists $ \xi > 0 $ such that
$ lim supm→∞d(Pm(x0),P0)≥ξ,∀x0∈K0,m∈Z+. $
|
(17) |
where $ P_0 = (S^0, 0, 0, 0, X^0_e, X^0_r, X^0_i, X^0_m, 0, 0). $
It follows from Theorem 2 in [31] that $ R_0 > 1 \Longleftrightarrow \rho(FV^{-1}) > 1 \Longleftrightarrow \rho(\exp{(F-V)}) > 1 $. Therefore, if $ R_0 > 1 $, we can choose $ \varepsilon_1 > 0 $ sufficiently small such that
$ ρ(exp(F−V−Mε1))>1, $
|
(18) |
where
$ M_{\varepsilon_1} = \left( 000α1ε1β1ε100000000000α2ε10000β2ε1000 \right). $
|
If (17) does not hold, then for any $ \zeta > 0 $, we have
$ lim supm→∞d(Pm(x0),P0)<ζ,for some x0∈K0. $
|
Without loss of generality, suppose that
$ d(Pm(x0),P0)<ζ,∀ζ>0,∀m∈Z+. $
|
By the continuity of the solution with respect to initial values, we have that there exists sufficiently small $ \varepsilon_1 > 0 $ such that
$ ‖u(t,Pm(x0))−u(t,P0)‖≤ε1,∀t∈[t0,t0+1],∀m∈Z+. $
|
(19) |
For any $ t\geq t_0 $, there exists an integer $ l\in \mathbb{Z_+} $ such that $ t-t_0 = l+\hat{t} $, where $ \hat{t}\in [0, 1) $. It follows from (19) that
$ ‖u(t,Pm(x0))−u(t,P0)‖=‖u(t0+ˆt,Pm+l(x0))−u(t0+ˆt,P0)‖≤ε1. $
|
Therefore, we have
$ S(t)≥S0−ε1,Xi(t)≥X0i−ε1,Xm(t)≥X0m−ε1,for all t≥t0. $
|
(20) |
From system (2) and inequality (20), we get
$ dE(t)dt≥α1Yi(S0−ε1)+β1Ym(S0−ε1)−η1E+(1−f)ρR,dI(t)dt=η1E−η2I,dR(t)dt=η2I−ρR,dYi(t)dt≥α2(X0i−ε1)I−γ4Yi−d3Yi,dYm(t)dt≥γ4Yi+β2(X0m−ε1)I−d4Ym. $
|
(21) |
Obviously, system (21) is a quasi-monotonic system. Consider the following comparison system:
$ dˆZ(t)dt=(F−V−Mε1)ˆZ(t), $
|
(22) |
where $ \hat{Z}(t) = (\hat{E}(t), \hat{I}(t), \hat{R}(t), \hat{Y_i}(t), \hat{Y_m}(t))^T $ and
$ F-V -M_{\varepsilon_1} = \left( −η10(1−f)ρα1(S0−ε1)β1(S0−ε1)η1−η20000η2−ρ000α2(X0i−ε1)0−(γ4+d3)00β2(X0m−ε1)0γ4−d4 \right) $
|
By [32], we know that there exists a positive vector $ v $ such that $ \hat{Z}(t) = v\exp(\eta t) $ is a solution of system (22), where $ \eta = \ln \rho(\exp{(F-V-M_{\varepsilon_1})}) $. From (18), we can get $ \eta > 0 $ and thus $ \hat{Z}(t)\rightarrow\infty $ as $ t\rightarrow \infty $, that is, $ \hat{E}(t)\rightarrow\infty $, $ \hat{I}(t)\rightarrow\infty $, $ \hat{R}(t)\rightarrow\infty $, $ \hat{Y_i}(t)\rightarrow\infty $ and $ \hat{Y_m}(t)\rightarrow\infty $ as $ t\rightarrow \infty $. According to the comparison theorem in differential equations, we can easily obtain that
$ E(t)→∞, I(t)→∞, R(t)→∞, Yi(t)→∞, Ym(t)→∞, as t→∞ $
|
This contradicts with the boundedness of the solutions. Thus, we have proved that (17) holds and $ P $ is weakly uniformly persistent with respect to $ (K_0, \partial K_0) $.
Obviously, the poincaré map $ P $ has a global attractor $ P_0 $. $ P_0 $ is an isolated invariant set in $ \widetilde{K} $ and $ W^S(P_0)\bigcap K_0 = \emptyset $, and it is acyclic in $ M_\partial $. Every solution in $ M_\partial $ converges to $ P_0 $. According to Zhao [33], we derive that $ P $ is uniformly persistent with respect to $ (K_0, \partial K_0) $. This implies that the solution of system (2) is uniformly persistent with respect to $ (K_0, \partial K_0) $, that is, (15) holds.
Optimal control theory has been used to explore optimal control strategies for various infectious diseases [34,35,36]. The purpose of this section is to seek an optimal integrated strategy to prevent the spread of citrus HLB. In the following, we begin with the presentation of the optimal control problem for the transmission dynamics of HLB in order to derive nutrient solution injection, removal of infected trees and insecticide spraying strategies with minimal implementation cost. We will show that it is possible to implement control techniques while minimizing the cost of implementation of such measures.
In the host citrus trees population, the associated force of infections are reduced by factors of $ (1-u_1) $, where $ u_1 $ measures the precaution effort of nutrient solution injection. The control variable $ u_2 $ represents the removing of infected trees. The control variable $ u_3 $ shows the eradication effort of insecticide spraying. It follows that the reproduction rate of psyllid population (including egg, nymph, adult stages) is reduced by a factor of $ (1-u_3) $. Based on the assumptions and extensions mentioned above, system (2) with control strategy can be improved as following forms:
$ dSdt=f(ρR+u2I)−α1(1−u1)YiS−β1(1−u1)YmS,dEdt=α1(1−u1)YiS+β1(1−u1)YmS−η1(1−u1)E+(1−f)(ρR+u2I),dIdt=η1(1−u1)E−η2I−u2I,dRdt=η2I−ρR,dXedt=r(1−u3)Xm−γ1Xe−d1Xe−r0u3Xe,dXrdt=γ1Xe−γ2Xr−d2Xr−r0u3Xr,dXidt=γ2Xr−α2XiI−γ3Xi−d3Xi−r0u3Xi,dXmdt=γ3Xi−β2XmI−d4X2m−r0u3Xm,dYidt=α2XiI−γ4Yi−d3Yi−r0u3Yi,dYmdt=γ4Yi+β2XmI−d4Ym−r0u3Ym, $
|
(23) |
subject to nonnegative initial conditions, here $ r_0 $ is a conversion rate.
For the optimal control problem of (23), we consider the control variables $ u(t) = (u_1, u_2, u_3)\in U $ relative to the state variables $ S, \; E, \; I, \; R, \; X_e, \; X_r, \; X_i, \; X_m, \; Y_i, \; Y_m $ where control variables are bounded and measured with
$ U={(u1,u2,u3)|ui is Lebsegue measurable, 0≤ui(t)≤1,t∈[0,T],i=1,2,3}, $
|
(24) |
where $ T $ represents the control period. Let $ V $ be the total number of psyllid population, that is, $ V = X_e+X_r+X_i+X_m+Y_i+Y_m $. For the control problem, we now define the objective functional as
$ J(u1,u2,u3)=∫T0(A1I+A2R+A3V+B12u21+B22u22+B32u23)dt. $
|
(25) |
subject to the control system (23). The objective is to minimize the cost functional (25). That is, the goal is minimizing the number of infected trees, dead trees and psyllid populations and the cost of implementing the control, by using possible minimal control variables $ u_i(t)\ (i = 1, \; 2, \; 3) $. We choose to model the control efforts via a linear combination of quadratic terms, $ u_i^2(t)\; (i = 1, 2, 3) $. Further, the constants $ A_1, A_2, A_3 $ and $ B_1, B_2, B_3 $ represent a measure of the relative cost of the interventions over the interval $ [0, T] $. In order to find an optimal control, $ u^*_1, \; u^*_2, \; u^*_3 $ such that
$ J(u∗1,u∗2,u∗3)=minUJ(u1,u2,u3). $
|
(26) |
where $ U $ is defined in (24) and subject to control system (23) with nonnegative initial conditions. Next, we use Pontryagin's Maximum Principle to solve this optimal control problem.
Following the idea of [37], we prove firstly the existence of the optimal control problem.
Theorem 4.1. For the objective functional $ J(u_1, u_2, u_3) = \int^{T}_{0}(A_1I+A_2R+A_3V+\dfrac{B_1}{2}u^2_1+\dfrac{B_2}{2}u^2_2+\dfrac{B_3}{2}u^2_3)dt $, associated with model (23) defined in $ U $, then there exists an optimal control $ u^* = (u^*_1, u^*_2, u^*_3) $, such that $ J(u^*_1, u^*_2, u^*_3) = \min \limits_{U} J(u_1, u_2, u_3) $.
Proof. By Theorem Ⅲ.4.1 from [37], we only need to check the following assumptions:
$ (H_1) $ The set of controls and corresponding state variables is nonempty.
$ (H_2) $ The control set $ U $ is convex and closed.
$ (H_3) $ Right hand side of each equation in control problem (23) is continuous, bound above by a sum of the bounded control and state, and can be written as a linear function of $ U $ with coefficients depending on time and the state.
$ (H_4) $ There exist constants $ C_1, C_2 > 0 $ and $ \beta > 1 $ such that the integrand of the objective functional $ L(y, u, t) $ is concave and satisfies
$ L(y,u,t)≥C1(|U1|2+|U2|2+|U3|2)β2−C2. $
|
Obviously, the state variables and the set of control are bounded and nonempty which confirm $ (H_1) $. Note that the solutions are bounded, so the admissible control set is bounded and convex, which confirms $ (H_2) $. The system is bilinear in control variables, so it confirms $ (H_3) $ (since the solutions are bounded). The hypothesis $ (H_4) $ can be verified as
$ A1I+A2R+A3V+12(B1u21+B2u22+B3u23)≥C1(|U1|2+|U2|2+|U3|2)β2−C2, $
|
where $ C_1, C_2 > 0, A_1, A_2, A_3, B_1, B_2, B_3 > 0, B_4 > 0 $ and $ \beta > 0 $. In view of the result given by Lukes [38], we have that there exists an optimal control strategy $ (u_1^*, u_2^*, u_3^*) $ minimizing $ J(u_1, u_2, u_3) $.
Next we explore the minimal value of $ J(u_1, u_2, u_3) $. To accomplish this, we define the Lagrangian $ L $ and Hamiltonian $ H $ for the optimal control problem (23) as
$ L(I,R,V,u1,u2,u3)=A1I+A2R+A3V+12(B1u21+B2u22+B1u23), $
|
and
$ H(X,U,λ)=L(I,R,V,u1,u2,u3)+λ1[f(ρR+u2I)−α1(1−u1)YiS−β1(1−u1)YmS]+λ2[α1(1−u1)YiS+β1(1−u1)YmS−η1(1−u1)E+(1−f)(ρR+u2I)]+λ3[η1(1−u1)E−η2I−u2I]+λ4[η2I−ρR]+λ5[r(1−u3)Xm−γ1Xe−d1Xe−r0u3Xe]+λ6[γ1Xe−γ2Xr−d2Xr−r0u3Xr])+λ7[γ2Xr−α2XiI−γ3Xi−d3Xi−r0u3Xi]+λ8[γ3Xi−β2XmI−d4X2m−r0u3Xm]+λ9[α2XiI−γ4Yi−d3Yi−r0u3Yi]+λ10[γ4Yi+β2XmI−d4Ym−r0u3Ym], $
|
(27) |
where $ X = (S, E, I, R, X_e, X_r, X_i, X_m, Y_i, Y_m), $ $ U = (u_1, u_2, u_3) $ and $ \lambda = (\lambda_1, \lambda_2, \lambda_3, ..., \lambda_{10}) $.
In this subsection, by using Pontryagin's Maximum Principle [39], we will obtain the optimal solution of the control system (23).
Let $ u^*_1, u^*_2 $ and $ u^*_3 $ represent the optimal solution of the control problem (26), then there exists a nontrivial vector function $ \lambda(t) = (\lambda_1(t), \lambda_2(t), \lambda_3(t), ..., \lambda_{10}(t)) $ satisfying three equalities:
(ⅰ) the state equation
$ dxdt=∂H(t,u∗1,u∗2,u∗3,λ(t))∂λ, $
|
(ⅱ) the optimality condition
$ 0=∂H(t,u∗1,u∗2,u∗3,λ(t))∂u, $
|
(ⅲ) the adjoint equation
$ dλdt=−∂H(t,u∗1,u∗2,u∗3,λ(t))∂X. $
|
Now, we apply the necessary conditions to the Hamiltonian $ H $ given by (27). Following the results in [39], we can obtain the following conclusions.
Theorem 4.2. Let $ \hat {y}^* = (\hat {S}^*, \hat {E}^*, \hat {I}^*, \hat {R}^*, \hat {X}^*_e, \hat {X}^*_r, \hat {X}^*_i, \hat {X}^*_m, \hat {Y}^*_i, \hat {Y}^*_m) $ be an optimal solution associated with the optimal control strategy $ u^*(t) = (u^*_1(t), u^*_2(t), u^*_3(t)) $ for the optimal control problem (26), then there exists adjoint variables $ \lambda_i, (i = 1, 2, ..., 10) $ satisfying
$ dλ1(t)dt=(λ1−λ2)[α1(1−u1)Yi+β1(1−u1)Ym]dλ2(t)dt=(λ2−λ3)η1(1−u1)dλ3(t)dt=−A1−fu2λ1−(1−f)u2λ2+(η2+u2)λ3−η2λ4+α2Xiλ7+β2Xmλ8−α2Xiλ9−β2Xmλ10dλ4(t)dt=−A2−fρλ1−(1−f)ρλ2+ρλ4dλ5(t)dt=−A3+(γ1+d1+γ0u3)λ5−γ1λ6dλ6(t)dt=−A3+(γ2+d2+γ0u3)λ6−γ2λ7dλ7(t)dt=−A3+(α2I+γ3+d3+γ0u3)λ7−γ3λ8−α2Iλ9dλ8(t)dt=−A3−r(1−u3)λ5+(β2I+2d4Xm+γ0u3)λ8−β2Iλ10dλ9(t)dt=−A3+(λ1−λ2)α1(1−u1)S+(γ4+d3+γ0u3)λ9−γ4λ10dλ10(t)dt=−A3+(λ1−λ2)β1(1−u1)S+(d4+γ0u3)λ10 $
|
with transversality conditions
$ λi(T)=0,i=1,2,...,10. $
|
Further, the control $ u^*_1, u^*_2, u^*_3 $ are given by
$ u∗1=max{min{1,(λ2−λ1)(α1ˆY∗iˆS∗+β1ˆY∗mˆS∗)+(λ3−λ2)η1ˆE∗B1},0},u∗2=max{min{1,(λ2−λ1)fˆI∗+(λ3−λ2)ˆI∗B2},0},u∗3=max{min{1,rˆX∗mλ5+γ0ˆX∗eλ5+γ0ˆX∗rλ6+γ0ˆX∗iλ7+γ0ˆX∗mλ8+γ0ˆY∗iλ9+γ0ˆY∗mλ10B3},0}. $
|
(28) |
Proof. To determine the adjoint equations and the transversality conditions we use the Hamiltonian (27). The adjoint system results from Pontryagin's Maximun Principle [39].
$ dλ1(t)dt=−∂H∂S,dλ2(t)dt=−∂H∂E,...,dλ10(t)dt=−∂H∂Ym, $
|
with $ \lambda_i(T) = 0\ (i = 1, 2, \cdots, 10) $.
To obtain the characterization of the optimal control given by (28), solving the equations
$ ∂H∂u1=0,∂H∂u2=0,∂H∂u3=0, $
|
on the interior of the control set and applying the property of the control space $ U $, we can derive (28) holds.
In this section, we use firstly the model (2) to simulate the data on the number of infected citrus trees of Yuan Orchard from June, 2015 to December, 2015. Yuan Orchard is located in Ganzhou, China, which is one of our monitoring sites for citrus HLB. The infected rates of trees $ I(t) $ are given in Table 1. Numerical simulation of $ I(t) $ is shown in Figure 2. In order to carry out the numerical simulations, we need to estimate the model parameters. We get these parameter values in three ways: some parameter values ($ \eta_1, \eta_2 $, $ r, \gamma_1, \gamma_2, \gamma_3 $, $ d_1, d_2, d_3, d_4, r_0 $) are obtained from the literature; some parameter values ($ \rho, f $) are estimated; and other parameter values ($ \alpha_1, \alpha_2, \beta_1, \beta_2 $) are fitted by the MATLAB tool fminsearch, which is fitted by calculating the minimum sum of square ($ MSS $) (see [40]):
$ MSS = \mathop \sum \limits_{i = 1}^{11}(I(data_i)-I(i))^2. $ |
Date | 06/30 | 07/30 | 08/30 | 09/15 | 09/30 | 10/15 |
$ I(t) $ | 0.0318 | 0.053 | 0.1327 | 0.1946 | 0.215 | 0.2778 |
Date | 10/30 | 11/15 | 11/30 | 12/15 | 12/30 | |
$ I(t) $ | 0.354 | 0.354 | 0.3717 | 0.3716 | 0.407 |
By using the parameter values in Table 1, we can obtain $ \alpha_1 = 0.00494\; \text{month}^{-1}, \alpha_2 = 0.00043\; \text{month}^{-1}, \beta_1 = 0.0097\; \text{month}^{-1} $ and $ \beta_2 = 0.002258\; \text{month}^{-1} $ by fitting in simulations. All parameter values of the model are given in Table 2.
Parameter | Value | Unit | Reference | Parameter | Value | Unit | Reference |
$ \eta_1 $ | 0.1667 | $ \text{month}^{-1} $ | [41] | $ d_3 $ | 1.612 | $ \mbox {month}^{-1} $ | [9] |
$ \eta_2 $ | 0.002258 | $ \text{month}^{-1} $ | [2] | $ d_4 $ | 0.788 | $ \text{month}^{-1} $ | [9,42] |
$ \rho $ | 0.0791 | - | Estimation | $ f $ | 0.067 | $ \text{month}^{-1} $ | Estimation |
$ r $ | 62 | $ \text{month} $ | [9,42] | $ \alpha_1 $ | 0.00494 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_1 $ | 5.49625 | $ \text{month}^{-1} $ | [9] | $ \alpha_2 $ | 0.00043 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_2 $ | 5.376 | $ \text{month}^{-1} $ | [9] | $ \beta_1 $ | 0.0097 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_3, \gamma_4 $ | 2.188 | $ \text{month}^{-1} $ | [9] | $ \beta_2 $ | 0.002258 | $ \text{month}^{-1} $ | Fitting |
$ d_1 $ | 2.494 | $ \text{month}^{-1} $ | [9] | $ r_0 $ | 6 | - | [43] |
$ d_2 $ | 4.867 | $ \text{month}^{-1} $ | [9] |
Next, we numerically examine the effect of the optimal control strategy on the spread of citrus HLB in a population of trees and psyllids. In this simulation without control population is labeled with bold line and the control by a dashed line. The weight constant values in the objective functional are $ A_1 = 800; A_2 = 2000; A_3 = 2; B_1 = 200; B_2 = 1; B_3 = 50 $. The control $ u_1 $, $ u_2 $ and $ u_3 $ are all used to optimize the objective function $ J $. Figures 3 and 4 showed that the control strategy resulted in a decrease in the number of infected citrus trees $ I $, dead citrus trees $ R $, psyllids at each stage, $ X_e, X_r, X_i, X_m, Y_i $ and $ Y_m $ while an increase is observed in the number of susceptible citrus trees $ S $. In Fig. 5, we can observe that the optimal control profile for $ u_1 $, $ u_2 $ and $ u_3 $. Note that parameter values used in the numerical simulations are given in Table 1, and the initial conditions are taken as $ S(0) = 0.6, E(0) = 0.1, I(0) = 0.2, R(0) = 0.1 $, $ X_e(0) = 100, X_r(0) = 60, X_i(0) = 60, X_m(0) = 50, Y_i(0) = 30, Y_m(0) = 20 $.
In this paper, based on the mechanism and characteristics of citrus HLB transmission, we proposed a vector-borne plant disease model with stage structure in psyllids and studied the effect of intervention strategy in controlling the spread of HLB. We calculated the basic reproduction ratio $ R_0 $ for the epidemic model, and showed that the disease would die out when $ R_0 < 1 $, and the disease would be endemic when $ R_0 > 1 $.
Moreover, by using the optimal control theory, we analyzed the intervention strategy, nutrient solution injection, removal of infected trees and insecticide spraying, to determine the optimal integrated strategy. Using the Pontryagin's Maximum Principle, we investigated the existence of the optimal control problem. In addition, we minimized the number of infected citrus trees, dead citrus trees and the total number of psyllid population, by using three control variables. Numerical simulations illustrated the effectiveness of the proposed control problem.
The research has been supported by the Natural Science Foundation of China (11561004) and the Key Science and Technology Program of Jiangxi Province (20143ACF60012).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
Carninci P, Kasukawa T, Katayama S, et al. (2005) The transcriptional landscape of the mammalian genome. Science 309: 1559–1563. doi: 10.1126/science.1112014
![]() |
[2] | Harrow J, Frankish A, Gonzalez JM, et al. (2012). GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22: 1760–1774. |
[3] | Esteller M (2011) Non-coding RNAs in human disease. Nature Rev Gene 12: 861–874. |
[4] |
Beermann J, Piccoli MT, Viereck J, et al. (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96: 1297–1325. doi: 10.1152/physrev.00041.2015
![]() |
[5] |
Barwari T, Joshi A, Mayr M (2016) MicroRNAs in Cardiovascular Disease. J Am College Cardiol 68: 2577–2584. doi: 10.1016/j.jacc.2016.09.945
![]() |
[6] |
Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18: 510–525. doi: 10.1016/j.devcel.2010.03.010
![]() |
[7] |
Derrien T, Johnson R, Bussotti G, et al. (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22: 1775–1789. doi: 10.1101/gr.132159.111
![]() |
[8] | Fang S, Zhang L, Guo J, et al. (2017) NONCODEv5: a comprehensive annotation database for long non coding RNAs. Nucleic Acids Res 46: D308–D314. |
[9] |
Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73: 2491–2509. doi: 10.1007/s00018-016-2174-5
![]() |
[10] | Rosa A, Ballarino M (2015) Long noncoding RNA regulation of pluripotency. Stem Cells Int 2016: 1–9. |
[11] |
Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends in Cell Biol 21: 354–361. doi: 10.1016/j.tcb.2011.04.001
![]() |
[12] |
Dieci G, Fiorino G, Castelnuovo M, et al. (2007) The expanding RNA polymerase III transcriptome. Trends in Genet 23: 614–622. doi: 10.1016/j.tig.2007.09.001
![]() |
[13] |
Rackham O, Shearwood AMJ, Mercer TR, et al. (2011) Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17: 2085–2093. doi: 10.1261/rna.029405.111
![]() |
[14] |
Pauli A, Norris ML, Valen E, et al. (2014) Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343: 1248636. doi: 10.1126/science.1248636
![]() |
[15] |
Pauli A, Valen E, Schier AF (2015) Identifying (non‐) coding RNAs and small peptides: Challenges and opportunities. BioEssays 37: 103–112. doi: 10.1002/bies.201400103
![]() |
[16] |
Nelson BR, Makarewich CA, Anderson DM, et al. (2016) A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351: 271–275. doi: 10.1126/science.aad4076
![]() |
[17] |
Engreitz JM, Ollikainen N, Guttman M (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 17: 756–770. doi: 10.1038/nrm.2016.126
![]() |
[18] |
Gloss BS, Dinger ME (2016) The specificity of long noncoding RNA expression. Biochim Biophysi Acta 1859: 16–22. doi: 10.1016/j.bbagrm.2015.08.005
![]() |
[19] |
Bär C, Chatterjee S, Thum T (2016) Long Noncoding RNAs in Cardiovascular Pathology, Diagnosis, and Therapy. Circulation 134: 1484–1499. doi: 10.1161/CIRCULATIONAHA.116.023686
![]() |
[20] |
Chen LL (2016) Linking Long Noncoding RNA Localization and Function. Trends in Biochem Sci 41: 761–772. doi: 10.1016/j.tibs.2016.07.003
![]() |
[21] |
Klattenhoff CA, Scheuermann JC, Surface LE, et al. (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152: 570–583. doi: 10.1016/j.cell.2013.01.003
![]() |
[22] |
Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154: 26–46. doi: 10.1016/j.cell.2013.06.020
![]() |
[23] |
Ounzain S, Pedrazzini T (2015) The promise of enhancer-associated long noncoding RNAs in cardiac regeneration. Trends Cardiovasc Med 25: 592–602. doi: 10.1016/j.tcm.2015.01.014
![]() |
[24] |
Ounzain S, Burdet F, Ibberson M, et al. (2015) Discovery and functional characterization of cardiovascular long noncoding RNAs. J Mol Cell Cardiol 89: 17–26. doi: 10.1016/j.yjmcc.2015.09.013
![]() |
[25] |
Memczak S, Jens M, Elefsinioti A, et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333–338. doi: 10.1038/nature11928
![]() |
[26] |
Wang K, Long B, Liu F, et al. (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Euro Heart J 37: 2602–2611. doi: 10.1093/eurheartj/ehv713
![]() |
[27] |
Liu L, An X, Li Z, et al. (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111: 56–65. doi: 10.1093/cvr/cvw078
![]() |
[28] |
Hasegawa Y, Brockdorff N, Kawano S, et al. (2010) The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 19: 469–476. doi: 10.1016/j.devcel.2010.08.006
![]() |
[29] |
Gupta RA, Shah N, Wang KC, et al. (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464: 1071–1076. doi: 10.1038/nature08975
![]() |
[30] |
Grote P, Wittler L, Hendrix D, et al. (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24: 206–214. doi: 10.1016/j.devcel.2012.12.012
![]() |
[31] |
Tsai M C, Manor O, Wan Y, et al. (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329: 689–693. doi: 10.1126/science.1192002
![]() |
[32] |
Aguilo F, Zhou MM, Walsh MJ (2011) Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 71: 5365–5369. doi: 10.1158/0008-5472.CAN-10-4379
![]() |
[33] |
Mousavi K, Zare H, Dell'Orso S, et al. (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51: 606–617. doi: 10.1016/j.molcel.2013.07.022
![]() |
[34] |
Welsh IC, Kwak H, Chen FL, et al. (2015) Chromatin architecture of the Pitx2 locus requires CTCF-and Pitx2-dependent asymmetry that mirrors embryonic gut laterality. Cell Rep 13: 337–349. doi: 10.1016/j.celrep.2015.08.075
![]() |
[35] |
Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38: 5797–5806. doi: 10.1093/nar/gkq296
![]() |
[36] |
Han P, Li W, Lin CH, et al. (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514: 102–106. doi: 10.1038/nature13596
![]() |
[37] |
Yoon JH, Abdelmohsen K, Gorospe M (2013) Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425: 3723–3730. doi: 10.1016/j.jmb.2012.11.024
![]() |
[38] |
Tripathi V, Ellis JD, Shen Z, et al. (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39: 925–938. doi: 10.1016/j.molcel.2010.08.011
![]() |
[39] |
Yin QF, Yang L, Zhang Y, et al. (2012) Long Noncoding RNAs with snoRNA Ends. Mol Cell 48: 219–230. doi: 10.1016/j.molcel.2012.07.033
![]() |
[40] |
Kim YK, Furic L, Desgroseillers L, et al. (2005) Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell 120: 195–208 doi: 10.1016/j.cell.2004.11.050
![]() |
[41] |
Kim YK, Furic L, Parisien M, et al. (2007) Staufen1 regulates diverse classes of mammalian transcripts. EMBO 26: 2670–2681 doi: 10.1038/sj.emboj.7601712
![]() |
[42] |
Faghihi MA, Modarresi F, Khalil AM, et al. (2008) Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase expression. Nat Med 14: 723. doi: 10.1038/nm1784
![]() |
[43] | Faghihi MA, Zhang M, Huang J, et al. (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11: R56. |
[44] |
Yoon JH, Abdelmohsen K, Srikantan S, et al. (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47: 648–655. doi: 10.1016/j.molcel.2012.06.027
![]() |
[45] |
Wang H, Iacoangeli A, Lin D, et al. (2005) Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171: 811–821. doi: 10.1083/jcb.200506006
![]() |
[46] |
Carrieri C, Cimatti L, Biagioli M, et al. (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491: 454–457. doi: 10.1038/nature11508
![]() |
[47] |
Cesana M, Cacchiarelli D, Legnini I, et al. (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147: 358–369. doi: 10.1016/j.cell.2011.09.028
![]() |
[48] |
Keniry A, Oxley D, Monnier P, et al. (2012) The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r. Nat Cell Biol 14: 659. doi: 10.1038/ncb2521
![]() |
[49] |
Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell 127: 1101–1104. doi: 10.1016/j.cell.2006.11.031
![]() |
[50] | Wagner M, Siddiqui MAQ (2007) Signal transduction in early heart development (I): cardiogenic induction and heart tube formation. Exp Biol Med 232: 852–865. |
[51] | Kelly RG, Buckingham ME, Moorman AF (2014) Heart fields and cardiac morphogenesis. Cold Spring Harb Perspect Med 4: a015750. |
[52] |
Christoffels VM, Habets PE, Franco D, et al. (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223: 266–278. doi: 10.1006/dbio.2000.9753
![]() |
[53] |
Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 111: 1349–1362. doi: 10.1161/CIRCRESAHA.112.268953
![]() |
[54] |
Meganathan K, Sotiriadou I, Natarajan K, et al. (2015) Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol 183: 117–128. doi: 10.1016/j.ijcard.2015.01.049
![]() |
[55] |
Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9: 219–230. doi: 10.1038/nrm2347
![]() |
[56] |
Katz MG, Fargnoli AS, Kendle AP, et al. (2016) The role of microRNAs in cardiac development and regenerative capacity. Am J Physiol Heart Circ Physiol 310: H528–H541. doi: 10.1152/ajpheart.00181.2015
![]() |
[57] |
Li H, Jiang L, Yu Z, et al. (2017) The Role of a Novel Long Noncoding RNA TUC40-in Cardiomyocyte Induction and Maturation in P19 Cells. Am J Med Sci 354: 608–616. doi: 10.1016/j.amjms.2017.08.019
![]() |
[58] |
Arnone B, Chen JY, Qin G (2017) Characterization and analysis of long non-coding rna (lncRNA) in In Vitro-and Ex Vivo-derived cardiac progenitor cells. PloS One 12: e0180096. doi: 10.1371/journal.pone.0180096
![]() |
[59] |
Liu J, Li Y, Lin B, et al. (2017) HBL1 Is a Human Long Noncoding RNA that Modulates Cardiomyocyte Development from Pluripotent Stem Cells by Counteracting MIR1. Dev Cell 42: 333–348. doi: 10.1016/j.devcel.2017.07.023
![]() |
[60] | Ounzain S, Micheletti R, Beckmann T, et al. (2014) Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 36: 353–368. |
[61] |
Ounzain S, Pedrazzini T (2016) Long non-coding RNAs in heart failure: a promising future with much to learn. Annals Trans Med 4: 298. doi: 10.21037/atm.2016.07.13
![]() |
[62] |
Ounzain S, Micheletti R, Arnan C, et al. (2015) CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol 89: 98–112. doi: 10.1016/j.yjmcc.2015.09.016
![]() |
[63] |
Boucher JM, Peterson SM, Urs S, et al. (2011) The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem 286: 28312–28321. doi: 10.1074/jbc.M111.221945
![]() |
[64] | Cordes KR, Sheehy NT, White MP, et al. (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460: 705–710. |
[65] | Mathiyalagan P, Keating ST, Du XJ, et al. (2014) Chromatin modifications remodel cardiac gene expression. Cardiovasc Res 103: 7–16. |
[66] |
Xue Z, Hennelly S, Doyle B, et al. (2016) A G-rich motif in the lncRNA braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell 64: 37–50. doi: 10.1016/j.molcel.2016.08.010
![]() |
[67] | Mahlapuu M, Ormestad M, Enerback S, et al. (2001) The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 128: 155–166. |
[68] |
Grote P, Herrmann BG (2013) The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 10: 1579–1585. doi: 10.4161/rna.26165
![]() |
[69] |
79. Kurian L, Aguirre A, Sancho-Martinez I, et al. (2015) Identification of novel long non-coding RNAs underlying vertebrate cardiovascular development. Circulation 131: 1278–1290. doi: 10.1161/CIRCULATIONAHA.114.013303
![]() |
[70] |
Jiang W, Liu Y, Liu R, et al. (2015) The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Rep 11: 137–148. doi: 10.1016/j.celrep.2015.03.008
![]() |
[71] |
Yamagashi H, Olson EN, Srivastava D (2000) The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest 105: 261–270. doi: 10.1172/JCI8856
![]() |
[72] | McFadden DG, Charité J, Richardson JA, et al. (2000) A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development 127: 5331–5341. |
[73] |
He A, Gu F, Hu Y, et al. (2014) Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat Commun 5: 4907. doi: 10.1038/ncomms5907
![]() |
[74] |
Anderson KM, Anderson DM, McAnally JR, et al. (2016) Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539: 433–436. doi: 10.1038/nature20128
![]() |
[75] |
Song G, Shen Y, Zhu J, et al. (2013) Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PloS One 8: e77492. doi: 10.1371/journal.pone.0077492
![]() |
[76] | Song G, Shen Y, Ruan Z, et al. (2016) LncRNA-uc. 167 influences cell proliferation, apoptosis and differentiation of P19 cells by regulating Mef2c. Gene 590: 97–108. |
[77] |
Gudbjartsson DF, Arnar DO, Helgadottir A, et al. (2007) Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448: 353–357. doi: 10.1038/nature06007
![]() |
[78] |
Ellinor PT, Lunetta KL, Albert CM, et al. (2012) Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 44: 670–675. doi: 10.1038/ng.2261
![]() |
[79] |
Franco D, Christoffels VM, Campione M (2014) Homeobox transcription factor Pitx2: The rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends Cardiovasc Med 24: 23–31. doi: 10.1016/j.tcm.2013.06.001
![]() |
[80] |
Gore-Panter SR, Hsu J, Barnard J, et al. (2016) PANCR, the PITX2 Adjacent noncoding RNA, is expressed in human left atria and regulates PITX2c expression. Circ Arrhythm Electrophysiol 9: e003197. doi: 10.1161/CIRCEP.115.003197
![]() |
[81] | Guo Y, Luo F, Liu Q, et al. (2016) Regulatory non‐coding RNAs in acute myocardial infarction. J Cell Mol Med 21: 1013–1023. |
[82] |
Vausort M, Wagner DR, Devaux Y (2014) Long Noncoding RNAs in Patients With Acute Myocardial InfarctionNovelty and Significance. Circ Res 115: 668–677. doi: 10.1161/CIRCRESAHA.115.303836
![]() |
[83] |
Devaux Y, Creemers EE, Boon RA, et al. (2017) Circular RNAs in heart failure. Eur J Heart Fail 19: 701–709. doi: 10.1002/ejhf.801
![]() |
[84] |
Greco S, Zaccagnini G, Perfetti A, et al. (2016) Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med 14: 183. doi: 10.1186/s12967-016-0926-5
![]() |
[85] |
Schiano C, Costa V, Aprile M, et al. (2017) Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing. Cardiol J 24: 539–553. doi: 10.5603/CJ.a2017.0052
![]() |
[86] |
Micheletti R, Plaisance I, Abraham BJ, et al. (2017) The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 9: eaai9118. doi: 10.1126/scitranslmed.aai9118
![]() |
[87] |
Li Z, Wang X, Wang W, et al. (2017) Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J Mol Cell Cardiol 108: 73–85. doi: 10.1016/j.yjmcc.2017.05.009
![]() |
[88] | Ruan Z, Sun X, Sheng H, et al. (2015) Long non-coding RNA expression profile in atrial fibrillation. Int J Clin Exp Pathol 8: 8402. |
[89] | Viereck J, Kumarswamy R, Foinquinos A, et al. (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8: 326ra22–326ra22. |
[90] |
Wang Z, Zhang XJ, Ji YX, et al. (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22: 1131–1139. doi: 10.1038/nm.4179
![]() |
[91] |
Wang K, Liu F, Zhou LY, et al. (2014) The Long Noncoding RNA CHRF Regulates Cardiac Hypertrophy by Targeting miR-489 Novelty and Significance. Circ Res 114: 1377–1388. doi: 10.1161/CIRCRESAHA.114.302476
![]() |
[92] | Zhu XH, Yuan YX, Rao SL, et al. (2016) Lncrna miat enhances cardiac hypertrophy partly through sponging mir-150. Eur Rev Med Pharmacol Sci 20: 3653. |
[93] |
Piccoli MT, Gupta SK, Viereck J, et al. (2017) Inhibition of the Cardiac Fibroblast–Enriched lncRNA Meg3 Prevents Cardiac Fibrosis and Diastolic Dysfunction Novelty and Significance. Circ Res 121: 575–583. doi: 10.1161/CIRCRESAHA.117.310624
![]() |
[94] |
Tao H, Zhang JG, Qin RH, et al. (2017) LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology 386: 11–18. doi: 10.1016/j.tox.2017.05.007
![]() |
[95] |
Qu X, Du Y, Shu Y, et al. (2017) MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7: 42657. doi: 10.1038/srep42657
![]() |
[96] | Huang ZW, Tian LH, YangB, et al. (2017) Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis. DNA Cell Biol 36: 759–766. |
1. | Ján Dvorský, Ľudmila Kozubíková, Barbora Bacová, The Perception of Business Risks by SMEs in the Czech Republic, 2020, 9, 18054854, 25, 10.18267/j.cebr.250 | |
2. | Liqun Zhang, Hamurabi Gamboa Rosales, A Fuzzy Evaluation Method Based on Industrial Cluster Investment Risk Assessment Method Based on IoT Applications, 2022, 2022, 1530-8677, 1, 10.1155/2022/5733326 | |
3. | Guang Liu, Yunying Huang, Khaldoon Albitar, The impact of urban housing prices on labour mobility: evidence from cities in China, 2023, 36, 1331-677X, 3105, 10.1080/1331677X.2022.2106284 | |
4. | Yulia Vertakova, Irina Izmalkova, Evgeniy Leontyev, Cluster Enterprise Comprehensive Risk Assessment: Methodology Based on the Functional-Target Approach, 2022, 15, 1911-8074, 15, 10.3390/jrfm15010015 | |
5. | Ján Dvorský, Zora Petráková, Effect of Business Risks on the Business Future by Czech and Slovak SMEs in the Segment Transport and Services., 2021, 55, 23521465, 1444, 10.1016/j.trpro.2021.07.131 | |
6. | Kuashuai Peng, Guofeng Yan, A survey on deep learning for financial risk prediction, 2021, 5, 2573-0134, 716, 10.3934/QFE.2021032 | |
7. | Jaroslav Belas, Beata Gavurova, Matus Kubak, Andrea Novotna, RISK MANAGEMENT LEVEL DETERMINANTS IN VISEGRAD COUNTRIES – SECTORAL ANALYSIS, 2023, 29, 2029-4913, 307, 10.3846/tede.2023.18415 | |
8. | Manuela Raisová, Martina Regásková, Kornélia Lazányi, The financial transaction tax: an ANOVA assessment of selected EU countries, 2020, 15, 2353-3293, 29, 10.24136/eq.2020.002 |
Date | 06/30 | 07/30 | 08/30 | 09/15 | 09/30 | 10/15 |
$ I(t) $ | 0.0318 | 0.053 | 0.1327 | 0.1946 | 0.215 | 0.2778 |
Date | 10/30 | 11/15 | 11/30 | 12/15 | 12/30 | |
$ I(t) $ | 0.354 | 0.354 | 0.3717 | 0.3716 | 0.407 |
Parameter | Value | Unit | Reference | Parameter | Value | Unit | Reference |
$ \eta_1 $ | 0.1667 | $ \text{month}^{-1} $ | [41] | $ d_3 $ | 1.612 | $ \mbox {month}^{-1} $ | [9] |
$ \eta_2 $ | 0.002258 | $ \text{month}^{-1} $ | [2] | $ d_4 $ | 0.788 | $ \text{month}^{-1} $ | [9,42] |
$ \rho $ | 0.0791 | - | Estimation | $ f $ | 0.067 | $ \text{month}^{-1} $ | Estimation |
$ r $ | 62 | $ \text{month} $ | [9,42] | $ \alpha_1 $ | 0.00494 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_1 $ | 5.49625 | $ \text{month}^{-1} $ | [9] | $ \alpha_2 $ | 0.00043 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_2 $ | 5.376 | $ \text{month}^{-1} $ | [9] | $ \beta_1 $ | 0.0097 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_3, \gamma_4 $ | 2.188 | $ \text{month}^{-1} $ | [9] | $ \beta_2 $ | 0.002258 | $ \text{month}^{-1} $ | Fitting |
$ d_1 $ | 2.494 | $ \text{month}^{-1} $ | [9] | $ r_0 $ | 6 | - | [43] |
$ d_2 $ | 4.867 | $ \text{month}^{-1} $ | [9] |
Date | 06/30 | 07/30 | 08/30 | 09/15 | 09/30 | 10/15 |
$ I(t) $ | 0.0318 | 0.053 | 0.1327 | 0.1946 | 0.215 | 0.2778 |
Date | 10/30 | 11/15 | 11/30 | 12/15 | 12/30 | |
$ I(t) $ | 0.354 | 0.354 | 0.3717 | 0.3716 | 0.407 |
Parameter | Value | Unit | Reference | Parameter | Value | Unit | Reference |
$ \eta_1 $ | 0.1667 | $ \text{month}^{-1} $ | [41] | $ d_3 $ | 1.612 | $ \mbox {month}^{-1} $ | [9] |
$ \eta_2 $ | 0.002258 | $ \text{month}^{-1} $ | [2] | $ d_4 $ | 0.788 | $ \text{month}^{-1} $ | [9,42] |
$ \rho $ | 0.0791 | - | Estimation | $ f $ | 0.067 | $ \text{month}^{-1} $ | Estimation |
$ r $ | 62 | $ \text{month} $ | [9,42] | $ \alpha_1 $ | 0.00494 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_1 $ | 5.49625 | $ \text{month}^{-1} $ | [9] | $ \alpha_2 $ | 0.00043 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_2 $ | 5.376 | $ \text{month}^{-1} $ | [9] | $ \beta_1 $ | 0.0097 | $ \text{month}^{-1} $ | Fitting |
$ \gamma_3, \gamma_4 $ | 2.188 | $ \text{month}^{-1} $ | [9] | $ \beta_2 $ | 0.002258 | $ \text{month}^{-1} $ | Fitting |
$ d_1 $ | 2.494 | $ \text{month}^{-1} $ | [9] | $ r_0 $ | 6 | - | [43] |
$ d_2 $ | 4.867 | $ \text{month}^{-1} $ | [9] |