Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Two cases of androgen insensitivity due to somatic mosaicism

  • Androgen insensitivity syndrome (AIS) is caused by mutations in the gene encoding the androgen receptor (AR). The incidence of AIS is estimated to be 1 in 99,000. Complete androgen insensitivity syndrome (CAIS) is characterized by a 46,XY karyotype with external genitalia that appear typically female and results from mutations that render the androgen receptor non-functional. Partial androgen insensitivity syndrome (PAIS) results from partial loss of function mutations in AR. Rarely, PAIS results from somatic mosaicism for an AR mutation and not from a hypomorphic variant. We present two cases of PAIS due to somatic mosaicism, one caused by a novel nonsense mutation and one caused by a missense mutation previously reported in CAIS. Two patients with atypical genitalia presented to our multidisciplinary clinic for disorders of sex development and sequencing of AR was performed as part of the diagnostic evaluation. In case one, AR sequencing revealed mosaicism for a nonsense mutation, c.1331T > A; p.Leu444Ter. This mutation has not previously been reported, but is presumed to be pathogenic. In case two, AR sequencing revealed a mosaic missense mutation, c.2279 C > A; p.Ser760Tyr, which has previously been reported in CAIS but not in PAIS. Similar phenotypes may result from AR mutations that are present in a mosaic state with full loss of function or hypomorphic mutations that partially impair the function of the protein in either all tissues or in a mosaic state.

    Citation: Natalie J. Nokoff, Sharon Travers, Naomi Meeks. Two cases of androgen insensitivity due to somatic mosaicism[J]. AIMS Genetics, 2015, 2(2): 104-109. doi: 10.3934/genet.2015.2.104

    Related Papers:

    [1] Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133
    [2] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [3] Xiaoying Wang, Xingfu Zou . Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences and Engineering, 2018, 15(3): 775-805. doi: 10.3934/mbe.2018035
    [4] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [5] Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121
    [6] G.A.K. van Voorn, D. Stiefs, T. Gross, B. W. Kooi, Ulrike Feudel, S.A.L.M. Kooijman . Stabilization due to predator interference: comparison of different analysis approaches. Mathematical Biosciences and Engineering, 2008, 5(3): 567-583. doi: 10.3934/mbe.2008.5.567
    [7] Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818
    [8] Zhihong Zhao, Yan Li, Zhaosheng Feng . Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting. Mathematical Biosciences and Engineering, 2021, 18(2): 1629-1652. doi: 10.3934/mbe.2021084
    [9] Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834
    [10] Ming Chen, Menglin Gong, Jimin Zhang, Lale Asik . Comparison of dynamic behavior between continuous- and discrete-time models of intraguild predation. Mathematical Biosciences and Engineering, 2023, 20(7): 12750-12771. doi: 10.3934/mbe.2023569
  • Androgen insensitivity syndrome (AIS) is caused by mutations in the gene encoding the androgen receptor (AR). The incidence of AIS is estimated to be 1 in 99,000. Complete androgen insensitivity syndrome (CAIS) is characterized by a 46,XY karyotype with external genitalia that appear typically female and results from mutations that render the androgen receptor non-functional. Partial androgen insensitivity syndrome (PAIS) results from partial loss of function mutations in AR. Rarely, PAIS results from somatic mosaicism for an AR mutation and not from a hypomorphic variant. We present two cases of PAIS due to somatic mosaicism, one caused by a novel nonsense mutation and one caused by a missense mutation previously reported in CAIS. Two patients with atypical genitalia presented to our multidisciplinary clinic for disorders of sex development and sequencing of AR was performed as part of the diagnostic evaluation. In case one, AR sequencing revealed mosaicism for a nonsense mutation, c.1331T > A; p.Leu444Ter. This mutation has not previously been reported, but is presumed to be pathogenic. In case two, AR sequencing revealed a mosaic missense mutation, c.2279 C > A; p.Ser760Tyr, which has previously been reported in CAIS but not in PAIS. Similar phenotypes may result from AR mutations that are present in a mosaic state with full loss of function or hypomorphic mutations that partially impair the function of the protein in either all tissues or in a mosaic state.


    Time inconsistency in dynamic decision making is often observed in social systems and daily life. Motivated by practical applications, especially in mathematical economics and finance, time-inconsistency control problems have recently attracted considerable research interest and efforts attempting to seek equilibrium, instead of optimal controls. At a conceptual level, the idea is that a decision made by the controller at every instant of time is considered as a game against all the decisions made by the future incarnations of the controller. An "equilibrium" control is therefore one such that any deviation from it at any time instant will be worse off. The study on time inconsistency by economists can be dated back to Stroz [1] and Phelps [2,3] in models with discrete time (see [4] and [5] for further developments), and adapted by Karp [6,7], and by Ekeland and Lazrak [8,9,10,11,12,13] to the case of continuous time. In the LQ control problems, Yong [14] studied a time-inconsistent deterministic model and derived equilibrium controls via some integral equations.

    It is natural to study time inconsistency in the stochastic models. Ekeland and Pirvu [15] studied the non-exponential discounting which leads to time inconsistency in an agent's investment-consumption policies in a Merton model. Grenadier and Wang [16] also studied the hyperbolic discounting problem in an optimal stopping model. In a Markovian systems, Björk and Murgoci [17] proposed a definition of a general stochastic control problem with time inconsistent terms, and proposed some sufficient condition for a control to be solution by a system of integro-differential equations. They constructed some solutions for some examples including an LQ one, but it looks very hard to find not-to-harsh condition on parameters to ensure the existence of a solution. Björk, Murgoci and Zhou [18] also constructed an equilibrium for a mean-variance portfolio selection with state-dependent risk aversion. Basak and Chabakauri [19] studied the mean-variance portfolio selection problem and got more details on the constructed solution. Hu, Jin and Zhou [20,21] studied the general LQ control problem with time inconsistent terms in a non-Markovian system and constructed an unique equilibrium for quite general LQ control problem, including a non-Markovian system.

    To the best of our knowledge, most of the time-inconsistent problems are associated with the control problems though we use the game formulation to define its equilibrium. In the problems of game theory, the literatures about time inconsistency is little [22,23]. However, the definitions of equilibrium strategies in the above two papers are based on some corresponding control problems like before. In this paper, we formulate a general stochastic LQ differential game, where the objective functional of each player include both a quadratic term of the expected state and a state-dependent term. These non-standard terms each introduces time inconsistency into the problem in somewhat different ways. We define our equilibrium via open-loop controls. Then we derive a general sufficient condition for equilibrium strategies through a system of forward-backward stochastic differential equations (FBSDEs). An intriguing feature of these FBSDEs is that a time parameter is involved; so these form a flow of FBSDEs. When the state process is scalar valued and all the coefficients are deterministic functions of time, we are able to reduce this flow of FBSDEs into several Riccati-like ODEs. Comparing to the ODEs in [20], though the state process is scalar valued, the unknowns are matrix-valued because of two players. Therefore, such ODEs are harder to solve than those of [20]. Under some more stronger conditions, we obtain explicitly an equilibrium strategy, which turns out to be a linear feedback. We also prove that the equilibrium strategy we obtained is unique.

    The rest of the paper is organized as follows. The next section is devoted to the formulation of our problem and the definition of equilibrium strategy. In Section 3, we apply the spike variation technique to derive a flow of FBSEDs and a sufficient condition of equilibrium strategies. Based on this general results, we solve in Section 4 the case when the state is one dimensional and all the coefficients are deterministic. The uniqueness of such equilibrium strategy is also proved in this section.

    Let $ T > 0 $ be the end of a finite time horizon, and let $ (W_t)_{0\le t\le{T}} = (W_t^1, ..., W_t^d)_{0\le t\le{T}} $ be a $ d $-dimensional Brownian motion on a probability space $ (\Omega, \mathcal{F}, \mathbb{P}) $. Denote by $ (\mathcal{F}_t) $ the augmented filtration generated by $ (W_t) $.

    Let $ \mathbb{S}^n $ be the set of symmetric $ n\times n $ real matrices; $ L_{\mathcal{F}}^2(\Omega, \mathbb{R}^l) $ be the set of square-integrable random variables; $ L_{\mathcal{F}}^2(t, T;\mathbb{R}^n) $ be the set of $ \{\mathcal{F}_s\}_{s\in[t, T]} $-adapted square-integrable processes; and $ L_{\mathcal{F}}^2(\Omega; C(t, T;\mathbb{R}^n)) $ be the set of continuous $ \{\mathcal{F}_s\}_{s\in[t, T]} $-adapted square-integrable processes.

    We consider a continuous-time, $ n $-dimensional nonhomogeneous linear controlled system:

    $ dX_s = [A_sX_s+B_{1,s}'u_{1,s}+B_{2,s}'u_{2,s}+b_s]ds+\sum\limits_{j = 1}^d[C_s^jX_s+D_{1,s}^ju_{1,s}+D_{2,s}^ju_{2,s}+\sigma_s^j]dW_s^j, \\ X_0 = x_0. $ (2.1)

    Here $ A $ is a bounded deterministic function on $ [0, T] $ with value in $ \mathbb{R}^{n\times n} $. The other parameters $ B_1, B_2, C, D_1, D_2 $ are all essentially bounded adapted processes on $ [0, T] $ with values in $ \mathbb{R}^{l\times n}, \mathbb{R}^{l\times n}, \mathbb{R}^{n\times n}, \mathbb{R}^{n\times l}, \mathbb{R}^{n\times l} $, respectively; $ b $ and $ \sigma^j $ are stochastic processes in $ L^2_{\mathcal{F}}(0, T;\mathbb{R}^n) $. The processes $ u_i\in L^2_{\mathcal{F}}(0, T;\mathbb{R}^l), \ i = 1, 2 $ are the controls, and $ X $ is the state process valued in $ \mathbb{R}^{n} $. Finally, $ x_0\in\mathbb{R}^{n} $ is the initial state. It is obvious that for any controls $ u_i\in L^2_{\mathcal{F}}(0, T;\mathbb{R}^l), \ i = 1, 2 $, there exists a unique solution $ X\in L^2_{\mathcal{F}}(\Omega, C(0, T;\mathbb{R}^n)) $.

    As time evolves, we need to consider the controlled system starting from time $ t\in[0, T] $ and state $ x_t\in L^2_{\mathcal{F}_t}(\Omega; \mathbb{R}^n) $:

    $ dX_s = [A_sX_s+B_{1,s}'u_{1,s}+B_{2,s}'u_{2,s}+b_s]ds+\sum\limits_{j = 1}^d[C_s^jX_s+D_{1,s}^ju_{1,s}+D_{2,s}^ju_{2,s}+\sigma_s^j]dW_s^j, \\ X_t = x_t. $ (2.2)

    For any controls $ u_i\in L^2_{\mathcal{F}}(0, T;\mathbb{R}^l), \ i = 1, 2 $, there exists a unique solution $ X^{t, x_t, u_1, u_2}\in L^2_{\mathcal{F}}(\Omega, C(0, T;\mathbb{R}^n)) $.

    We consider a two-person differential game problem. At any time $ t $ with the system state $ X_t = x_t $, the $ i $-th ($ i = 1, 2 $) person's aim is to minimize her cost (if maximize, we can times the following function by $ -1 $):

    $ Ji(t,xt;u1,u2)=12EtTt[Qi,sXs,Xs+Ri,sui,s,ui,s]ds+12Et[GiXT,XT]12hiEt[XT],Et[XT]λixt+μi,Et[XT] $ (2.3)

    over $ u_1, u_2\in L_{\mathcal{F}}^2(t, T;\mathbb{R}^l) $, where $ X = X^{t, x_t, u_1, u_2} $, and $ \mathbb{E}_t[\cdot] = \mathbb{E}[\cdot|\mathcal{F}_t] $. Here, for $ i = 1, 2 $, $ Q_i $ and $ R_i $ are both given essentially bounded adapted process on $ [0, T] $ with values in $ \mathbb{S}^n $ and $ \mathbb{S}^l $, respectively, $ G_i, h_i, \lambda_i, \mu_i $ are all constants in $ \mathbb{S}^n $, $ \mathbb{S}^n $, $ \mathbb{R}^{n\times n} $ and $ \mathbb{R}^n $, respectively. Furthermore, we assume that $ Q_i, R_i $ are non-negative definite almost surely and $ G_i $ are non-negative definite.

    Given a control pair $ (u_1^*, u_2^*) $. For any $ t\in[0, T), \epsilon > 0 $, and $ v_1, v_2\in L_{\mathcal{F}_t}^2(\Omega, \mathbb{R}^l) $, define

    $ ut,ϵ,vii,s=ui,s+vi1s[t,t+ϵ),s[t,T], i=1,2. $ (2.4)

    Because each person at time $ t > 0 $ wants to minimize his/her cost as we claimed before, we have

    Definition 2.1. Let $ (u_1^*, u_2^*)\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l)\times L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ be a given strategy pair, and let $ X^* $ be the state process corresponding to $ (u_1^*, u_2^*) $. The strategy pair $ (u_1^*, u_2^*) $ is called an equilibrium if

    $ limϵ0J1(t,Xt;ut,ϵ,v11,u2)J1(t,Xt;u1,u2)ϵ0, $ (2.5)
    $ limϵ0J2(t,Xt;u1,ut,ϵ,v22)J2(t,Xt;u1,u2)ϵ0, $ (2.6)

    where $ u_i^{t, \epsilon, v_i}, i = 1, 2 $ are defined by (2.4), for any $ t\in[0, T) $ and $ v_1, v_2\in L_{\mathcal{F}_t}^2(\Omega, \mathbb{R}^l) $.

    Remark. The above definition means that, in each time $ t $, the equilibrium is a static Nash equilibrium in a corresponding game.

    Let $ (u_1^*, u_2^*) $ be a fixed strategy pair, and let $ X^* $ be the corresponding state process. For any $ t\in[0, T) $, as a similar arguments of Theorem 5.1 in pp. 309 of [24], defined in the time interval $ [t, T] $, there exist adapted processes $ (p_i(\cdot; t), (k_i^j(\cdot; t)_{j = 1, 2, ..., d}))\in L_{\mathcal{F}}^2(t, T;\mathbb{R}^n)\times(L_{\mathcal{F}}^2(t, T;\mathbb{R}^n))^d $ and $ (P_i(\cdot; t), (K_i^j(\cdot; t)_{j = 1, 2, ..., d}))\in L_{\mathcal{F}}^2(t, T;\mathbb{S}^n)\times(L_{\mathcal{F}}^2(t, T;\mathbb{S}^n))^d $ for $ i = 1, 2 $ satisfying the following equations:

    $ {dpi(s;t)=[Aspi(s;t)+dj=1(Cjs)kji(s;t)+Qi,sXs]ds+dj=1kji(s;t)dWjs,s[t,T],pi(T;t)=GiXThiEt[XT]λiXtμi, $ (3.1)
    $ {dPi(s;t)={AsPi(s;t)+Pi(s;t)As+Qi,s+dj=1[(Cjs)Pi(s;t)Cjs+(Cjs)Kji(s;t)+Kji(s;t)Cjs]}ds+dj=1Kji(s;t)dWji,s[t,T],Pi(T;t)=Gi, $ (3.2)

    for $ i = 1, 2 $. From the assumption that $ Q_i $ and $ G_i $ are non-negative definite, it follows that $ P_i(s; t) $ are non-negative definite for $ i = 1, 2 $.

    Proposition 1. For any $ t\in[0, T), \epsilon > 0 $, and $ v_1, v_2\in L_{\mathcal{F}_t}^2(\Omega, \mathbb{R}^l) $, define $ u_i^{t, \epsilon, v_i}, i = 1, 2 $ by (2.4). Then

    $ J1(t,Xt;ut,ϵ,v11,u2)J1(t,Xt;u1,u2)=Ett+ϵt{Λ1(s;t),v1+12H1(s;t)v1,v1}ds+o(ϵ), $ (3.3)
    $ J2(t,Xt;u1,ut,ϵ,v22)J2(t,Xt;u1,u2)=Ett+ϵt{Λ2(s;t),v2+12H2(s;t)v2,v2}ds+o(ϵ), $ (3.4)

    where $ \Lambda_i(s; t) = B_{i, s}p_i(s; t)+\sum_{j = 1}^d(D_{i, s}^j)'k_i^j(s; t)+R_{i, s}u_{i, s}^* $ and $ H_i(s; t) = R_{i, s}+\sum_{j = 1}^d(D_{i, s}^j)'P_i(s; t)D_{i, s}^j $ for $ i = 1, 2 $.

    Proof. Let $ X^{t, \epsilon, v_1, v_2} $ be the state process corresponding to $ u_i^{t, \epsilon, v_i}, i = 1, 2 $. Then by standard perturbation approach (cf. [20,25] or pp. 126-128 of [24]), we have

    $ Xt,ϵ,v1,v2s=Xs+Yt,ϵ,v1,v2s+Zt,ϵ,v1,v2s,s[t,T], $ (3.5)

    where $ Y\equiv Y^{t, \epsilon, v_1, v_2} $ and $ Z\equiv Z^{t, \epsilon, v_1, v_2} $ satisfy

    $ {dYs=AsYsds+dj=1[CjsYs+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)]dWjs,s[t,T],Yt=0, $ (3.6)
    $ {dZs=[AsZs+B1,sv11s[t,t+ϵ)+B2,sv21s[t,t+ϵ)]ds+dj=1CjsZsdWjs,s[t,T],Zt=0. $ (3.7)

    Moreover, by Theorem 4.4 in [24], we have

    $ Et[sups[t,T)|Ys|2]=O(ϵ),Et[sups[t,T)|Zs|2]=O(ϵ2). $ (3.8)

    With $ A $ being deterministic, it follows from the dynamics of $ Y $ that, for any $ s\in[t, T] $, we have

    $ Et[Ys]=stEt[AsYτ]dτ=stAsEt[Yτ]dτ. $ (3.9)

    Hence we conclude that

    $ Et[Ys]=0s[t,T]. $ (3.10)

    By these estimates, we can calculate

    $ Ji(t,Xt;ut,ϵ,v11,ut,ϵ,v22)Ji(t,Xt;u1,u2)=12EtTt[<Qi,s(2Xs+Ys+Zs),Ys+Zs>+<Ri,s(2ui+vi),vi>1s[t,t+ϵ)]ds+Et[<GiXT,YT+ZT>]+12Et[<Gi(YT+ZT),YT+ZT>]<hiEt[XT]+λiXt+μi,Et[YT+ZT]>12<hiEt[YT+ZT],Et[YT+ZT]>=12EtTt[<Qi,s(2Xs+Ys+Zs),Ys+Zs>+<Ri,s(2ui+vi),vi>1s[t,t+ϵ)]ds+Et[<GiXThiEt[XT]λiXtμi,YT+ZT>+12<Gi(YT+ZT),YT+ZT>]+o(ϵ). $ (3.11)

    Recalling that $ (p_i(\cdot; t), k_i(\cdot; t)) $ and $ (P_i(\cdot; t), K_i(\cdot; t)) $ solve, respectively, BSDEs (3.1) and (3.2) for $ i = 1, 2 $, we have

    $ Et[<GiXThiEt[XT]λiXtμi,YT+ZT>]=Et[<pi(T;t),YT+ZT>]=Et[Ttd<pi(s;t),Ys+Zs>]=EtTt[<pi(s;t),As(Ys+Zs)+B1,sv11s[t,t+ϵ)+B2,sv21s[t,t+ϵ)><Aspi(s;t)+dj=1(Cjs)kji(s;t)+Qi,sXs,Ys+Zs>+dj=1<kji(s;t),Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)>]ds=EtTt[<Qi,sXs>+B1,spi(s;t)+dj=1(Dj1,s)kji(s;t),v11s[t,t+ϵ)+B2,spi(s;t)+dj=1(Dj2,s)kji(s;t),v21s[t,t+ϵ)]ds $ (3.12)

    and

    $ Et[12<Gi(YT+ZT),YT+ZT>]=Et[12<Pi(T;t)(YT+ZT),YT+ZT>]=Et[Ttd<Pi(s;t)(Ys+Zs),Ys+Zs>]=EtTt{<Pi(s;t)(Ys+Zs),As(Ys+Zs)+B1,sv11s[t,t+ϵ)+B2,sv21s[t,t+ϵ)>+<Pi(s;t)[As(Ys+Zs)+B1,sv11s[t,t+ϵ)+B2,sv21s[t,t+ϵ)],Ys+Zs><[AsPi(s;t)+Pi(s;t)As+Qi,s+dj=1((Cjs)Pi(s;t)Cjs+(Cjs)Kji(s;t)+Kji(s;t)Cjs)](Ys+Zs),Ys+Zs>+dj=1<Kji(s;t)(Ys+Zs),Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)>+dj=1<Kji(s;t)[Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)],Ys+Zs>+dj=1<Pi(s;t)[Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)],Cjs(Ys+Zs)+Dj1,sv11s[t,t+ϵ)+Dj2,sv21s[t,t+ϵ)>}ds=EtTt[<Qi,s(Ys+Zs),Ys+Zs>+dj=1<Pi(s;t)[Dj1,sv1+Dj2,sv2],Dj1,sv1+Dj2,sv2>1s[t,t+ϵ)]ds+o(ϵ) $ (3.13)

    Combining (3.11)-(3.13), we have

    $ Ji(t,Xt;ut,ϵ,v11,ut,ϵ,v22)Ji(t,Xt;u1,u2)=EtTt[12<Ri,s(2ui+vi),vi>1s[t,t+ϵ)+B1,spi(s;t)+dj=1(Dj1,s)kji(s;t),v11s[t,t+ϵ)+B2,spi(s;t)+dj=1(Dj2,s)kji(s;t),v21s[t,t+ϵ)+12dj=1<Pi(s;t)[Dj1,sv1+Dj2,sv2],Dj1,sv1+Dj2,sv2>1s[t,t+ϵ)]ds+o(ϵ). $ (3.14)

    Take $ i = 1 $, we let $ v_2 = 0 $, then $ u_2^{t, \epsilon, v_2} = u_2^* $, from (3.14), we obtain

    $ J1(t,Xt;ut,ϵ,v11,u2)J1(t,Xt;u1,u2)=EtTt{R1,su1+B1,sp1(s;t)+dj=1(Dj1,s)kj1(s;t),v11s[t,t+ϵ)+12[R1,s+dj=1(Dj1,s)P1(s;t)Dj1,s]v1,v1}ds=Ett+ϵt{<Λ1(s;t),v1>+12<H1(s;t)v1,v1>}ds+o(ϵ). $ (3.15)

    This proves (3.3), and similarly, we obtain (3.4).

    Because of $ R_{i, s} $ and $ P_i(s; t), i = 1, 2 $ are non-negative definite, $ H_i(s; t), \ i = 1, 2 $ are also non-negative definite. In view of (3.3)-(3.4), a sufficient condition for an equilibrium is

    $ EtTt|Λi(s;t)|ds<+,limstEt[Λi(s;t)]=0 a.s. t[0,T],i=1,2. $ (3.16)

    By an arguments similar to the proof of Proposition 3.3 in [21], we have the following lemma:

    Lemma 3.1. For any triple of state and control processes $ (X^*, u_1^*, u_2^*) $, the solution to BSDE (3.1) in $ L^2(0, T;\mathbb{R}^n)\times (L^2(0, T;\mathbb{R}^n))^d $ satisfies $ k_i(s; t_1) = k_i(s; t_2) $ for a.e. $ s\ge\max\{t_1, t_2\}, \; i = 1, 2 $. Furthermore, there exist $ \rho_i\in L^2(0, T;\mathbb{R}^l) $, $ \delta_i\in L^2(0, T;\mathbb{R}^{l\times n}) $ and $ \xi_i\in L^2(\Omega; C(0, T;\mathbb{R}^n)) $, such that

    $ Λi(s;t)=ρi(s)+δi(s)ξi(t),i=1,2. $ (3.17)

    Therefore, we have another characterization for equilibrium strategies:

    Proposition 2. Given a strategy pair $ (u_1^*, u_2^*)\in L^2(0, T;\mathbb{R}^l)\times L^2(0, T;\mathbb{R}^l) $. Denote $ X^* $ as the state process, and $ (p_i(\cdot; t), (k_i^j(\cdot; t)_{j = 1, 2, ..., d}))\in L_{\mathcal{F}}^2(t, T;\mathbb{R}^n)\times(L_{\mathcal{F}}^2(t, T;\mathbb{R}^n))^d $ as the unique solution for the BSDE (3.1), with $ k_i(s) = k_i(s; t) $ according to Lemma 3.1 for $ i = 1, 2 $ respectively. For $ i = 1, 2 $, letting

    $ Λi(s,t)=Bi,spi(s;t)+dj=1(Dj,s)k(s;t)j+Ri,sui,s,s[t,T], $ (3.18)

    then $ u^* $ is an equilibrium strategy if and only if

    $ Λi(t,t)=0,a.s.,a.e.t[0,T],i=1,2. $ (3.19)

    Proof. From (3.17), we have $ \Lambda_1(s; t) = \rho_1(s)+\delta_1(s)\xi_1(t) $. Since $ \delta_1 $ is essentially bounded and $ \xi_1 $ is continuous, we have

    $ \lim\limits_{\epsilon\downarrow0}\mathbb{E}_t\left[{1\over\epsilon}\int_t^{t+\epsilon}|\delta_1(s)(\xi_1(s)-\xi_1(t))|ds\right] \le c\lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[|\xi_1(s)-\xi_1(t)|]ds = 0, $

    and hence

    $ \lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_1(s;t)]ds = \lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_1(s;s)]ds. $

    Therefore, if (3.19) holds, we have

    $ \lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_1(s;t)]ds = \lim\limits_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_1(s;s)]ds = 0. $

    When $ i = 2 $, we can prove (3.19) similarly.

    Conversely, if (3.16) holds, then $ \lim_{\epsilon\downarrow0}{1\over\epsilon}\int_t^{t+\epsilon}\mathbb{E}_t[\Lambda_i(s; s)]ds = 0, i = 1, 2 $ leading to (3.19) by virtue of Lemma 3.4 of [21].

    The following is the main general result for the stochastic LQ differential game with time-inconsistency.

    Theorem 3.2. A strategy pair $ (u_1^*, u_2^*)\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l)\times L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ is an equilibrium strategy pair if the following two conditions hold for any time $ t $:

    (i) The system of SDEs

    $ {dXs=[AsXs+B1,su1,s+B2,su2,s+bs]ds+dj=1[CjsXs+Dj1,su1,s+Dj2,su2,s+σjs]dWjs,X0=x0,dp1(s;t)=[Asp1(s;t)+dj=1(Cjs)kj1(s;t)+Q1,sXs]ds+dj=1kj1(s;t)dWjs,s[t,T],p1(T;t)=G1XTh1Et[XT]λ1Xtμ1,dp2(s;t)=[Asp2(s;t)+dj=1(Cjs)kj2(s;t)+Q2,sXs]ds+dj=1kj2(s;t)dWjs,s[t,T],p2(T;t)=G2XTh2Et[XT]λ2Xtμ2, $ (3.20)

    admits a solution $ (X^*, p_1, k_1, p_2, k_2) $;

    (ii) $ \Lambda_i(s; t) = R_{i, s}u_{i, s}^*+B_{i, s}p_i(s; t)+\sum_{j = 1}^d(D_{i, s}^j)'k_i^j(s; t), i = 1, 2 $ satisfy condition (3.19).

    Proof. Given a strategy pair $ (u_1^*, u_2^*)\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l)\times L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ satisfying (i) and (ii), then for any $ v_1, v_2\in L_{\mathcal{F}_t}^2(\Omega, \mathbb{R}^l) $, define $ \Lambda_i, H_i, i = 1, 2 $ as in Proposition 1. We have

    $ limϵ0J1(t,Xt;ut,ϵ,v11,u2)J1(t,Xt;u1,u2)ϵ=limϵ0Ett+ϵt{<Λ1(s;t),v1>+12<H1(s;t)v1,v1>}dsϵlimϵ0Ett+ϵt<Λ1(s;t),v1>dsϵ=0, $ (3.21)

    proving the first condition of Definition 2.1, and the proof of the second condition is similar.

    Theorem 3.2 involve the existence of solutions to a flow of FBSDEs along with other conditions. The system (3.20) is more complicated than system (3.6) in [20]. As declared in [20], "proving the general existence for this type of FBSEs remains an outstanding open problem", it is also true for our system (3.20).

    In the rest of this paper, we will focus on the case when $ n = 1 $. When $ n = 1 $, the state process $ X $ is a scalar-valued rocess evolving by the dynamics

    $ dX_s = [A_sX_s+B_{1,s}'u_{1,s}+B_{2,s}'u_{2,s}+b_s]ds+[C_sX_s+D_{1,s}u_{1,s}+D_{2,s}u_{2,s}+\sigma_s]'dW_s, \\ X_0 = x_0, $ (3.22)

    where $ A $ is a bounded deterministic scalar function on $ [0, T] $. The other parameters $ B, C, D $ are all essentially bounded and $ \mathcal{F}_t $-adapted processes on $ [0, T] $ with values in $ \mathbb{R}^l, \mathbb{R}^d, \mathbb{R}^{d\times l} $, respectively. Moreover, $ b\in L_{\mathcal{F}}^2(0, T;\mathbb{R}) $ and $ \sigma\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^d) $.

    In this case, the adjoint equations for the equilibrium strategy become

    $ {dpi(s;t)=[Aspi(s;t)+(Cs)ki(s;t)+Qi,sXs]ds+ki(s;t)dWs,s[t,T],pi(T;t)=GiXThiEt[XT]λiXtμi, $ (3.23)
    $ {dPi(s;t)=[(2As+|Cs|2)Pi(s;t)+2CsK(s;t)+Qi,s]ds+Ki(s;t)dWs,s[t,T],Pi(T;t)=Gi, $ (3.24)

    for $ i = 1, 2 $. For convenience, we also state here the $ n = 1 $ version of Theorem 3.2:

    Theorem 3.3. A strategy pair $ (u_1^*, u_2^*)\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l)\times L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ is an equilibrium strategy pair if, for any time $ t\in[0, T) $,

    (i) The system of SDEs

    $ {dXs=[AsXs+B1,su1,s+B2,su2,s+bs]ds+[CsXs+D1,su1,s+D2,su2,s+σs]dWs,X0=x0,dp1(s;t)=[Asp1(s;t)+(Cs)k1(s;t)+Q1,sXs]ds+k1(s;t)dWs,s[t,T],p1(T;t)=G1XTh1Et[XT]λ1Xtμ1,dp2(s;t)=[Asp2(s;t)+(Cs)k2(s;t)+Q2,sXs]ds+k2(s;t)dWs,s[t,T],p2(T;t)=G2XTh2Et[XT]λ2Xtμ2, $ (3.25)

    admits a solution $ (X^*, p_1, k_1, p_2, k_2) $;

    (ii) $ \Lambda_i(s; t) = R_{i, s}u_{i, s}^*+B_{i, s}p_i(s; t)+(D_{i, s})'k_i(s; t), i = 1, 2 $ satisfy condition (3.19).

    The unique solvability of (3.25) remains a challenging open problem even for the case $ n = 1 $. However, we are able to solve this problem when the parameters $ A, B_1, B_2, C, D_1, D_2, b, \sigma, Q_1, Q_2, R_1 $ and $ R_2 $ are all deterministic functions.

    Throughout this section we assume all the parameters are deterministic functions of $ t $. In this case, since $ G_1, G_2 $ have been also assumed to be deterministic, the BSDEs (3.24) turns out to be ODEs with solutions $ K_i\equiv0 $ and $ P_i(s; t) = G_ie^{\int_s^T(2A_u+|C_u|^2)du}+\int_s^Te^{\int_s^T(2A_u+|C_u|^2)du}Q_{i, v}dv $ for $ i = 1, 2 $. Hence, the equilibrium strategy will be characterized through a system of coupled Riccati-type equations.

    As in classical LQ control, we attempt to look for a linear feedback equilibrium strategy pair. For such purpose, motivated by [20], given any $ t\in[0, T] $, we consider the following process:

    $ pi(s;t)=Mi,sXsNi,sEt[Xs]Γi,sXt+Φi,s,0tsT,i=1,2, $ (4.1)

    where $ M_i, N_i, \Gamma_i, \Phi_i $ are deterministic differentiable functions with $ \dot{M}_i = m_i, \dot{N}_i = n_i, \dot{\Gamma}_i = \gamma_i $ and $ \dot\Phi_i = \phi_i $ for $ i = 1, 2 $. The advantage of this process is to separate the variables $ X_s^*, \mathbb{E}_t[X_s^*] $ and $ X_t^* $ in the solutions $ p_i(s; t), i = 1, 2 $, thereby reducing the complicated FBSDEs to some ODEs.

    For any fixed $ t $, applying Ito's formula to (4.1) in the time variable $ s $, we obtain, for $ i = 1, 2 $,

    $ dp_i(s;t) = \{M_{i,s}(A_sX_s^*+B_{1,s}'u_{1,s}^*+B_{2,s}'u_{2,s}^*+b_s)\\+m_{i,s}X_s^*-N_{i,s}\mathbb{E}_t[A_sX_s^*+B_{1,s}'u_{1,s}^*+B_{2,s}'u_{2,s}^*+b_s] \\ \qquad -n_{i,s}\mathbb{E}_t[X_s^*]-\gamma_{i,s}X_t^*+\phi_{i,s}\}ds+M_{i,s}(C_sX_s^*+D_{1,s}u_{1,s}^*+D_{2,s}u_{2,s}^*+\sigma_s)'dW_s. $ (4.2)

    Comparing the $ dW_s $ term of $ dp_i(s; t) $ in (3.25) and (4.2), we have

    $ ki(s;t)=Mi,s[CsXs+D1,su1,s+D2,su2,s+σs],s[t,T],i=1,2. $ (4.3)

    Notice that $ k(s; t) $ turns out to be independent of $ t $.

    Putting the above expressions (4.1) and (4.3) of $ p_i(s; t) $ and $ k_i(s; t), i = 1, 2 $ into (3.19), we have

    $ R_{i,s}u_{i,s}^*+B_{i,s}[(M_{i,s}-N_{i,s}-\Gamma_{i,s})X_s^*+\Phi_{i,s}]+D_{i,s}'M_{i,s}[C_sX_s^*+D_{1,s}u_{1,s}^*+D_{2,s}u_{2,s}^*+\sigma_s]\\ = 0, \;s\in[0,T], $ (4.4)

    for $ i = 1, 2 $. Then we can formally deduce

    $ ui,s=αi,sXs+βi,s,i=1,2. $ (4.5)

    Let $ M_s = {{{\text{diag}}}}(M_{1, s}I_l, M_{2, s}I_l), N_s = {{{\text{diag}}}}(N_{1, s}I_l, N_{2, s}I_l), \Gamma_s = {{{\text{diag}}}}(\Gamma_{1, s}I_l, \Gamma_{2, s}I_l), \Phi_s = {{{\text{diag}}}}(\Phi_{1, s}I_l, \Phi_{2, s}I_l) $, $ R_s = {{{\text{diag}}}}(R_{1, s}, R_{2, s}), B_s = \left(B1,sB2,s\right), D_s = \left(D1,s,D2,s\right) $, $ u_s^* = \left(u1,su2,s\right), \alpha_s = \left(α1,sα2,s\right) $ and $ \beta_s = \left(β1,sβ2,s\right) $. Then from (4.4), we have

    $ Rsus+[(MsNsΓs)Xs+Φs]Bs+MsDs[CsXs+Ds(αsXs+βs)+σs]=0,s[0,T] $ (4.6)

    and hence

    $ αs=(Rs+MsDsDs)1[(MsNsΓs)Bs+MsDsCs], $ (4.7)
    $ βs=(Rs+MsDsDs)1(ΦsBs+MsDsσs). $ (4.8)

    Next, comparing the $ ds $ term of $ dp_i(s; t) $ in (3.25) and (4.2) (we supress the argument $ s $ here), we have

    $ M_i[AX^*+B'(\alpha X^*+\beta)+b]+m_iX^*-N_i\{A\mathbb{E}_t[X^*]+\\ B'\mathbb{E}_t[\alpha X^*+\beta]+b\} -n_i\mathbb{E}_t[X^*]-\gamma_iX_t^*+\phi_i \\ = -[A(M_iX^*-N_i\mathbb{E}_t[X^*]-\Gamma_iX_t^*+\Phi_i)+M_iC'(CX^*+D(\alpha X^*+\beta)+\sigma)]. $ (4.9)

    Notice in the above that $ X^* = X_s^* $ and $ \mathbb{E}_t[X^*] = \mathbb{E}_t[X_s^*] $ due to the omission of $ s $. This leads to the following equations for $ M_i, N_i, \Gamma_i, \Phi_i $:

    $ \left\{ ˙Mi=(2A+|C|2)MiQi+Mi(B+CD)(R+MDD)1[(MNΓ)B+MDC],s[0,T],Mi,T=Gi; \right. $ (4.10)
    $ {˙Ni=2ANi+NiB(R+MDD)1[(MNΓ)B+MDC],s[0,T],Ni,T=hi; $ (4.11)
    $ {˙Γi=AΓi,s[0,T],Γi,T=λi; $ (4.12)
    $ {˙Φi={A[B(MN)+CDM](R+MDD)1B}Φi(MiNi)bMiCσ[(MiNi)B+MiCD](R+MDD)1MDσ,s[0,T],Φi,T=μi. $ (4.13)

    Though $ M_i, N_i, \Gamma_i, \Phi_i, i = 1, 2 $ are scalars, $ M, N, \Gamma, \Phi $ are now matrices because of two players. Therefore, the above equations are more complicated than the similar equations (4.5)–(4.8) in [20]. Before we solve the equations (4.10)–(4.13), we first prove that, if exist, the equilibrium constructed above is the unique equilibrium. Indeed, we have

    Theorem 4.1. Let

    $ L1={X(;):X(;t)L2F(t,T;R),supt[0,T]E[supst|X(s;t)|2]<+} $ (4.14)

    and

    $ L2={Y(;):Y(;t)L2F(t,T;Rd),supt[0,T]E[Tt|X(s;t)|2ds]<+}. $ (4.15)

    Suppose all the parameters $ A, B_1, B_2, C, D_1, D_2, b, \sigma, Q_1, Q_2, R_1 $ and $ R_2 $ are all deterministic.

    When $ (M_i, N_i, \Gamma_i, \Phi_i), i = 1, 2 $ exist, and for $ i = 1, 2 $, $ (p_i(s; t), k_i(s; t))\in\mathcal{L}_1\times \mathcal{L}_2 $, the equilibrium strategy is unique.

    Proof. Suppose there is another equilibrium $ (X, u_1, u_2) $, then the BSDE (3.1), with $ X^* $ replaced by $ X $, admits a solution $ (p_i(s; t), k_i(s), u_{i, s}) $ for $ i = 1, 2 $, which satisfies $ B_{i, s}p_i(s; s)+D_{i, s}'k_i(s)+R_{i, s}u_{i, s} = 0 $ for a.e. $ s\in[0, T] $. For $ i = 1, 2 $, define

    $ ˉpi(s;t)pi(s;t)[Mi,sXsNi,sEt[Xs]Γi,s+Φi,s], $ (4.16)
    $ ˉki(s;t)ki(s)Mi,s(CsXs+D1,su1,s+D2,su2,s+σs), $ (4.17)

    where $ k_i(s) = k_i(s; t) $ by Lemma 3.1.

    We define $ p(s; t) = {{{\text{diag}}}}(p_1(s; t)I_l, p_2(s; t)I_l) $, $ \bar{p}(s; t) = {{{\text{diag}}}}(\bar{p}_1(s; t)I_l, \bar{p}_2(s; t)I_l) $, and $ u = \left(u1,su2,s\right) $. By the equilibrium condition (3.19), we have

    $ 0 = \left(B1,sp1(s;s)+D1,sk1(s)+R1,su1,sB2,sp2(s;s)+D2,sk2(s)+R2,su2,s\right) \\ = p(s;s)B_s+\left(D1,sk1(s)D2,sk2(s)\right)+R_su_s \\ = [\bar{p}(s;s)+X_s(M_s-N_s-\Gamma_s)+\Phi_s]B_s+\left(D1,sˉk1(s)D2,sˉk2(s)\right) +\\M_sD_s'(C_sX_s+D_su_s+\sigma_s)+R_su_s \\ = \bar{p}(s;s)B_s+\left(D1,sˉk1(s)D2,sˉk2(s)\right) +X_s[(M_s-N_s-\Gamma_s)B_s+M_sD_s'C_s]+\Phi_sB_s+M_sD_s'\sigma_s \\ +(R_s+M_sD_s'D_s)u_s. $ (4.18)

    Since $ R_s+M_sD_s'D_s $ is invertible, we have

    $ us=(Rs+MsDsDs)1{ˉp(s;s)Bs+(D1,sˉk1(s)D2,sˉk2(s))+Xs[(MsNsΓs)Bs+MsDsCs]+ΦsBs+MsDsσs}, $ (4.19)

    and hence for $ i = 1, 2 $,

    $ d\bar{p}_i(s;t) = dp_i(s;t)-d[M_{i,s}X_s-N_{i,s}\mathbb{E}_t[X_s]-\Gamma_{i,s}+\Phi_{i,s}] \\ = -[A_sp_i(s;t)+C_{s}'k_i(s)+Q_{i,s}X_s]ds+k_i'(s)dW_s-d[M_{i,s}X_s-N_{i,s}\mathbb{E}_t[X_s]-\Gamma_{i,s}X_t+\Phi_{i,s}] \\ = -\bigg\{A_s\bar{p}_i(s;t)+C_s'\bar{k}_i(s)+A_s(M_{i,s}X_s-N_{i,s}\mathbb{E}_t[X_s]-\Gamma_{i,s}X_t+\Phi_{i,s}) \\ \ +C_s'M_{i,s}(C_sX_s+D_{1,s}u_{1,s}+D_{2,s}u_{2,s}+\sigma_s)\bigg\}ds \\ \ +[\bar{k}_i(s)-M_{i,s}(C_sX_s+D_{1,s}u_{1,s}+D_{2,s}u_{2,s}+\sigma_s)]'dW_s \\ -\bigg\{M_{i,s}[A_sX_s+B_s'u_s+b_s]+m_{i,s}X_s-N_{i,s}(A_s\mathbb{E}_t[X_s]+B_s'\mathbb{E}_t[u_s]+b_s) \\ \ -n_{i,s}\mathbb{E}_t[X_s]-\gamma_{i,s}X_t+\phi_{i,s}\bigg\}ds \\ -M_{i,s}[C_sX_s+D_su_s+\sigma_s]'dW_s \\ = -\Bigg\{A_s\bar{p}_i(s;t)+C_s'\bar{k}_i(s)-M_{i,s}(B_s'+C_s'D_s)(R_s+M_sD_s'D_s)^{-1}\left[B_s\bar{p}(s;s)+\left(D1,sˉk1(s)D2,sˉk2(s)\right)\right] \\ \qquad N_{i,s}B_s'(R_s+M_sD_s'D_s)^{-1}\mathbb{E}_t\left[B_s\bar{p}(s;s)+\left(D1,sˉk1(s)D2,sˉk2(s)\right)\right]\Bigg\}ds+\bar{k}_i(s)'dW_s, $ (4.20)

    where we suppress the subscript $ s $ for the parameters, and we have used the equations (4.10)–(4.13) for $ M_i, N_i, \Gamma_i, \Phi_i $ in the last equality. From (4.16) and (4.17), we have $ (\bar{p}_i, \bar{k}_i)\in\mathcal{L}_1\times\mathcal{L}_2 $. Therefore, by Theorem 4.2 of [21], we obtain $ \bar{p}(s; t)\equiv0 $ and $ \bar{k}(s)\equiv0 $.

    Finally, plugging $ \bar{p}\equiv\bar{k}\equiv0 $ into $ u $ of (4.19), we get $ u $ being the same form of feedback strategy as in (4.5), and hence $ (X, u_1, u_2) $ is the same as $ (X^*, u_1^*, u_2^*) $ which defined by (4.5) and (3.25).

    The solutions to (4.12) is

    $ Γi,s=λieTsAtdt, $ (4.21)

    for $ i = 1, 2 $. Let $ \tilde{N} = N_1/ N_2 $, from (4.11), we have $ \dot{\tilde{N}} = 0 $, and hence

    $ ˜Nh1h2,N2h2h1N1. $ (4.22)

    Equations (4.10) and (4.11) form a system of coupled Riccati-type equations for $ (M_1, M_2, N_1) $:

    $ {˙M1=[2A+|C|2+BΓ(R+MDD)1(B+DC)]M1Q1+(B+DC)(R+MDD)1M(B+DC)M1BN(R+MDD)1(B+DC)M1,M1,T=G1;˙M2=[2A+|C|2+BΓ(R+MDD)1(B+DC)]M2Q2+(B+DC)(R+MDD)1M(B+DC)M2BN(R+MDD)1(B+DC)M2,M2,T=G2;˙N1=2ANi+NiB(R+MDD)1[(MNΓ)B+MDC],N1,T=h1. $ (4.23)

    Finally, once we get the solution for $ (M_1, M_2, N_1) $, (4.13) is a simple ODE. Therefore, it is crucial to solve (4.23).

    Formally, we define $ \tilde{M} = {M_1\over M_2} $ and $ J_1 = {M_1\over N_1} $ and study the following equation for $ (M_1, \tilde{M}, J_1) $:

    $ {˙M1=[2A+|C|2+BΓ(R+MDD)1(B+DC)]M1Q1+(B+DC)(R+MDD)1M(B+DC)M1BN(R+MDD)1(B+DC)M1,M1,T=G1;˙˜M=(Q1M1Q2M1˜M)˜M,˜MT=G1G2;˙J1=[|C|2CD(R+MDD)1M(B+DC)+BΓ(R+MDD)1DC+Q1M1]J1CD(R+MDD)1Mdiag(Il,h2h1˜MIl)B,J1,T=G1h1, $ (4.24)

    where $ M = {{{\text{diag}}}}(M_1I_l, {M_1\over\tilde M}I_l), N = {{{\text{diag}}}}({M_1\over J_1}I_l, {h_2\over h_1}{M_1\over J_1}I_l) $ and $ \Gamma = {{{\text{diag}}}}(\lambda_1e^{\int_s^T A_tdt}I_l, \lambda_2e^{\int_s^T A_tdt}I_l) $.

    By a direct calculation, we have

    Proposition 3. If the system (4.24) admits a positive solution $ (M_1, \tilde{M}, J_1) $, then the system (4.23) admits a solution $ (M_1, M_2, N_1) $.

    In the following, we will use the truncation method to study the system (4.24). For convenienc, we use the following notations:

    $ ab=max{a,b},a,bR, $ (4.25)
    $ ab=min{a,b},a,bR. $ (4.26)

    Moreover, for a matrix $ M\in\mathbb{R}^{m\times n} $ and a real number $ c $, we define

    $ (Mc)i,j=Mi,jc,1im,1jn, $ (4.27)
    $ (Mc)i,j=Mi,jc,1im,1jn. $ (4.28)

    We first consider the standard case where $ R-\delta{I}\succeq0 $ for some $ \delta > 0 $. We have

    Theorem 4.2. Assume that $ R-\delta{I}\succeq0 $ for some $ \delta > 0 $ and $ G\ge h > 0 $. Then (4.24), and hence (4.23) admit unique solution if

    (i) there exists a constant $ \lambda\ge0 $ such that $ B = \lambda D'C $;

    (ii) $ \frac{|C|^2}{2l}D'D-(\lambda+1)D'CC'D\succeq0 $.

    Proof. For fixed $ c > 0 $ and $ K > 0 $, consider the following truncated system of (4.24):

    $ {˙M1=[2A+|C|2+BΓ(R+M+cDD)1(B+DC)]M1Q1+(B+DC)(R+M+cDD)1(M+cK)(B+DC)M1B(N+cK)(R+M+cDD)1(B+DC)M1,M1,T=G1;˙˜M=(Q1M1cQ2M1c˜MK)˜M,˜MT=G1G2;˙J1=λ(1)J1CD(R+M+cDD)1(M+cK)diag(Il,h2h1(˜MK)Il)B,J1,T=G1h1, $ (4.29)

    where $ M_{c}^+ = {{{\text{diag}}}}((M_1\vee0)I_l, {{M_1\vee0}\over\tilde M\vee c}I_l) $, $ N_c^+ = {{{\text{diag}}}}({{M_1\vee0}\over J_1\vee c}I_l, {h_2\over h_1}{{M_1\vee0}\over J_1\vee c}I_l) $ and

    $ λ(1)=|C|2CD(R+M+cDD)1(M+cK)(B+DC)+BΓ(R+M+cDD)1DC+Q1M1c. $ (4.30)

    Since $ R-\delta I\succeq0 $, the above system (4.29) is locally Lipschitz with linear growth, and hence it admits a unique solution $ (M_1^{c, K}, \tilde{M}^{c, K}, J_1^{c, K}) $. We will omit the superscript $ (c, K) $ when there is no confusion.

    We are going to prove that $ J_1\ge1 $ and that $ M_1, \tilde{M}\in[L_1, L_2] $ for some $ L_1, L_2 > 0 $ independent of $ c $ and $ K $ appearing in the truncation functions. We denote

    $ λ(2)=(2A+|C|2+BΓ(R+M+cDD)1(B+DC))(B+DC)(R+M+cDD)1(M+cK)(B+DC)B(N+cK)(R+M+cDD)1(B+DC). $ (4.31)

    Then $ \lambda^{(2)} $ is bounded, and $ M_1 $ satisfies

    $ ˙M1+λ(2)M1+Q1=0,M1,T=G1. $ (4.32)

    Hence $ M_1 > 0 $. Similarly, we have $ \tilde{M} > 0 $.

    The equation for $ \tilde{M} $ is

    $ {˙˜M=(Q1M1c˜MQ2M1c(˜MK)˜M,˜MT=G1G2; $ (4.33)

    hence $ \tilde{M} $ admits an upper bound $ L_2 $ independent of $ c $ and $ K $. Choosing $ K = L_2 $ and examining again (4.33), we deduce that there exists $ L_1 > 0 $ independent of $ c $ and $ K $ such that $ \tilde{M}\ge L_1 $. Indeed, we can choose $ L_1 = \min_{0\le t\le T}{Q_{1, t}\over Q_{2, t}}\wedge{G1\over G_2} $ and $ L_2 = \max_{0\le t\le T}{Q_{1, t}\over Q_{2, t}}\vee{G1\over G_2} $. As a result, choosing $ c < L_1 $, the terms $ M_c^+ $ can be replaced by $ M = {{{\text{diag}}}}(M_1I_l, {M_1\over\tilde M}I_l) $, respectively, in (4.29) without changing their values.

    Now we prove $ J\ge1 $. Denote $ \tilde{J} = J_1-1 $, then $ \tilde{J} $ satisfies the ODE:

    $ ˙˜J=λ(1)˜J[λ(1)+CD(R+MDD)1(MK)diag(Il,h2h1˜MIl)B]=λ(1)˜Ja(1), $ (4.34)

    where

    $ a^{(1)} = \lambda^{(1)}+C'D(R+MD'D)^{-1}(M\wedge K){{{\text{diag}}}}(I_l,{h_2\over h_1}\tilde{M}I_l)B \\ = |C|^2-(\lambda+1)C'D(R+MD'D)^{-1}(M\wedge K)D'C+C'D\Gamma(R+MD'D)^{-1}(M\wedge K)D'C++{Q_1\over M_1\vee c} \\ +C'D(R+MD'D)^{-1}(M\wedge K){{{\text{diag}}}}(I_l,{h_2\over h_1}\tilde{M}I_l)D'C \\ \ge|C|^2-(\lambda+1)C'D(R+MD'D)^{-1}MD'C+C'D\Gamma(R+MD'D)^{-1}(M\wedge K)D'C++{Q_1\over M_1\vee c} \\ = tr\left\{(R+MD'D)^{-1}{|C|^2+Q_1/(M_1\vee c)\over2l}(R+MD'D)\right\}-(\lambda+1)tr\{(R+MD'D)^{-1}D'CC'DM\} \\ = tr\left\{(R+MD'D)^{-1}H\right\} $ (4.35)

    with $ H = {|C|^2+Q_1/(M_1\vee c)\over2l}(R+D'DM)-(\lambda+1)D'CC'DM $.

    When $ c $ is small enough such that $ R-cD'D\succeq0 $, we have

    $ Q1M1c(R+MDD)Q1L2DD. $ (4.36)

    Hence,

    $ H(|C|22lDD(λ+1)DCCD)M0, $ (4.37)

    and consequently $ a^{(1)}\ge tr\{(R+MD'D)^{-1}H\}\ge0 $. We then deduce that $ \tilde{J}\ge0 $, and hence $ J_1\ge1 $. The boundness of $ M_1 $ can be proved by a similar argument in the proof of Theorem 4.2 in [20].

    Similarly, for the singular case $ R\equiv0 $, we have

    Theorem 4.3. Given $ G_1\ge h_1\ge1, R\equiv0 $, if $ B = \lambda D'C $ and $ |C|^2-(\lambda+1)C'D(D'D)^{-1}D'C\ge0 $, then (4.24) and (4.23) admit a unique positive solution.

    Concluding the above two theorems, we can present our main results of this section:

    Theorem 4.4. Given $ G_1\ge h_1\ge1 $ and $ B = \lambda D'C $. The (4.23) admits a unique positive solution $ (M_1, M_2, N_1) $ in the following two cases:

    (i) $ R-\delta I\succeq0 $ for some $ \delta > 0 $, $ \frac{|C|^2}{2l}D'D-(\lambda+1)D'CC'D\succeq0 $;

    (ii) $ R\equiv0 $, $ |C|^2-(\lambda+1)C'D(D'D)^{-1}D'C\ge0 $.

    Proof. Define $ p_i(s; t) $ and $ k_i(s; t) $ by (4.1) and (4.3), respectively. It is straightforward to check that $ (u_1^*, u_2^*, X^*, p_1, p_2, k_1, k_2) $ satisfies the system of SDEs (3.25). Moreover, in the both cases, we can check that $ \alpha_{i, s} $ and $ \beta_{i, s} $ in (4.5) are all uniformly bounded, and hence $ u_i^*\in L_{\mathcal{F}}^2(0, T;\mathbb{R}^l) $ and $ X^*\in L^2(\Omega; C(0, T;\mathbb{R})) $.

    Finally, denote $ \Lambda_i(s; t) = R_{i, s}u_{i, s}^*+p_i(s; t)B_{i, s}+(D_{i, s})'k_i(s; t), i = 1, 2 $. Plugging $ p_i, k_i, u_i^* $ define in (4.1), (4.3) and (4.5) into $ \Lambda_i $, we have

    $ \Lambda_i(s;t) = R_{i,s}u_{i,s}^*+(M_{i,s}X_s^*-N_{i,s}\mathbb{E}_t[X_s^*]-\Gamma_{i,s}X_t^*+\Phi_{i,s})B_{i,s} +\\ M_{i,s}D_{i,s}'[C_sX_s^*+D_{1,s}u_{1,s}^*+D_{2,s}u_{2,s}^*+\sigma_s] $ (4.38)

    and hence,

    $ \Lambda(t;t) \triangleq \left(Λ1(t;t)Λ2(t;t)\right) \\ = (R_t+M_tD_t'D_t)u_t^*+M_t(B_t+D_t'C_t)X_t^* -N_tB_t\mathbb{E}_t[X_t^*]-\Gamma_tB_tX_t^*+(\Phi_tB_t+M_tD_t'\sigma_t) \\ = -[(M_t-N_t-\Gamma_t)B_t+M_tD_t'C_t]X_t^*-(\Phi_tB_t+M_tD_t'\sigma_t) \\ \quad+M_t(B_t+D_t'C_t)X_t^*-N_tB_tX_t^*-\Gamma_tB_tX_t^*+(\Phi_tB_t+M_tD_t'\sigma_t) \\ = 0. $ (4.39)

    Therefore, $ \Lambda_i $ satisfies the seond condition in (3.19).

    We investigate a general stochastic linear-quadratic differential game, where the objective functional of each player include both a quadratic term of the expected state and a state-dependent term. As discussed in detail in Björk and Murgoci [17] and [18], the last two terms in each objective functional, respectively, introduce two sources of time inconsistency into the differential game problem. That is to say, the usual equilibrium aspect is not a proper way when the players at 0 cannot commit the players at all intermediate times to implement the decisions they have planed. With the time-inconsistency, the notion "equilibrium" needs to be extended in an appropriate way. We turn to adopt the concept of equilibrium strategy between the players at all different times, which is at any time, an equilibrium "infinitesimally" via spike variation. By applying the spike variation technique, We derive a sufficient condition for equilibrium strategies via a system of forward-backward stochastic differential equation. The unique solvability of such FBSDEs remains a challenging open problem.

    For a special case, when the state is one-dimensional and the coefficients are all deterministic, the equilibrium strategy will be characterized through a system of coupled Riccati-type equations. At last, we find an explicit equilibrium strategy, which is also proved be the unique equilibrium strategy.

    The research of the first author was partially supported by NSFC (No.12171426), the Natural Science Foundation of Zhejiang Province (No. Y19A010020) and the Fundamental Research Funds for the Central Universities (No. 2021FZZX001-01). The research of the second author was partially supported by NSFC (No. 11501325, No.71871129) and the China Postdoctoral Science Foundation (Grant No. 2018T110706, No.2018M642641). The authors would like to thank sincerely the referees and the associate editor for their helpful comments and suggestions.

    The authors declare there is no conflicts of interest.

    [1] Gottlieb B, Beitel LK, Trifiro MA (1999 Mar 24 Updated 2014 Jul 10.) Androgen Insensitivity Syndrome. GeneReviews® Internet. Seattle (WA): University of Washington, Seattle; 1993-2014 Available from: http://wwwncbinlmnihgov/books/NBK1429/.
    [2] Galani A, Kitsiou-Tzeli S, Sofokleous C, et al. (2008) Androgen insensitivity syndrome: clinical features and molecular defects. Hormones 7: 217-229. doi: 10.14310/horm.2002.1201
    [3] Boehmer ALM, Brüggenwirth H, van Assendelft C, et al. (2001) Genotype Versus Phenotype in Families with Androgen Insensitivity Syndrome. J Clin Endocrinol Metab 86: 4151-4160. doi: 10.1210/jcem.86.9.7825
    [4] Hiort O, Sinnecker GH, Holterhus PM, et al. (1998) Inherited and de novo androgen receptor gene mutations: investigation of single-case families. J Pediatr 132: 939-943. doi: 10.1016/S0022-3476(98)70387-7
    [5] Holterhus PM, Bruggenwirth HT, Hiort O, et al. (1997) Mosaicism due to a somatic mutation of the androgen receptor gene determines phenotype in androgen insensitivity syndrome. J Clin Endocrinol Metab 82: 3584-3589.
    [6] Holterhus P-M, Wiebel J, Sinnecker GHG, et al. (1999) Clinical and Molecular Spectrum of Somatic Mosaicism in Androgen Insensitivity Syndrome. Pediatr Res 46: 684-684. doi: 10.1203/00006450-199912000-00009
    [7] Boehmer AL, Brinkmann AO, Niermeijer MF, et al. (1997) Germ-line and somatic mosaicism in the androgen insensitivity syndrome: implications for genetic counseling. Am J Hum Genet 60: 1003-1006.
    [8] Köhler B, Lumbroso S, Leger J, et al. (2005) Androgen insensitivity syndrome: somatic mosaicism of the androgen receptor in seven families and consequences for sex assignment and genetic counseling. J Clin Endocrinol Metab 90: 106-111. doi: 10.1210/jc.2004-0462
    [9] Hughes IA, Werner R, Bunch T, et al. (2012) Androgen insensitivity syndrome. Semin Reprod Med 30: 432-442. doi: 10.1055/s-0032-1324728
    [10] Gottlieb B, Beitel LK, Nadarajah A, et al. (2012) The androgen receptor gene mutations database: 2012 update. Human Mutation 33: 887-894. doi: 10.1002/humu.22046
    [11] Sperling M (2014) Pediatric endocrinology fourth edition. Philadelphia, PA: Saunders/Elsevier.
    [12] Gottlieb B, Beitel LK, Trifiro MA (2001) Somatic mosaicism and variable expressivity. Trends Genet 17: 79-82. doi: 10.1016/S0168-9525(00)02178-8
    [13] Hook EB, Warburton D (2014) Turner syndrome revisited: review of new data supports the hypothesis that all viable 45,X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss. Hum Genet 133: 417-424. doi: 10.1007/s00439-014-1420-x
    [14] Zoppi S, Wilson CM, Harbison MD, et al. (1993) Complete testicular feminization caused by an amino-terminal truncation of the androgen receptor with downstream initiation. J Clin Invest 91: 1105-1112. doi: 10.1172/JCI116269
    [15] Trifiro M, Prior RL, Sabbaghian N, et al. (1991) Amber mutation creates a diagnostic MaeI site in the androgen receptor gene of a family with complete androgen insensitivity. Am J Med Genet 40: 493-499. doi: 10.1002/ajmg.1320400425
    [16] Hiort O, Wodtke A, Struve D, et al. (1994) Detection of point mutations in the androgen receptor gene using non-isotopic single strand conformation polymorphism analysis. German Collaborative Intersex Study Group. Hum Mol Genet 3: 1163-1166.
    [17] Batch JA, Williams DM, Davies HR, et al. (1992) Androgen receptor gene mutations identified by SSCP in fourteen subjects with androgen insensitivity syndrome. Hum Mol Genet 1: 497-503. doi: 10.1093/hmg/1.7.497
  • This article has been cited by:

    1. Jingen Yang, Sanling Yuan, Tonghua Zhang, Complex dynamics of a predator–prey system with herd and schooling behavior: with or without delay and diffusion, 2021, 0924-090X, 10.1007/s11071-021-06343-0
    2. Dawei Zhang, Binxiang Dai, Spreading and vanishing in a diffusive intraguild predation model with intraspecific competition and free boundary, 2019, 42, 0170-4214, 6917, 10.1002/mma.5797
    3. Dawei Zhang, Binxiang Dai, A free boundary problem for the diffusive intraguild predation model with intraspecific competition, 2019, 474, 0022247X, 381, 10.1016/j.jmaa.2019.01.050
    4. Dawei Zhang, Binxiang Dai, The diffusive intraguild predation model with intraspecific competition and double free boundaries, 2020, 0003-6811, 1, 10.1080/00036811.2020.1716971
    5. Zhenzhen Li, Binxiang Dai, ANALYSIS OF DYNAMICS IN A GENERAL INTRAGUILD PREDATION MODEL WITH INTRASPECIFIC COMPETITION, 2019, 9, 2156-907X, 1493, 10.11948/2156-907X.20180296
    6. Renji Han, Binxiang Dai, Yuming Chen, Pattern formation in a diffusive intraguild predation model with nonlocal interaction effects, 2019, 9, 2158-3226, 035046, 10.1063/1.5084948
    7. Juping Ji, Russell Milne, Hao Wang, Stoichiometry and environmental change drive dynamical complexity and unpredictable switches in an intraguild predation model, 2023, 86, 0303-6812, 10.1007/s00285-023-01866-z
    8. Zhenzhen Li, Binxiang Dai, Renji Han, Hopf Bifurcation in a Reaction–Diffusion–Advection Population Model with Distributed Delay, 2022, 32, 0218-1274, 10.1142/S0218127422502479
    9. Juping Ji, Lin Wang, Competitive exclusion and coexistence in an intraguild predation model with Beddington–DeAngelis functional response, 2022, 107, 10075704, 106192, 10.1016/j.cnsns.2021.106192
    10. Renji Han, Global classical solvability and stabilization in a reaction–diffusion intraguild predation model with chemotaxis, 2022, 73, 0044-2275, 10.1007/s00033-022-01777-x
    11. 小宁 王, Stability and Bifurcation Analysis of a Spatiotemporal Intraguild PredationModel with Fear Effect and Beddington-DeAngelis Functional Response, 2022, 12, 2160-7583, 2081, 10.12677/PM.2022.1212225
    12. Heping Jiang, Stable spatially inhomogeneous periodic solutions for a diffusive Leslie–Gower predator–prey model, 2024, 1598-5865, 10.1007/s12190-024-02018-2
    13. Renji Han, Sanaa Moussa Salman, Nonlinear dynamics and pattern formation in a space-time discrete diffusive intraguild predation model, 2024, 01672789, 134295, 10.1016/j.physd.2024.134295
    14. Suparna Dash, Kankan Sarkar, Subhas Khajanchi, Spatiotemporal Dynamics of an Intraguild Predation Model with Intraspecies Competition, 2024, 34, 0218-1274, 10.1142/S0218127424300301
    15. Liqiong Pu, Haotian Tang, Jiashan Zheng, Smooth Solution in an NN‐Dimensional Chemotaxis Model With Intraguild Predation, 2025, 0170-4214, 10.1002/mma.10694
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5455) PDF downloads(871) Cited by(1)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog