Citation: Karolína M. Šišková, Renáta Večeřová, Hana Kubičková, Magdaléna Bryksová, Klára Čépe, Milan Kolář. Revisiting spontaneous silver nanoparticles formation: a factor influencing the determination of minimum inhibitory concentration values?[J]. AIMS Environmental Science, 2015, 2(3): 607-622. doi: 10.3934/environsci.2015.3.607
[1] | Gregory N. Haidemenopoulos, Kostantinos N. Malizos, Anna D. Zervaki, and Kostantinos Bargiotas . Human bone ingrowth into a porous tantalum acetabular cup. AIMS Materials Science, 2017, 4(6): 1220-1230. doi: 10.3934/matersci.2017.6.1220 |
[2] | Bandar Abdullah Aloyaydi, Subbarayan Sivasankaran, Hany Rizk Ammar . Influence of infill density on microstructure and flexural behavior of 3D printed PLA thermoplastic parts processed by fusion deposition modeling. AIMS Materials Science, 2019, 6(6): 1033-1048. doi: 10.3934/matersci.2019.6.1033 |
[3] | Vincenzo Guarino, Tania Caputo, Rosaria Altobelli, Luigi Ambrosio . Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Materials Science, 2015, 2(4): 497-502. doi: 10.3934/matersci.2015.4.497 |
[4] | Raffaele Conte, Anna Di Salle, Francesco Riccitiello, Orsolina Petillo, Gianfranco Peluso, Anna Calarco . Biodegradable polymers in dental tissue engineering and regeneration. AIMS Materials Science, 2018, 5(6): 1073-1101. doi: 10.3934/matersci.2018.6.1073 |
[5] | Rémi G. Tilkin, Ana P. F. Monteiro, Julien G. Mahy, Jérome Hurlet, Nicolas Régibeau, Christian Grandfils, Stéphanie D. Lambert . Hybrid agarose gel for bone substitutes. AIMS Materials Science, 2022, 9(3): 430-445. doi: 10.3934/matersci.2022025 |
[6] | Miguel-Angel Rojas-Yañez, Claudia-Alejandra Rodríguez-González, Santos-Adriana Martel-Estrada, Laura-Elizabeth Valencia-Gómez, Claudia-Lucia Vargas-Requena, Juan-Francisco Hernández-Paz, María-Concepción Chavarría-Gaytán, Imelda Olivas-Armendáriz . Composite scaffolds of chitosan/polycaprolactone functionalized with protein of Mytilus californiensis for bone tissue regeneration. AIMS Materials Science, 2022, 9(3): 344-358. doi: 10.3934/matersci.2022021 |
[7] | Alp Karakoc, Ertugrul Taciroglu . Optimal automated path planning for infinitesimal and real-sized particle assemblies. AIMS Materials Science, 2017, 4(4): 847-855. doi: 10.3934/matersci.2017.4.847 |
[8] | Mario Ceddia, Bartolomeo Trentadue . A review of carbon fiber-reinforced polymer composite used to solve stress shielding in total hip replacement. AIMS Materials Science, 2024, 11(3): 449-462. doi: 10.3934/matersci.2024023 |
[9] | Juan Zhang, Huizhong Lu, Gamal Baroud . An accelerated and accurate process for the initial guess calculation in Digital Image Correlation algorithm. AIMS Materials Science, 2018, 5(6): 1223-1241. doi: 10.3934/matersci.2018.6.1223 |
[10] | Ananthanarayanan Rajeshkannan, Sumesh Narayan, A.K. Jeevanantham . Modelling and analysis of strain hardening characteristics of sintered steel preforms under cold forging. AIMS Materials Science, 2019, 6(1): 63-79. doi: 10.3934/matersci.2019.1.63 |
Let $ \mathfrak{A} $ denote the family of all functions $ f $ which are analytic in the open unit disc $ \mathcal{U} = \left \{ z:\left \vert z\right \vert < 1\right \} $ and satisfying the normalization
$ f(z)=z+∞∑n=2anzn, $
|
(1.1) |
while by $ \mathcal{S} $ we mean the class of all functions in $ \mathfrak{A} $ which are univalent in $ \mathcal{U}. $ Also let $ \mathcal{S}^{\ast } $ and $ \mathcal{C} $ denote the familiar classes of starlike and convex functions, respectively. If $ f $ and $ g $ are analytic functions in $ \mathcal{U }, $ then we say that $ f $ is subordinate to $ g, $ denoted by $ f\prec g, $ if there exists an analytic Schwarz function $ w $ in $ \mathcal{U} $ with $ w\left(0\right) = 0 $ and $ \left \vert w(z)\right \vert < 1 $ such that $ f(z) = g\left(w(z)\right). $ Moreover if the function $ g $ is univalent in $ \mathcal{U} $, then
$ f(z)≺g(z)⇔f(0)=g(0) and f(U)⊂g(U). $
|
For arbitrary fixed numbers $ A, $ $ B $ and $ b $ such that $ A $, $ B $ are real with $ -1\leq B < A\leq 1 $ and $ b\in \mathbb{C} \backslash \{0\} $, let $ \mathcal{P}[b, A, B] $ denote the family of functions
$ p(z)=1+∞∑n=1pnzn, $
|
(1.2) |
analytic in $ \mathcal{U} $ such that
$ 1+1b{p(z)−1}≺1+Az1+Bz. $
|
Then, $ p\in \mathcal{P}[b, A, B] $ can be written in terms of the Schwarz function $ w $ by
$ p(z)=b(1+Aw(z))+(1−b)(1+Bw(z))1+Bw(z). $
|
By taking $ b = 1-\sigma $ with $ 0\leq \sigma < 1, $ the class $ \mathcal{P} [b, A, B] $ coincides with $ \mathcal{P}[\sigma, A, B], $ defined by Polatoğ lu [17,18] (see also [2]) and if we take $ b = 1, $ then $ \mathcal{ P}[b, A, B] $ reduces to the familiar class $ \mathcal{P}[A, B] $ defined by Janowski [10]. Also by taking $ A = 1, $ $ B = -1 $ and $ b = 1 $ in $ \mathcal{P} [b, A, B] $, we get the most valuable and familiar set $ \mathcal{P} $ of functions having positive real part. Let $ \mathcal{S}^{\ast }[A, B, b] $ denote the class of univalent functions $ g $ of the form
$ g(z)=z+∞∑n=2bnzn, $
|
(1.3) |
in $ \mathcal{U} $ such that
$ 1+1b{zg′(z)g(z)−1}≺1+Az1+Bz, −1≤B<A≤1,z∈U. $
|
Then $ S^* [A, B] : = S^* [A, B, 1] $ and the subclass $ \mathcal{S}^{\ast}[1,-1,1] $ coincides with the usual class of starlike functions.
The set of Bazilevič functions in $ \mathcal{U} $ was first introduced by Bazilevič [7] in 1955. He defined the Bazilevič function by the relation
$ f(z)={(α+iβ)z∫0gα(t)p(t)tiβ−1dt}1α+iβ, $
|
where $ p\in \mathcal{P}, $ $ g\in \mathcal{S}^{\ast }, $ $ \beta $ is real and $ \alpha > 0 $. In 1979, Campbell and Pearce [8] generalized the Bazilevi č functions by means of the differential equation
$ 1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ, $
|
where $ \alpha +i\beta \in \mathbb{C} -\left \{ \text{negative integers}\right \}. $ They associate each generalized Bazilevič functions with the quadruple $ (\alpha, \beta, g, p). $
Now we define the following subclass.
Definition 1.1. Let $ g $ be in the class $ \mathcal{S}^{\ast }[A, B] $ and let $ p\in \mathcal{P} [b, A, B] $. Then a function $ f $ of the form $ \left(1.1 \right) $ is said to belong to the class of generalized Bazilevič function associated with the quadruple $ (\alpha, \beta, g, p) $ if $ f $ satisfies the differential equation
$ 1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ. $
|
where $ \alpha + i\beta \in \mathbb{C} - \{{\text {negative integers}} \} $.
The above differential equation can equivalently be written as
$ zf′(z)f(z)=(g(z)z)α(zf(z))α+iβp(z), $
|
or
$ z1−iβf′(z)f1−(α+iβ)gα(z)=p(z), z∈U. $
|
Since $ p\in \mathcal{P}[b, A, B], $ it follows that
$ 1+1b{z1−iβf′(z)f1−(α+iβ)gα(z)−1}≺1+Az1+Bz, $
|
where $ g\in \mathcal{S}^{\ast }[A, B]. $
Several research papers have appeared recently on classes related to the Janowski functions, Bazilevič functions and their generalizations, see [3,4,5,13,16,21,22].
The following are some results that would be useful in proving the main results.
Lemma 2.1. Let $ p\in \mathcal{P}[b, A, B] $ with $ b\neq 0, $ $ -1\leq B < A\leq 1, $ and has the form $ \left(1.2\right). $ Then for $ z = re^{i\theta }, $
$ 12π∫2π0|p(reiθ)|2dθ≤1+[|b|2(A−B)2−1]r21−r2. $
|
Proof. The proof of this lemma is straightforward but we include it for the sake of completeness. Since $ p\in \mathcal{P}[b, A, B] $, we have
$ p(z)=b˜p(z)+(1−b),˜p∈P[A,B]. $
|
Let $ \tilde{p}(z) = 1+\sum_{n = 1}^{\infty }c_{n}\, z^{n} $. Then
$ 1+∞∑n=1pnzn=b(1+∞∑n=1cnzn)+(1−b). $
|
Comparing the coefficients of $ z^{n} $, we have
$ pn=bcn. $
|
Since $ \left \vert c_{n}\right \vert \leq A-B $ [20], it follows that $ \left \vert p_{n}\right \vert \leq \left \vert b\right \vert (A-B) $ and so
$ 12π∫2π0|p(reiθ)|2dθ=12π∫2π0|∞∑n=0pnrneinθ|2dθ=12π∫2π0(∞∑n=0|pn|2r2n)dθ=∞∑n=0|pn|2r2n≤1+|b|2(A−B)2∞∑n=1r2n=1+|b|2(A−B)2r21−r2=1+(|b|2(A−B)2−1)r21−r2. $
|
Thus the proof is complete.
Lemma 2.2. [1] Let $ \Omega $ be the family of analytic functions $ \omega $ on $ \mathcal{U} $, normalized by $ \omega (0) = 0 $, satisfying the condition $ \left \vert \omega (z)\right \vert < 1 $. If $ \omega \in \Omega $ and
$ ω(z)=ω1z+ω2z2+⋯,(z∈U), $
|
then for any complex number $ t $,
$ |ω2−tω21|≤max{1,|t|}. $
|
The above inequality is sharp for $ \omega (z) = z $ or $ \omega (z) = z^{2} $.
Lemma 2.3. Let $ p(z) = 1+\sum \limits_{n = 1}^{\infty }p_{n}z^{n}\in \mathcal{P}[b, A, B], $ $ b\in \mathbb{C}\backslash \{0\}, $ $ -1\leq B < A\leq 1. $ Then for any complex number $ \mu $,
$ |p2−μp21|≤|b|(A−B)max{1,|μb(A−B)+B|}={|b|(A−B),if|μb(A−B)+B|≤1,|b|(A−B)|μb(A−B)+B|,if|μb(A−B)+B|≥1. $
|
This result is sharp.
Proof. Let $ p\in \mathcal{P}[b, A, B] $. Then we have
$ 1+1b{p(z)−1}≺1+Az1+Bz, $
|
or, equivalently
$ p(z)≺1+[bA+(1−b)B]z1+Bz=1+b(A−B)∞∑n=1(−B)n−1zn, $
|
which would further give
$ 1+p1z+p2z2+⋯=1+b(A−B)ω(z)+b(A−B)(−B)ω2(z)+⋯=1+b(A−B)(ω1z+ω2z2+⋯) +b(A−B)(−B)(ω1z+ω2z2+⋯)2+⋯=1+b(A−B)ω1z+b(A−B){ω2−Bω21}z2+⋯. $
|
Comparing the coefficients of $ z $ and $ z^{2} $, we obtain
$ p1=b(A−B)ω1p2=b(A−B)ω2−b(A−B)Bω21. $
|
By a simple computation,
$ |p2−μp21|=|b|(A−B)|ω2−(μb(A−B)+B)ω21|. $
|
Now by using Lemma 2.2 with $ t = \mu b(A-B)+B $, we get the required result. Equality holds for the functions
$ p∘(z)=1+(bA+(1−b)B)z21+Bz2=1+b(A−B)z2+b(A−B)(−B)z4+⋯,p1(z)=1+(bA+(1−b)B)z1+Bz=1+b(A−B)z+b(A−B)(−B)z2+⋯. $
|
Now we prove the following result by using a method similar to the one in Libera [12].
Lemma 2.4. Suppose that $ N $ and $ D $ are analytic in $ \mathcal{U} $ with $ N(0) = D(0) = 0 $ and $ D $ maps $ \mathcal{U} $ onto a many sheeted region which is starlike with respect to the origin. If $ \frac{N^{\prime }(z)}{D^{\prime }(z) }\in \mathcal{P}[b, A, B] $, then
$ N(z)D(z)∈P[b,A,B]. $
|
Proof. Let $ \frac{N^{\prime }(z)}{D^{\prime }(z)}\in \mathcal{P}[b, A, B]. $ Then by using a result due to Attiya [6], we have
$ |N′(z)D′(z)−c(r)|≤d(r),|z|<r,0<r<1, $
|
where $ c(r) = \frac{1-B\left[B+b\left(A-B\right) \right] r^{2}}{1-B^{2}r^{2}} $ and $ d\left(r\right) = \frac{\left \vert b\right \vert \left(A-B\right) r^{2}}{1-B^{2}r^{2}}. $ We choose $ A\left(z\right) $ such that $ \left \vert A\left(z\right) \right \vert < d\left(r\right) $ and
$ A(z)D′(z)=N′(z)−c(r)D′(z). $
|
Now for a fixed $ z_{0} $ in $ \mathcal{U} $, consider the line segment $ L $ joining $ 0 $ and $ D\left(z_{0}\right) $ which remains in one sheet of the starlike image of $ \mathcal{U} $ by $ D. $ Suppose that $ L^{-1} $ is the pre-image of $ L $ under $ D $. Then
$ |N(z0)−c(r)D(z0)|=|∫z00(N′(t)−c(r)D′(t))dt|=|∫L−1A(t)D′(t)dt|<d(r)∫L−1|dD(t)|=d(r)D(z0). $
|
This implies that
$ |N(z0)D(z0)−c(r)|<d(r). $
|
Therefore
$ N(z)D(z)∈P[b,A,B]. $
|
For $ A = -B = b = 1 $, we have the following result due to Libera [12].
Lemma 2.5. If $ N $ and $ D $ are analytic in $ \mathcal{U} $ with $ N(0) = D(0) = 0 $ and $ D $ maps $ \mathcal{U} $ onto a many sheeted region which is starlike with respect to the origin, then
$ N′(z)D′(z)∈P implies N(z)D(z)∈P. $
|
Lemma 2.6. [14] If $ -1\leq B < A\leq 1, \beta _{1} > 0 $ and the complex number $ \gamma $ satisfies $ {Re}\left \{ \gamma \right \} \geq -\beta_{1}\left(1-A\right) /\left(1-B\right), $ then the differential equation
$ q(z)+zq′(z)β1q(z)+γ=1+Az1+Bz,z∈U, $
|
has a univalent solution in $ \mathcal{U} $ given by
$ q(z)={zβ1+γ(1+Bz)β1(A−B)/Bβ1∫z0tβ1+γ−1(1+Bt)β1(A−B)/Bdt−γβ1,B≠0,zβ1+γeβ1Azβ1∫z0tβ1+γ−1eβ1Atdt−γβ1,B=0. $
|
If $ p\left(z\right) = 1+p_{1}z+p_{2}z^{2}+\cdots $ is analytic in $ \mathcal{U} $ and satisfies
$ p(z)+zp′(z)β1p(z)+γ≺1+Az1+Bz, $
|
then
$ p(z)≺q(z)≺1+Az1+Bz, $
|
and $ q\left(z\right) $ is the best dominant.
Before proving the results for the generalized Bazilevič functions, let us discuss a few results related to the function $ g \in S^*[A, B] $.
Theorem 3.1. Let $ g\in \mathcal{S}^{\ast }[A, B] $ and of the form $ \left(1.3\right) $. Then for any complex number $ \mu, $
$ |b3−μb22|≤(A−B)2max{1,|2(A−B)μ−(A−2B))|}. $
|
Proof. The proof of the result is the same as of Lemma 2.3. The result is sharp and equality holds for the function defined by
$ g1(z)={z(1+Bz2)A−B2B=z+12(A−B)z3+⋯,B≠0,zeA2z2=z+A2z3+⋯,B=0, $
|
or
$ g2(z)={z(1+Bz)A−BB,B≠0,zeAz,B=0,={z+(A−B)z2+12(A−B)(A−2B)z3+⋯,B≠0,z+Az2+12A2z3+⋯,B=0. $
|
Theorem 3.2. Let $ g\in \mathcal{S}^{\ast }[A, B]. $ Then for $ c > 0, $ $ \alpha > 0 $ and $ \beta $ any real number,
$ Gα(z)=c+α+iβzc+iβ∫z0tc+iβ−1gα(t)dt, $
|
(3.1) |
is in $ \mathcal{S}^{\ast }[A, B] $. In addition
$ RezG′(z)G(z)>δ=min|z|=1Req(z), $
|
where
$ q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,1αα+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0. $
|
Proof. From $ \left(3.1\right), $ we have
$ zc+iβGα(z)=(c+α+iβ)∫z0tc+iβ−1gα(t)dt. $
|
Differentiating and rearranging gives
$ (c+α+iβ)gα(z)Gα(z)=(c+iβ)+αp(z), $
|
(3.2) |
where $ p(z) = \frac{zG^{\prime }(z)}{G(z)} $. Then differentiating $ \left(3.2\right) $ logarithmically, we have
$ zg′(z)g(z)=p(z)+zp′(z)αp(z)+(c+iβ). $
|
Since $ g\in \mathcal{S}^{\ast }[A, B] $, it follows that
$ p(z)+zp′(z)αp(z)+(c+iβ)≺1+Az1+Bz. $
|
Now by using Lemma 2.6, for $ \beta _{1} = \alpha $ and $ \gamma = c+i\beta, $ we obtain
$ p(z)≺q(z)≺1+Az1+Bz, $
|
where
$ q(z)={zc+α+iβ(1+Bz)α(A−B)/Bα∫z0tc+α+iβ−1(1+Bt)α(A−B)/Bdt−c+iβα,B≠0,zc+α+iβeαAzα∫z0tc+α+iβ−1eαAtdt−c+iβα,B=0. $
|
Now by using the properties of the familiar hypergeometric functions proved in [15], we have
$ q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,α+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0. $
|
This implies that
$ p(z)≺q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,1αα+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0, $
|
and
$ RezG′(z)G(z)=Rep(z)>δ=min|z|=1Req(z). $
|
Theorem 3.3. Let $ g\in \mathcal{S}^{\ast }[A, B]. $ Then
$ S(z)=∫z0tc+iβ−1gα(t)dt, $
|
is $ (\alpha +c) $-valent starlike, where $ \alpha > 0, $ $ c > 0 $ and $ \beta $ is a real number.
Proof. Let $ D_{1}(z) = zS^{\prime }(z) = z^{c+i\beta }g^{\alpha }(z) $ and $ N_{1}(z) = S(z). $ Then
$ RezD′1(z)D1(z)=Re{(c+iβ)+αzg′(z)g(z)}=c+αRezg′(z)g(z). $
|
Since $ g\in \mathcal{S}^{\ast }[A, B]\subset \mathcal{S}^{\ast }\left(\frac{ 1-A}{1-B}\right) $, see [10], it follows that
$ RezD′1(z)D1(z)>c+α(1−A1−B)>0. $
|
Also
$ ReD′1(z)N′1(z)=Re{(c+iβ)+αzg′(z)g(z)}>c+α(1−A1−B)>0. $
|
Now by using Lemma 2.5$, $ we have
$ ReD1(z)N1(z)>0 or RezS′(z)S(z)>0. $
|
By the mean value theorem for harmonic functions,
$ RezS′(z)S(z)|z=0=12π∫2π0RereiθS′(reiθ)S(reiθ)dθ. $
|
Therefore
$ ∫2π0RereiθS′(reiθ)S(reiθ)dθ=2πRe{c+iβ+αzg′(z)g(z)}|z=0=2π(c+α). $
|
Now by using a result due to [9,p 212], we have that $ S $ is $ (c+\alpha) $-valent starlike function.
Now we are ready to discuss some results related to the defined generalized Bazilevič functions.
Theorem 4.1. Let $ f $ be a generalized Bazilevič function associated by the quadruple $ \left(\alpha, \beta, g, p\right), $ where $ g\in \mathcal{S} ^{\ast }[A, B] $ of the form $ \left(1.3\right) $ and $ p\in \mathcal{P} [b, A, B] $ of the form $ \left(1.2\right) $. Then for $ c > 0, $
$ F(z)=[c+α+iβzc∫z0tc−1fα+iβ(t)dt]1α+iβ $
|
(4.1) |
is a generalized Bazilevič function associated by the quadruple $ (\alpha, \beta, G, p), $ where $ G\in \mathcal{S}^{\ast }[A, B, \delta] $, as defined by $ \left(3.1\right). $
Proof. From $ \left(4.1\right) $, we have
$ Fα+iβ(z)=c+α+iβzc∫z0tc−1(f(t))α+iβdt. $
|
This implies that
$ zcFα+iβ(z)=(c+α+iβ)∫z0tc−1(f(t))α+iβdt. $
|
Differentiate both sides and rearrange, we get
$ czc−1Fα+iβ(z)+(α+iβ)zcFα+iβ−1(z)F′(z)=(c+α+iβ)zc−1(f(z))α+iβ, $
|
and
$ z1−iβF′(z)F1−(α+iβ)(z)=1α+iβ{(c+α+iβ)z−iβfα+iβ(z)−cz−iβFα+iβ(z)}. $
|
Now from $ (3.1) $, we have
$ z1−iβF′(z)F1−(α+iβ)Gα(z)=1α+iβ{(c+α+iβ)z−iβfα+iβ(z)−cz−iβ−c(c+α+iβ)∫z0tc−1(f(t))α+iβdt}(c+α+iβ)zc+iβ∫z0tc+iβ−1gα(t)dt=1α+iβ{(zcfα+iβ(z)−c∫z0tc−1(f(t))α+iβdt}∫z0tc+iβ−1gα(t)dt:=N(z)D(z). $
|
With this, note that
$ N′(z)D′(z)=1α+iβ{(czc−1fα+iβ(z)+(α+iβ)zcfα+iβ−1(z)f′(z)−czc−1(f(z))α+iβ}zc+iβ−1gα(z)=z1−iβf′(z)f1−(α+iβ)(z)gα(z), $
|
which implies $ \frac{N^{\prime }(z)}{D^{\prime }(z)} \in \mathcal{P}[b, A, B] $. By Theorem 3.3, we know that $ D(z) = \int_{0}^{z}t^{c+i\beta -1}g^{\alpha }(t)dt $ is $ (\alpha +c) $-valent starlike. Therefore by using Lemma 2.4, we obtain
$ z1−iβF′(z)F1−(α+iβ)(z)Gα(z)∈P[b,A,B]. $
|
This is the equivalent form of Definition 1.1. Hence the result follows.
Corollary 4.2. Let $ A = 1, B = -1 $ and $ \beta = 0 $ in Theorem 4.1. Then
$ Gα(z)=(α+c)zc∫z0tc−1gα(t)dt $
|
belong to $ S^{\ast }\left(\delta _{1}\right) $, where
$ δ1=−(1+2c)+√(1+2c)2+8α4α,(see [16]). $
|
Hence $ G $ is starlike when $ g\in \mathcal{S}^{\ast }, $ and
$ Fα(z)=(α+c)zc∫z0tc−1gα(t)dt $
|
belongs to the class of Bazilevič functions associated by the quadruple $ (\alpha, 0, G, p). $
Theorem 4.3. Let $ f $ of the form $ \left(1.1\right) $ be a generalized Bazilevič function associated by the quadruple $ (\alpha, \beta, g, p) $, with $ g\in \mathcal{S}^{\ast }[A, B] $ of the form $ \left(1.3\right) $ and $ p\in \mathcal{P}[b, A, B] $ of the form $ \left(1.2\right) $. Then
$ |a3−3+α+iβ2(2+α+iβ)a22|≤A−B2|2+α+iβ|[α+|b|max{2,|b(A−B)+2B|}]. $
|
This inequality is sharp.
Proof. Since $ f $ is a generalized Bazilevič function associated by the quadruple $ (\alpha, \beta, g, p) $, we have
$ 1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ. $
|
(4.2) |
As $ f, \ g $ and $ p $ respectively have the form $ \left(1.1\right), \left(1.3\right) $ and $ \left(1.2\right), $ it is easy to get
$ 1+zf′′(z)f′(z)=1+2a2z+(6a3−4a22)z2+⋯,zf′(z)f(z)=1+a2z+(2a3−a22)z2+⋯,zg′(z)g(z)=1+b2z+(2b3−b22)z2+⋯,zp′(z)p(z)=p1z+(2p2−p21)z2+⋯. $
|
Putting these values in $ \left(4.2\right) $ and comparing the coefficients of $ z, $ we obtain
$ (1+α+iβ)a2=αb2+p1. $
|
(4.3) |
Similarly by comparing the coefficients of $ z^{2} $ and rearranging, we have
$ 2(2+α+iβ)a3=α(2b3−b22)+2p2−p21+a22(3+α+iβ). $
|
(4.4) |
From $ \left(4.4\right) $, we have
$ |a3−3+α+iβ2(2+α+iβ)a22|=|α(b3−12b22)+(p2−12p21)2+α+iβ|≤α|b3−12b22||2+α+iβ|+|p2−12p21||2+α+iβ|. $
|
Now by using Theorem 3.1 and Lemma 2.3, both with $ \mu = \frac{1}{2} $, we obtain
$ |b3−12b22|≤A−B2max{1,|B|}=A−B2, $
|
and
$ |p2−12p21|≤|b|(A−B)max{1,12|b(A−B)+2B|}. $
|
Therefore, we have
$ |a3−3+α+iβ2(2+α+iβ)a22|≤A−B2|2+α+iβ|[α+2|b|max{1,12|b(A−B)+2B|}]. $
|
The equality
$ |b3−12b22|=A−B2 $
|
for $ B\neq 0 $ can be obtained for
$ g(z)={z(1+Bz)A−BB=z+(A−B)z2+12(A−B)(A−2B)z3+⋯,z(1+Bz2)A−B2B=z+12(A−B)z3+⋯. $
|
Similarly, the equality
$ |b3−12b22|=A2 $
|
for $ B = 0 $ can be obtained for the function $ g_{\ast }(z) = $ $ ze^{\frac{A}{2} z^{2}} = z+\frac{A}{2}z^{3}+\cdots. $ Also equality for the functional $ \left \vert p_{2}-\frac{1}{2}p_{1}^{2}\right \vert $ can be obtained by the functions
$ p∘(z)=1+(bA+(1−b)B)z1+Bz or p1(z)=1+(bA+(1−b)B)z21+Bz2. $
|
Corollary 4.4. For $ A = 1, $ $ B = -1 $ and $ b = 1 $, we have the result proved in [8]:
$ |a3−3+α+iβ2(2+α+iβ)a22|≤α+2|2+α+iβ|. $
|
For $ \alpha = 1 $, $ \beta = 0 $, we have $ f\in \mathcal{K} $, the class of close-to-convex functions, and
$ |a3−23a22|≤1. $
|
The latter result has been proved in [11].
Theorem 4.5. Let $ f $ of the form $ \left(1.1\right) $ be a generalized Bazilevič function associated by the quadruple $ (\alpha, \beta, g, p) $, with $ g\in \mathcal{S}^{\ast }[A, B] $ and of the form $ \left(1.3\right) $ and $ p\in \mathcal{P}[b, A, B] $ of the form $ \left(1.2\right) $. Then
(i)
$ |a2|≤(A−B)(α+|b|)|1+α+iβ|. $
|
(ii) If $ \alpha = 0, $ then
$ |a3|≤|b|(A−B)|2+iβ|max{1,|b(A−B)2(1−(3+iβ)(1+iβ)2)+B|}. $
|
Both the above inequalities are sharp.
Proof. (ⅰ) From $ \left(4.3\right) $, we have
$ (1+α+iβ)a2=αb2+p1. $
|
This implies that
$ |a2|≤α|b2|+|p1||1+α+iβ|. $
|
By using the coefficient bound for $ \mathcal{S}^{\ast }[A, B] $ along with the coefficient bound of $ \mathcal{P}[b, A, B] $, we have
$ |b2|≤A−B and |p1|≤|b|(A−B). $
|
This implies that
$ |a2|≤(α+|b|)(A−B)|1+α+iβ|. $
|
Equality can be obtained by the functions
$ g∘(z)=z(1+Bz)A−BB, B≠0 and p∘(z)=1+[bA+(1−b)B]z1+Bz. $
|
(ⅱ) Let $ \alpha = 0. $ Then from $ \left(4.3\right) $ and $ \left(4.4 \right) $, we have
$ (2+iβ)a3=p2−12p21+(3+iβ)p212(1+iβ)2=p2−12(1−(3+iβ)(1+iβ)2)p21. $
|
This implies
$ |a3|=1|2+iβ||p2−μp21|, $
|
where $ \mu = \frac{1}{2}-\frac{(3+i\beta)}{2\left(1+i\beta \right) ^{2}}. $ Now by using Lemma 2.3, we obtain
$ |a3|≤|b|(A−B)|2+iβ|max{1,|b(A−B)2(−2−β2+iβ)(1+iβ)2)+B|}. $
|
Sharpness can be attained by the functions
$ p0(z)=1+(bA+(1−b)B)z21+Bz2=1+b(A−B)z2+b(A−B)(−B)z4+⋯,p1(z)=1+(bA+(1−b)B)z1+Bz=1+b(A−B)z+b(A−B)(−B)z2+⋯. $
|
Corollary 4.6. For $ A = 1, $ $ B = -1 $ and $ b = 1 $, we have
$ |a2|≤2(α+1)|1+α+iβ|, $
|
and
$ |a3|=2|2+iβ|max{1,|(3+iβ)(1+iβ)2|}. $
|
In the final part of this paper, we look at some results for the generalized Bazilevič functions associated with $ \beta = 0 $.
Let $ C_{r} $ denote the closed curve which is the image of the circle $ \left \vert z\right \vert = r < 1 $ under the mapping $ w = $ $ f(z) $, and $ L_{r}\left(f(z)\right) $ denote the length of $ C_{r} $. Also let $ M(r) = {\max} _{\left \vert z\right \vert = r} \left \vert f(z)\right \vert \ $and $ m(r) = { \min}_{\left \vert z\right \vert = r} \left \vert f(z)\right \vert $. We now prove the following result.
Theorem 4.7. Let $ f $ be a generalized Bazilevič function associated by the quadruple $ (\alpha, 0, g, p) $. Then for $ B\neq 0 $,
$ Lr(f(z))≤{C(α,b,A,B)M1−α(r)[1−(1−r)α(A−BB)],0<α≤1,C(α,b,A,B)m1−α(r)[1−(1−r)α(A−BB)],α>1, $
|
where
$ C(α,b,A,B)=2π|b|B[(A−B)+1α]. $
|
Proof. As $ f $ is a generalized Bazilevič function associated by the quadruple $ (\alpha, 0, g, p) $, we have
$ zf′(z)=f1−α(z)gα(z)p(z), $
|
where $ g\in \mathcal{S}^{\ast }[A, B] $ and $ p\in \mathcal{P}[b, A, B] $. Since for $ z = re^{i\theta } $, $ 0 < r < 1 $,
$ Lr(f(z))=∫2π0|zf′(z)|dθ, $
|
we have for $ 0 < \alpha \leq 1 $,
$ Lr(f(z))=∫2π0|f1−α(z)gα(z)p(z)|dθ,≤M1−α(r)∫2π0∫r0|αg′(z)gα−1(z)p(z)+gα(z)p′(z)|dsdθ,≤M1−α(r){∫2π0∫r0α|gα(z)|s|h(z)p(z)|dsdθ+∫2π0∫r0|gα(z)|s|zp′(z)|dsdθ}, $
|
where $ \frac{zg^{\prime }(z)}{g(z)} = h\left(z\right) \in \mathcal{P}[A, B] $. Now by using the distortion theorem for Janowski starlike functions when $ B\neq 0 $ (see [10]) and the Cauchy-Schwarz inequality, we have
$ Lr(f(z))≤M1−α(r)×∫r0sα−1(1−|B|s)αB−AB{α√∫2π0|h(z)|2dθ√∫2π0|p(z)|2dθ+∫2π0|zp′(z)|dθ}ds. $
|
Now by using Lemma 2.1 for both the classes $ \mathcal{P}[b, A, B] $ and $ \mathcal{P}[A, B] $, along with the result
$ ∫2π0|zp′(z)|≤|b|(A−B)r1−B2r2, $
|
for $ p\in \mathcal{P}[b, A, B] $ (see [19]), we can write
$ Lr(f(z))≤2πM1−α(r)×∫r0sα−1(1−|B|s)αB−AB{α√1+[(A−B)2−1]s21−s2√1+[|b|2(A−B)2−1]s21−s2+|b|(A−B)s1−B2s2}ds. $
|
Since $ 1-\left \vert B\right \vert r\geq 1-r $ and $ 1- B^2 r^2\geq 1-r^2 $,
$ Lr(f(z))≤2πM1−α(r)[|b|(A−B)2+|b|(A−B)]∫r01(1−s)αB−AB+1ds=C(α,b,A,B)M1−α(r)[1−(1−r)α(A−BB)], $
|
where $ C(\alpha, b, A, B) = 2\pi |b| [(A-B) + (1/ \alpha)] B $.
When $ \alpha > 1, $ we can prove similarly as above to get
$ Lr(f(z))≤C(α,b,A,B)m1−α(r)[1−(1−r)α(A−BB)]. $
|
Corollary 4.8. For $ g\in \mathcal{S}^{\ast } $ and $ p\in \mathcal{P}(b), $ we have
$ Lr(f(z))≤{2π|b|(2+1α)M1−α(r)[1(1−r)2α−1],0<α≤1,2π|b|(2+1α)m1−α(r)[1(1−r)2α−1],α>1. $
|
Theorem 4.9. Let $ f $ be a generalized Bazilevič function associated by the quadruple $ (\alpha, 0, g, p) $, where $ g\in \mathcal{S}^{\ast }[A, B] $ and $ p\in \mathcal{P} [b, A, B] $. Then for $ B\neq 0 $,
$ |an|≤{1n|b|B(A−B+1α)limr→1−M1−α(r),0<α≤1,1n|b|B(A−B+1α)limr→1−m1−α(r),α>1. $
|
Proof. By Cauchy's theorem for $ z = re^{i\theta }, $ $ n\geq 2, $ we have
$ nan=12πrn∫2π0zf′(z)e−inθdθ. $
|
Therefore
$ n|an|≤12πrn∫2π0|zf′(z)|dθ,=12πrnLr(f(z)). $
|
By using Theorem 4.7 for the case $ 0 < \alpha \leq 1, $ we have
$ n|an|≤12πrn(2π|b|B(A−B+1α)M1−α(r)[1−(1−r)αA−BB]). $
|
Hence, by taking $ r $ approaches $ 1^{-} $,
$ |an|≤1n|b|B(A−B+1α)limr→1−M1−α(r). $
|
For $ \alpha > 1, $ we have
$ |an|≤1n|b|B(A−B+1α)limr→1−m1−α(r). $
|
Theorem 4.10. Let $ f $ be a generalized Bazilevič function represented by the quadruple $ (\alpha, 0, g, p), $ where $ g\in \mathcal{S}^{\ast }[A, B] $ and $ p\in \mathcal{P }[b, A, B]. $ Then for $ B\neq 0 $,
$ |f(z)|α≤α(1−B2)+(A−B)(|b|−BRe(b))1−Brα2F1(α(1−AB)+1;α;α+1;|B|r). $
|
Proof. Since $ f $ is a generalized Bazilevič function associated by the quadruple $ (\alpha, 0, g, p), $ by definition, we have
$ zf′(z)f1−α(z)gα(z)=p(z), $
|
where $ g\in \mathcal{S}^{\ast }[A, B] $ and $ p\in \mathcal{P}[b, A, B]. $ This implies that
$ fα(z)=α∫z0t−1gα(t)p(t)dt, $
|
and so
$ |f(z)|α≤α∫|z|0|t−1||gα(t)||p(t)|d|t|,=α∫r0s−1|gα(t)||p(t)|ds. $
|
Now by using the results
$ |g(z)|≤r(1−|B|r)A−BB,B≠0, (see [10]), $
|
and
$ |p(z)|≤1+|b|(A−B)r−B[(A−B)Re{b}+B]r21−|B|2r2, (see [6]), $
|
we have
$ |f(z)|α≤α∫r0s−1sα(1−|B|s)α(1−AB)1+|b|(A−B)s−B[(A−B)Re{b}+B]s21−|B|2s2ds≤α(1−B2)+(A−B)(|b|−BRe{b})1+|B|∫r0sα−1(1−|B|s)−α(1−AB)−1ds. $
|
Putting $ s = ru, $ we have
$ |f(z)|α≤α(1−B2)+(A−B)(|b|−BRe{b})1−Brα∫10uα−1(1−|B|ru)−α(1−AB)−1du=(1−B2)+(A−B)(|b|−BRe{b})1−Brα 2F1(α(1−AB)+1;α;α+1;|B|r), $
|
where $ {_{2}}F_{1} \left(a; b;c; z\right) $ is the hypergeometric function.
Corollary 4.11. For $ g\in \mathcal{S}^{\ast \mathit{\text{}}} $and $ p\in \mathcal{P}, $ we have
$ |f(z)|α≤2αrα2F1(2α+1;α;α+1;r). $
|
The research for the fourth author is supported by the USM Research University Individual Grant (RUI) 1001/PMATHS/8011038.
The authors declare that they have no conflict of interests.
[1] |
Liu HH., Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48: 3281-3292. doi: 10.1021/es405132z
![]() |
[2] | Lopez-Serrano A, Olivas RM, Landaluze JS, et al. (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6: 38-56. |
[3] |
Li DW, Zhai WL, Li YT, Long YT (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181: 23-43. doi: 10.1007/s00604-013-1115-3
![]() |
[4] |
Lalley J, Dionysiou DD, Varma RS, et al. (2014) Silver-based antibacterial surfaces for drinking water disinfection - an overview. Curr Opin Chem Eng 3: 25-29. doi: 10.1016/j.coche.2013.09.004
![]() |
[5] |
Han Ch, Likodimos V, Khan JA, et al. (2014) UV-visible Light-activated Ag-decorated, monodispersed TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environ Sci Pollut Res 21: 11781-11793. doi: 10.1007/s11356-013-2233-5
![]() |
[6] |
Windler I, Height M, Nowack B (2013) Comparative evaluation of antimicrobials for textile applications. Environ Int 53: 62-73. doi: 10.1016/j.envint.2012.12.010
![]() |
[7] |
Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43: 8113-8. doi: 10.1021/es9018332
![]() |
[8] |
Adegboyega NF, Sharma VK, Siskova K, et al. (2013) Interactions of Aqueous Ag+ with Fulvic Acids: Mechanisms of Silver Nanoparticle Formation and Investigation of Stability. Environ Sci Technol 47: 757-764. doi: 10.1021/es302305f
![]() |
[9] |
Akaighe N, MacCuspie RI, Navarro DA, et al. (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45: 3895-3901. doi: 10.1021/es103946g
![]() |
[10] |
Nadagouda MN, Iyanna N, Lalley J, et al. (2014) Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustanaible Chem Eng 2: 1717-1723. doi: 10.1021/sc500237k
![]() |
[11] |
Markova Z, Siskova KM, Filip J, et al. (2013) Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ Sci Technol 47: 5285-5293. doi: 10.1021/es304693g
![]() |
[12] | Sigma-Aldrich. Inc., Product Information, 70192 Mueller Hinton Broth (M-H Broth). Available from: http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Fluka/Datasheet/70192dat.pdf |
[13] |
Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109: 2422-2436. doi: 10.1002/bit.24570
![]() |
[14] |
Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189-190: 1-20. doi: 10.1016/j.cis.2012.12.001
![]() |
[15] |
Suman TY, Radhika Rajasree SR, Kanchana A, et al. (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B 106: 74-78. doi: 10.1016/j.colsurfb.2013.01.037
![]() |
[16] |
Kharissova OV, Dias HVR, Kharisov BI, et al. (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31: 240-248. doi: 10.1016/j.tibtech.2013.01.003
![]() |
[17] |
Hu B, Wang SB, Wang K, et al. (2008) Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J Phys Chem C 112: 11169-11174. doi: 10.1021/jp801267j
![]() |
[18] |
Alvarez-Puebla RA, Aroca RF (2009) Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering. Anal Chem 81: 2280-2295. doi: 10.1021/ac8024416
![]() |
[19] |
Khan Z, Talib A (2010) Growth of different morphologies (quantum dots to nanorod) of Ag-nanoparticles: role of cysteine concentration. Coll Surf B 76: 164-169. doi: 10.1016/j.colsurfb.2009.10.029
![]() |
[20] |
Rafey A, Shrivastavaa KBL, Iqbal SA, et al. (2011) Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J Colloid Interface Sci 354: 190-195. doi: 10.1016/j.jcis.2010.10.046
![]() |
[21] |
Jacob JA, Naumov S, Mukherjee T, et al. (2011) Preparation, characterization, surface modification and redox reactions of silver nanoparticles in the presence of tryptophan. Coll Surf B 87: 498-504. doi: 10.1016/j.colsurfb.2011.06.017
![]() |
[22] |
Sondi I, Goia DV, Matijevic E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260: 75-81. doi: 10.1016/S0021-9797(02)00205-9
![]() |
[23] | Nadagouda MN, Varma RS (2008) Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B2: catalytic polymerisation of aniline and pyrrole. J Nanomat 2008: 1-8. |
[24] |
Tan S, Erol M, Attygalle A, et al. (2007) Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir 23: 9836-9843. doi: 10.1021/la701236v
![]() |
[25] |
Frattini A, Pellegri N, Nicastro D, et al. (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94: 148-152. doi: 10.1016/j.matchemphys.2005.04.023
![]() |
[26] |
Xie J, Lee JY, Wang DIC, et al. (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1: 429-439. doi: 10.1021/nn7000883
![]() |
[27] | Stevanovic M, Savanovic I, Uskokovic V, et al. (2012) A new, simple, green, and one-pot four-component synthesis of bare and poly(alpha,gamma, L-glutamic acid)-capped silver nanoparticles. Colloid Polym Sci 190: 221-231. |
[28] |
Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(gamma-glutamic acid)-silver nitrate complex via chemical reduction process. Coll Surf B 59: 171-178. doi: 10.1016/j.colsurfb.2007.05.007
![]() |
[29] |
Vigneshwaran N, Nachane RP, Balasubramanya RH (2006) A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341: 2012-2018. doi: 10.1016/j.carres.2006.04.042
![]() |
[30] |
Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125: 13940-13941. doi: 10.1021/ja029267j
![]() |
[31] |
Tai C, Wang YH, Liu HS (2008) A green process for preparing silver nanoparticles using spinning disk reactor. AIChE J 54: 445-452. doi: 10.1002/aic.11396
![]() |
[32] |
Sun SK, Wang HF, Yan XP (2011) A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Chem Commun 47: 3817-3819. doi: 10.1039/c0cc04463f
![]() |
[33] |
Lee KJ, Browning LM, Nallathamby PD, et al. (2013) Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol 26: 904-917. doi: 10.1021/tx400087d
![]() |
[34] |
Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Ind Ed 52: 1636-1653. doi: 10.1002/anie.201205923
![]() |
[35] |
Sharma VK, Siskova KM, Zboril R, et al. (2014) Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv Colloid Interface Sci 204: 15-34. doi: 10.1016/j.cis.2013.12.002
![]() |
[36] |
Rai MK, Deshmukh SD, Ingle AP, et al. (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112: 841-852. doi: 10.1111/j.1365-2672.2012.05253.x
![]() |
[37] |
Li WR, Xie XB, Shi QS, et al. (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85: 1115-1122. doi: 10.1007/s00253-009-2159-5
![]() |
[38] |
Li WR, Xie XB, Shi QS, et al. (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24: 135-141. doi: 10.1007/s10534-010-9381-6
![]() |
[39] |
Lara HH, Ayala-Nunez NV, Turrent LCI, et al. (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26: 615-621. doi: 10.1007/s11274-009-0211-3
![]() |
[40] |
Lok CN, Ho CM, Chen R, et. al. (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5: 916-924. doi: 10.1021/pr0504079
![]() |
[41] |
Yang XY, Gondikas AP, Marinakos SM, et al. (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46: 1119-1127. doi: 10.1021/es202417t
![]() |
[42] |
Morones JR, Elechiguerra, JL, Camacho A, et al. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346. doi: 10.1088/0957-4484/16/10/059
![]() |
[43] | Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275: 177-182. |
[44] |
Xu H, Qu F, Xu H, et al. (2012) Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25: 45-53. doi: 10.1007/s10534-011-9482-x
![]() |
[45] |
Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42: 4583-4588. doi: 10.1021/es703238h
![]() |
[46] |
Xiu ZM, Zhang QB, Puppala HL, et al. (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12: 4271-4275. doi: 10.1021/nl301934w
![]() |
[47] |
El Badawy AM, Luxton TP, Silva RG, et al. (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44: 1260-1266. doi: 10.1021/es902240k
![]() |
[48] |
Siskova KM, Machala L, Tucek J, et al. (2013) Mixtures of L-amino acids as reaction medium for iron nanoparticles formation: the order of addition into ferrous salt solution matters. Int J Mol Sci 14: 19452-19473. doi: 10.3390/ijms141019452
![]() |
[49] |
Sloufova I, Siskova K, Vlckova B, et al. (2008) SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion. Phys Chem Chem Phys 10: 2233-2242. doi: 10.1039/b718178g
![]() |
[50] |
Siskova K, Becicka O, Safarova K, et al. (2013) HCl effect on two types of Ag nanoparticles utilizable in detection of low concentrations of organic species. Sustainable nanotechnology and the environment: advances and achievements 1124: 151-163. doi: 10.1021/bk-2013-1124.ch009
![]() |
[51] |
Sriramulu DD, Lunsdorf H, Lam JS, et al. (2005) Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54: 667-676. doi: 10.1099/jmm.0.45969-0
![]() |
[52] | Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B, Hoboken, New Jersey, USA, John Wiley & Sons, Inc., 26-84 and 388-392. |
[53] |
Moskovits M, Suh JS (1985) Confirmation of mono- and dicarboxylic acids adsorbed on silver surfaces. J Am Chem Soc 107: 6826-6829. doi: 10.1021/ja00310a014
![]() |
[54] |
Munro CH, Smith WE, Garner M, et al. (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 11: 3712-3720. doi: 10.1021/la00010a021
![]() |
[55] | Lindon JC (2000) Encyclopedia of spectroscopy and spectrometry, part II, San Diego, Academic press, 1035-1057. |
[56] | Schaumann GE, Philippe A, Bundschuh M, et al. (2014) Understanding the fate and biological effects of Ag- and TiO2- nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts. Sci Total Environ: S0048-9697: 1473-1479. |
1. | S. Budhe, M. D. Banea, S. de Barros, Composite repair system for corroded metallic pipelines: an overview of recent developments and modelling, 2020, 25, 0948-4280, 1308, 10.1007/s00773-019-00696-3 | |
2. | Mojdeh Mehrinejad Khotbehsara, Allan Manalo, Thiru Aravinthan, Wahid Ferdous, Brahim Benmokrane, Kate T.Q. Nguyen, Synergistic effects of hygrothermal conditions and solar ultraviolet radiation on the properties of structural particulate-filled epoxy polymer coatings, 2021, 277, 09500618, 122336, 10.1016/j.conbuildmat.2021.122336 | |
3. | Mojdeh Mehrinejad Khotbehsara, Allan Manalo, Thiru Aravinthan, Wahid Ferdous, Kate T.Q. Nguyen, Gangarao Hota, Ageing of particulate-filled epoxy resin under hygrothermal conditions, 2020, 249, 09500618, 118846, 10.1016/j.conbuildmat.2020.118846 | |
4. | K. S. Lim, A. S. Kasmaon, S. C. Chin, S. I. Doh, 2018, 2020, 0094-243X, 020036, 10.1063/1.5062662 | |
5. | Saeid Ansari Sadrabadi, Amin Dadashi, Sichen Yuan, Venanzio Giannella, Roberto Citarella, Experimental-Numerical Investigation of a Steel Pipe Repaired with a Composite Sleeve, 2022, 12, 2076-3417, 7536, 10.3390/app12157536 | |
6. | Emine Feyza Sukur, Sinem Elmas, Mahsa Seyyednourani, Volkan Eskizeybek, Mehmet Yildiz, Hatice S. Sas, Effects of meso‐ and micro‐scale defects on hygrothermal aging behavior of glass fiber reinforced composites , 2022, 43, 0272-8397, 8396, 10.1002/pc.27011 | |
7. | Djouadi Djahida, Ghomari Tewfik, Maciej Witek, Mechri Abdelghani, Analytical Model and Numerical Analysis of Composite Wrap System Applied to Steel Pipeline, 2021, 14, 1996-1944, 6393, 10.3390/ma14216393 | |
8. | Hanis Hazirah Arifin, Norhazilan Md Noor, Chao Bao, Meilin Deng, Kar Sing Lim, 2025, 9780443220845, 103, 10.1016/B978-0-443-22084-5.00010-5 |