Citation: Norman Maswanganyi, Edmore Ranganai, Caston Sigauke. Long-term peak electricity demand forecasting in South Africa: A quantile regression averaging approach[J]. AIMS Energy, 2019, 7(6): 857-882. doi: 10.3934/energy.2019.6.857
[1] | Al-Hamadi HM, Soliman SA (2005) Long-term/mid-term electric load forecasting based on shortterm correlation and annual growth. Electr Power Syst Res 74: 353-361. doi: 10.1016/j.epsr.2004.10.015 |
[2] | Al-Saba T, El-Amin I (1999) Artificial neural networks as applied to long-term demand forecasting. Artif Intell Eng 13: 189-197. doi: 10.1016/S0954-1810(98)00018-1 |
[3] | Hyndman RJ, Fan S (2010) Density forecasting for long-term peak electricity demand. IEEE Trans Power Syst 25: 1142-1153. doi: 10.1109/TPWRS.2009.2036017 |
[4] | Kandil MS, El-Debeiky SM, Hasanien NE (2002) Long-term forecasting for fast Developing Utility Using a knowledge-Based Expert System. IEEE Trans Power Syst 17: 491-496. doi: 10.1109/TPWRS.2002.1007923 |
[5] | Mokilane P, Galpin J, Sarma Yadavalli VS, et al. (2018) Density forecasting for long-term electricity demand in South Africa using quantile regression. South African J Econ Manage Sci 21: 1-14. |
[6] | Ringwood JV, Bofelli D, Murray FT (2001) Forecasting electricity demand on short, medium and long time scales using neural networks. J Intell Rob Syst 31: 129-147. doi: 10.1023/A:1012046824237 |
[7] | Nowotarski J, Weron R (2015) Computing electricity spot price prediction intervals using quantile regression and forecast averaging. Comput Stat 30: 791-803. doi: 10.1007/s00180-014-0523-0 |
[8] | Sigauke C, Nemukula M, Maposa D (2018) Probabilistic hourly load forecasting using additive quantile regression models. Energies 11: 2208. doi: 10.3390/en11092208 |
[9] | Marquard A (2006) The origins and development of South African energy policy, PhD thesis, University of Cape Town. |
[10] | Maswanganyi N, Sigauke C, Ranganai E (2017) Peak electricity demand forecasting using partially linear additive quantile regression models. Annual Proceedings of the South African Statistical Association Conference 2017: 25-32. |
[11] | Elamin N, Fukushige M (2018) Quantile regression model for peak load demand forecasting with approximation by triangular distribution to avoid blackouts. Int J Energy Econ Policy 8: 119-124. |
[12] | Hastie T, Tibshirani R, et al. (2000) Bayesian backfitting (with comments and a rejoinder by the authors). Stat Sci 15: 196-223. doi: 10.1214/ss/1009212815 |
[13] | Larsen K (2016) Gam: The predictive modeling silver bullet. Multithreaded. Stitch Fix 30. |
[14] | Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Modell 157: 157-177. doi: 10.1016/S0304-3800(02)00193-X |
[15] | Koenker R, Bassett G (1978) Regression quantiles. Econometrica: J Econ Soc 33-50. |
[16] | Koenker R (2005) Quantile regression. Cambridge university press, 38. |
[17] | Hao L, Naiman DQ (2007) Quantile regression, Sage 149. |
[18] | Taieb SB, Huser R, Hyndman RJ, et al. (2016) Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression. IEEE Trans Smart Grid 7: 2448-2455. doi: 10.1109/TSG.2016.2527820 |
[19] | Maciejowska K, Nowotarski J, Weron R (2016) Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging. Inter J Forecasting 32: 957-965. doi: 10.1016/j.ijforecast.2014.12.004 |
[20] | Zou H, Hastie T, Tibshirani R, et al. (2007) On the 'degrees of freedom' of the lasso. Ann Stat 35: 2173-2192. doi: 10.1214/009053607000000127 |
[21] | Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R stat soc: Ser B (Stat Methodol) 67: 301-320. doi: 10.1111/j.1467-9868.2005.00503.x |
[22] | Franklin, J (2005) The elements of statistical learning: data mining, inference and prediction. Math Intell 27: 83-85. |
[23] | Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Analysis 38: 367-378. doi: 10.1016/S0167-9473(01)00065-2 |
[24] | Vapnik V (2013) The nature of statistical learning theory, Springer science and business media. |
[25] | Makridakis S, Spiliotis E, Assimakopoulos V (2019) Predicting/hypothesizing the findings of the M4 Competition. Int J Forecasting. |