Citation: Shota Tobaru, Ryuto Shigenobu, Foday Conteh, Naomitsu Urasaki, Abdul Motin Howlader, Tomonobu Senjyu, Toshihisa Funabashi. Optimal operation method coping with uncertainty in multi-area small power systems[J]. AIMS Energy, 2017, 5(4): 718-734. doi: 10.3934/energy.2017.4.718
[1] | Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu . A final size relation for epidemic models. Mathematical Biosciences and Engineering, 2007, 4(2): 159-175. doi: 10.3934/mbe.2007.4.159 |
[2] | Fred Brauer, Zhisheng Shuai, P. van den Driessche . Dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1335-1349. doi: 10.3934/mbe.2013.10.1335 |
[3] | Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035 |
[4] | Jianquan Li, Yiqun Li, Yali Yang . Epidemic characteristics of two classic models and the dependence on the initial conditions. Mathematical Biosciences and Engineering, 2016, 13(5): 999-1010. doi: 10.3934/mbe.2016027 |
[5] | Christine K. Yang, Fred Brauer . Calculation of for age-of-infection models. Mathematical Biosciences and Engineering, 2008, 5(3): 585-599. doi: 10.3934/mbe.2008.5.585 |
[6] | Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753 |
[7] | Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580 |
[8] | Yu Tsubouchi, Yasuhiro Takeuchi, Shinji Nakaoka . Calculation of final size for vector-transmitted epidemic model. Mathematical Biosciences and Engineering, 2019, 16(4): 2219-2232. doi: 10.3934/mbe.2019109 |
[9] | Yuri Amemiya, Tianwen Li, Hiroshi Nishiura . Age-dependent final size equation to anticipate mortality impact of COVID-19 in China. Mathematical Biosciences and Engineering, 2023, 20(6): 11353-11366. doi: 10.3934/mbe.2023503 |
[10] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[1] |
Amenedo JLR, Arnalte S, Burgos JC, et al. (2002) Automatic generation control of a wind farm with variable speed wind turbines. IEEE T Energy Conver 17: 279–284. doi: 10.1109/TEC.2002.1009481
![]() |
[2] | Senjyu T, Hayashi D, Sakamoto Y, et al. (2005) Generating power leveling of renewable energy for small power system in isolated island. IEE Japan 125: 1209–1215. |
[3] | Senjyu T, Tokudome M, Yona A, et al. (2009) A Frequency Control Approach by Decentralized Controllable Loads in Small Power Systems. IEE Japan 129: 1074–1080. |
[4] | Senjyu T, Kikunaga T, Tokudome M, et al. (2009) Coordinate Control ofWind Turbine and Battery in Wind Turbine Generator System. IEE Japan 129: 653–660. |
[5] | Kurohane K, Senjyu T, Yona A, et al. (2010) A High Quality Power Supply System with DC Smart Grid. 2010 IEEE PES Transmission and Distribution Conference and Exposition. |
[6] | Ogimi K, Kamiyama S, Palmer M, et al. (2013) Optimal OperationPlanning ofWind Farm Installed BESS Using Wind Power Forecast Data of Wind Turbine Generators Considering Forecast Error. Int J Emerg Electric Power Syst 14: 207–218. |
[7] | Bracale A, Carpinelli G, Fazio AD, et al. (2015) Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power. Int J Emerg Electric Power Syst 16: 195–206. |
[8] | Shimoji T, Tahara H, Matayoshi H, et al. (2015) Comparison and Validation of Operational Cost in Smart Houses with the Introduction of a Heat Pump or a Gas Engine. Int J Emerg Electric Power Syst 16: 59–74. |
[9] | MengyanW, HigaW, Yona A, et al. (2012) Optimal Operation of Power Systems with Power Players. 2012 International Conference on Renewable Energy Research and Applications (ICRERA). |
[10] | Higa S, Mengyan W, Yona A, et al. (2013) Optimal Operation Method Considering Uncertainly of Renewable Energy and Load Demand in Micro-grids. The 5th International Conference on Advanced Power System Automation and Protection. |
[11] | Higa S, Howlader AM, Shiroma Y, et al. (2014) Optimal Operation Method Considering Replanning and Uncertainly in Power Systems. The International Conference on Electrical Engineering 2014. |
[12] |
Zheng Y, Dong ZY, Luo FJ, et al. (2014) Optimal Allocation of Energy Storage System for Risk Mitigation of DISCOs With High Renewable Penetrations. IEEE T Power Syst 29: 212–220. doi: 10.1109/TPWRS.2013.2278850
![]() |
[13] |
Zhang L, Li Y (2013) Optimal Energy Management of Wind-Battery Hybrid Power System With Two-Scale Dynamic Programming. IEEE T Sust Energy 4: 765–773. doi: 10.1109/TSTE.2013.2246875
![]() |
[14] |
Ahn SJ, Nam SR, Choi JH, et al. (2013) Power Scheduling of Distributed Generators Economic and Stable Operation of a Microtrid. IEEE T Smart Grid 4: 398–405. doi: 10.1109/TSG.2012.2233773
![]() |
[15] |
Zhao B, Zhang X, Chen J, et al. (2013) Operation Optimization of Standalone Microgrids Considering Lifetime Characteristics of Battery Energy StorageSystem. IEEE T Sust Energy 4: 934–943. doi: 10.1109/TSTE.2013.2248400
![]() |
[16] | He D, Tan Z, Harley RG, et al. (2012) Chance Constrained Unit Commitment With Wind Generation and Superconducting Magnetic Energy Storages. 2012 IEEE Power and Energy Society General Meeting. |
[17] | Reddy SS, Abhyankar AR, Bijwe PR, et al. (2014) Co-optimization of Energy and Demand-Side Reserves in Day-Ahead Electricity Markets. Int J Emerg Electric Power Syst 15: 77–91. |
[18] | Nguyen MY, Nguyen DM (2015) A Generalized Formulation of Demand Response under Market Environments. Int J Emerg Electric Power Syst 16: 217–224. |
[19] |
Aalami HA, Moghaddam MP, Yousefi GR, et al. (2010) Demand response modeling considering Interruptible/Curtailable loads and capacity market programs. Appl Energy 87: 243–250. doi: 10.1016/j.apenergy.2009.05.041
![]() |
[20] | Andebili MR, Shen H (2017) Energy Management of End Users Modeling their Reaction from a GENCOs Point of View. 2017 International Conference on Computing, Networking and Communications (ICNC). |
[21] |
Andebili MR (2016) Modeling nonlinear incentive-based and price-based demand response programs and implementing on real power markets. Electr Pow Syst Res 132: 115–124. doi: 10.1016/j.epsr.2015.11.006
![]() |
[22] | Andebili MR, Shen H (2017) Price-Controlled Energy Management of Smart Homes for Maximizing Profit of a GENCO. IEEE T Syst Man Cy A. |
[23] |
Andebili MR (2015) Risk-Cost Based Generation Scheduling Smartly Mixed with Reliability and Market-Driven Demand Response Measures. Int T Electr Energy Syst 25: 994–1007. doi: 10.1002/etep.1884
![]() |
[24] | AndebiliMR(2016) Nonlinear demand response programs for residential customers with nonlinear behavioral models. Energ Buildings 119: 352–362. |
[25] |
Andebili MR (2013) Investigating effects of responsive loads models on unit commitment collaborated with demand-side resources. IET Gener Transm D 7: 420–430. doi: 10.1049/iet-gtd.2012.0552
![]() |
[26] | Japan Electric Power Exchange, JEPX, 2017. Available from: http://www.jepx.org/index.html. |
[27] |
Nguyen MY, Yoon YT (2014) Optimal Scheduling and Operation of Battery/Wind Generation System in Response to Real-time Market Prices. IEE T Electr Electr Eng 9: 129–135. doi: 10.1002/tee.21947
![]() |
[28] |
Havel P (2014) Utilization of Real-Time Balancing Market for Transmission System Control Under Uncertainty. IEEE T Power Syst 29: 450–457. doi: 10.1109/TPWRS.2012.2228676
![]() |
[29] | Kiviluoma J, O'Malley M, Tuohy A, et al. (2011) Impact ofWind Power on the Unit Commitment, Operating Reserves, and Market Design. 2011 IEEE Power and Energy Society General Meeting. |
[30] | Vlachos AG, Biskas PN, et al. (2011) Balancing Supply and Demand Under Mixed Pricing Rules in Multi-Area Electricity Markets. IEEE T Power Syst 26: 1444–1453. |
[31] | Ma J, Silva V, Belhomme R, et al. (2013) Evaluating and Planning Flexibility in Sustainable Power Systems. 2013 IEEE Power and Energy Society General Meeting (PES). |
1. | Menachem Lachiany, Yoram Louzoun, Effects of distribution of infection rate on epidemic models, 2016, 94, 2470-0045, 10.1103/PhysRevE.94.022409 | |
2. | Nancy Hernandez-Ceron, Zhilan Feng, Carlos Castillo-Chavez, Discrete Epidemic Models with Arbitrary Stage Distributions and Applications to Disease Control, 2013, 75, 0092-8240, 1716, 10.1007/s11538-013-9866-x | |
3. | Pandemic influenza: Modelling and public health perspectives, 2011, 8, 1551-0018, 1, 10.3934/mbe.2011.8.1 | |
4. | L.F. Mondolfo, 1976, 9780408709323, 385, 10.1016/B978-0-408-70932-3.50088-7 | |
5. | Guy Katriel, The size of epidemics in populations with heterogeneous susceptibility, 2012, 65, 0303-6812, 237, 10.1007/s00285-011-0460-2 | |
6. | Arun Solanki, Tarana Singh, 2021, Chapter 3, 978-3-030-60038-9, 57, 10.1007/978-3-030-60039-6_3 | |
7. | Fan Bai, Uniqueness of Nash equilibrium in vaccination games, 2016, 10, 1751-3758, 395, 10.1080/17513758.2016.1213319 | |
8. | Joel C. Miller, A Note on the Derivation of Epidemic Final Sizes, 2012, 74, 0092-8240, 2125, 10.1007/s11538-012-9749-6 | |
9. | Baltazar Espinoza, Victor Moreno, Derdei Bichara, Carlos Castillo-Chavez, 2016, Chapter 9, 978-3-319-40411-0, 123, 10.1007/978-3-319-40413-4_9 | |
10. | Fred Brauer, General compartmental epidemic models, 2010, 31, 0252-9599, 289, 10.1007/s11401-009-0454-1 | |
11. | L.F. Mondolfo, 1976, 9780408709323, 384, 10.1016/B978-0-408-70932-3.50087-5 | |
12. | L.F. Mondolfo, 1976, 9780408709323, 335, 10.1016/B978-0-408-70932-3.50058-9 | |
13. | Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 1, 978-1-4939-9826-5, 3, 10.1007/978-1-4939-9828-9_1 | |
14. | P. van den Driessche, Zhisheng Shuai, Fred Brauer, Dynamics of an age-of-infection cholera model, 2013, 10, 1551-0018, 1335, 10.3934/mbe.2013.10.1335 | |
15. | L.F. Mondolfo, 1976, 9780408709323, 380, 10.1016/B978-0-408-70932-3.50083-8 | |
16. | Mahnaz Alavinejad, Jianhong Wu, Coupled Systems of Renewal Equations for Forces of Infection through a Contact Network, 2020, 63, 0008-4395, 624, 10.4153/S0008439519000705 | |
17. | G. Katriel, R. Yaari, A. Huppert, U. Roll, L. Stone, Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study, 2011, 8, 1742-5689, 856, 10.1098/rsif.2010.0515 | |
18. | Jummy Funke David, Epidemic models with heterogeneous mixing and indirect transmission, 2018, 12, 1751-3758, 375, 10.1080/17513758.2018.1467506 | |
19. | David J. D. Earn, Paul W. Andrews, Benjamin M. Bolker, Population-level effects of suppressing fever, 2014, 281, 0962-8452, 20132570, 10.1098/rspb.2013.2570 | |
20. | Calistus N. Ngonghala, Enahoro Iboi, Steffen Eikenberry, Matthew Scotch, Chandini Raina MacIntyre, Matthew H. Bonds, Abba B. Gumel, Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus, 2020, 325, 00255564, 108364, 10.1016/j.mbs.2020.108364 | |
21. | Hiroshi Nishiura, Gerardo Chowell, Carlos Castillo-Chavez, Alessandro Vespignani, Did Modeling Overestimate the Transmission Potential of Pandemic (H1N1-2009)? Sample Size Estimation for Post-Epidemic Seroepidemiological Studies, 2011, 6, 1932-6203, e17908, 10.1371/journal.pone.0017908 | |
22. | Fred Brauer, Mathematical epidemiology: Past, present, and future, 2017, 2, 24680427, 113, 10.1016/j.idm.2017.02.001 | |
23. | Bahman Davoudi, Joel C. Miller, Rafael Meza, Lauren Ancel Meyers, David J. D. Earn, Babak Pourbohloul, Early Real-Time Estimation of the Basic Reproduction Number of Emerging Infectious Diseases, 2012, 2, 2160-3308, 10.1103/PhysRevX.2.031005 | |
24. | Fred Brauer, A simple model for behaviour change in epidemics, 2011, 11, 1471-2458, 10.1186/1471-2458-11-S1-S3 | |
25. | Ping Yan, Zhilan Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, 2010, 224, 00255564, 43, 10.1016/j.mbs.2009.12.007 | |
26. | GUY KATRIEL, STOCHASTIC DISCRETE-TIME AGE-OF-INFECTION EPIDEMIC MODELS, 2013, 06, 1793-5245, 1250066, 10.1142/S1793524512500660 | |
27. | Karyn L. Sutton, Danielle Robbins, H.Thomas Banks, Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations, 2013, 10, 1551-0018, 1301, 10.3934/mbe.2013.10.1301 | |
28. | G. Röst, Z. Vizi, I. Z. Kiss, Pairwise approximation for SIR -type network epidemics with non-Markovian recovery , 2018, 474, 1364-5021, 20170695, 10.1098/rspa.2017.0695 | |
29. | L.F. Mondolfo, 1976, 9780408709323, 413, 10.1016/B978-0-408-70932-3.50098-X | |
30. | Eleonora Messina, Mario Pezzella, Antonia Vecchio, A non-standard numerical scheme for an age-of-infection epidemic model, 2022, 9, 2158-2491, 239, 10.3934/jcd.2021029 | |
31. | Xiaohao Guo, Yichao Guo, Zeyu Zhao, Shiting Yang, Yanhua Su, Benhua Zhao, Tianmu Chen, Computing R0 of dynamic models by a definition-based method, 2022, 7, 24680427, 196, 10.1016/j.idm.2022.05.004 | |
32. | Raphaël Forien, Guodong Pang, Étienne Pardoux, Epidemic Models with Varying Infectivity, 2021, 81, 0036-1399, 1893, 10.1137/20M1353976 | |
33. | Raphaël Forien, Guodong Pang, Étienne Pardoux, Multi-patch multi-group epidemic model with varying infectivity, 2022, 7, 2095-9672, 333, 10.3934/puqr.2022019 | |
34. | Scott Greenhalgh, Carly Rozins, A generalized differential equation compartmental model of infectious disease transmission, 2021, 6, 24680427, 1073, 10.1016/j.idm.2021.08.007 | |
35. | Jingan Cui, Yucui Wu, Songbai Guo, Effect of Non-homogeneous Mixing and Asymptomatic Individuals on Final Epidemic Size and Basic Reproduction Number in a Meta-Population Model, 2022, 84, 0092-8240, 10.1007/s11538-022-00996-7 | |
36. | Alison Adams, Quiyana M. Murphy, Owen P. Dougherty, Aubrey M. Sawyer, Fan Bai, Christina J. Edholm, Evan P. Williams, Linda J.S. Allen, Colleen B. Jonsson, Data-driven models for replication kinetics of Orthohantavirus infections, 2022, 349, 00255564, 108834, 10.1016/j.mbs.2022.108834 | |
37. | Dmitry V. Boguslavsky, Natalia P. Sharova, Konstantin S. Sharov, Cryptocurrency as Epidemiologically Safe Means of Transactions: Diminishing Risk of SARS-CoV-2 Spread, 2021, 9, 2227-7390, 3263, 10.3390/math9243263 | |
38. | Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong, Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study, 2021, 18, 1551-0018, 8905, 10.3934/mbe.2021439 | |
39. | Eleonora Messina, Mario Pezzella, Antonia Vecchio, Positive Numerical Approximation of Integro-Differential Epidemic Model, 2022, 11, 2075-1680, 69, 10.3390/axioms11020069 | |
40. | Guodong Pang, Étienne Pardoux, Functional central limit theorems for epidemic models with varying infectivity, 2022, 1744-2508, 1, 10.1080/17442508.2022.2124870 | |
41. | Jummy F. David, Sarafa A. Iyaniwura, Effect of Human Mobility on the Spatial Spread of Airborne Diseases: An Epidemic Model with Indirect Transmission, 2022, 84, 0092-8240, 10.1007/s11538-022-01020-8 | |
42. | Luis Almeida, Pierre-Alexandre Bliman, Grégoire Nadin, Benoît Perthame, Nicolas Vauchelet, Final size and convergence rate for an epidemic in heterogeneous populations, 2021, 31, 0218-2025, 1021, 10.1142/S0218202521500251 | |
43. | Jummy F. David, Sarafa A. Iyaniwura, Michael J. Ward, Fred Brauer, A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission, 2020, 17, 1551-0018, 3294, 10.3934/mbe.2020188 | |
44. | Fan Bai, An age-of-infection model with both symptomatic and asymptomatic infections, 2023, 86, 0303-6812, 10.1007/s00285-023-01920-w | |
45. | Eleonora Messina, Mario Pezzella, Antonia Vecchio, A long-time behavior preserving numerical scheme for age-of-infection epidemic models with heterogeneous mixing, 2023, 01689274, 10.1016/j.apnum.2023.04.009 | |
46. | Maximilian M. Nguyen, Ari S. Freedman, Sinan A. Ozbay, Simon A. Levin, Fundamental bound on epidemic overshoot in the SIR model, 2023, 20, 1742-5662, 10.1098/rsif.2023.0322 | |
47. | Jummy David, Gabrielle Brankston, Idriss Sekkak, Sungju Moon, Xiaoyan Li, Sana Jahedi, Zahra Mohammadi, Ao Li, Martin Grunnil, Pengfei Song, Woldegebriel Assefa, Nicola Bragazzi, Jianhong Wu, 2023, Chapter 1, 978-3-031-40804-5, 1, 10.1007/978-3-031-40805-2_1 | |
48. | Aditi Ghosh, Pradyuta Padmanabhan, Anuj Mubayi, Padmanabhan Seshaiyer, Influence of distinct social contexts of long-term care facilities on the dynamics of spread of COVID-19 under predefine epidemiological scenarios, 2023, 11, 2544-7297, 10.1515/cmb-2023-0102 | |
49. | Donald S. Burke, Origins of the problematic E in SEIR epidemic models, 2024, 24680427, 10.1016/j.idm.2024.03.003 | |
50. | Phyu Phyu Win, Zhigui Lin, Mengyun Zhang, The final size and critical times of an SIVR epidemic model, 2025, 2025, 2731-4235, 10.1186/s13662-025-03902-2 | |
51. | Sani Musa, Salisu Usaini, Idris Ahmed, Chanakarn Kiataramkul, Jessada Tariboon, Dynamics of the Diphtheria Epidemic in Nigeria: Insights from the Kano State Outbreak Data, 2025, 13, 2227-7390, 1189, 10.3390/math13071189 |