Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Systematic definition of objectives for battery systems considering the interdependencies in electric vehicles

IPEK—Institute of Product Engineering at Karlsruhe Institute of Technology (KIT), Kaiserstrasse 10, 76131 Karlsruhe, Baden-Württemberg, Germany

Topical Section: Electric and Hybrid Vehicles

The battery system is a main driver of current reservations against electrical vehicles, because it influences aspects like vehicle range, charging time and costs. Further the battery system is highly connected to the surrounding subsystems of the vehicle. Hence, developing battery systems means to deal with manifold interconnectivities. Within this, sufficient and transparent objectives for the battery system have to be defined. This work presents a systematic approach to defining objectives for the battery system down to the behavior of battery cells by considering the drive system in relevant use cases. Three investigations on the complexity of developing battery systems are done: Interviews with engineers to investigate the challenges of developing battery systems, parameter variation in a vehicle simulation model to analyze the influences of the surrounding systems and analysis of the theoretical interdependencies between battery system, power electronics and electric drive. The findings in combination with the literature research lead to requirements to be met by the approach. In addition to the battery system the configuration of the drive system should be considered as well as different customer relevant use cases. An approach to defining objectives for battery systems based on a parameter variation is introduced and it is explained how concrete objectives can be derived from customer perceptions in a transparent way.
  Article Metrics

Keywords Development of battery systems; electric drive systems; system of objectives; evaluation of system behavior; customer relevant objectives

Citation: Albert Albers, Aline Radimersky, Sascha Ott. Systematic definition of objectives for battery systems considering the interdependencies in electric vehicles. AIMS Energy, 2016, 4(5): 723-741. doi: 10.3934/energy.2016.5.723


  • 1. TU Braunschweig and P3 group: Akzeptanz von Elektrofahrzeugen—Aussichtsloses Unterfangen oder große Chance? TU Braunschweig and P3 group, 2015. Available from: https://www.tu-braunschweig.de/Medien-DB/nff/Presse/2013_08_aip_akzeptanz_von_elektrofahrzeugen-aussichtsloses_unterfangen_oder_grosse_chance.pdf.
  • 2. VDE Kompendium Elektromobilität, VDE: Batteriepacks—System aus vielen Teilen und komplexen Wechselwirkungen mit dem Fahrzeug. Rothgang S, 2012. Available from: https://www.vde.com/de/E-Mobility/Innovationsunterstützung/PruefungundZertifizierung/Documents/VDE_Kompendium_Elektromobilität.pdf
  • 3. Bundesministerium für Bildung und Forschung—BMBF, Richtlinie zur Förderung: “Batteriematerialien für zukünftige elektromobile und stationäre Anwendungen (Batterie 2020)”, 2016. Available from: https://www.bmbf.de/foerderungen/bekanntmachung-1146.html.
  • 4. Behr L, Zimmermann U, Trinkert S, et al. (2016) Increased efficiency in the calibration process of automotive Li-ion battery systems. 16. Internationales Stuttgarter Symposium. Springer Fachmedien Wiesbaden, 2016: 101-115.
  • 5. Kroeze R, Krein P (2008) Electrical battery model for use in dynamic electric vehicle simulations. 2008 IEEE PESC, 1336-1342.
  • 6. Herb F, Alterungsmechanismen in Lithium-Ionen-Batterien und PEM-Brennstoffzellen und deren Einfluss auf die Eigenschaften von daraus bestehenden Hybrid-Systemen. Universität Ulm, 2010.
  • 7. Tan Y, Mao J, Tseng K, Modelling of battery temperature effect on electrical characteristics of Li-ion battery in hybrid electric vehicle. Power Electronics and Drive Systems (PEDS), 2011 IEEE ninth International Conference on. IEEE, 2010: 637-642.
  • 8. Beckert W, Freytag C, Fraunhofer IKTS: Thermische 3D-Modellierung von Lithium-Ionen-Zellen, 2012. Available from:http://www.ikts.fraunhofer.de/content/dam/ikts/de/doc2/Publikationen/Jahresberichte/jb2012/49_Thermische%203D-Modellierung%20von%20Lithium-Ionen-Zellen.pdf
  • 9. Schaeper DIC (2013) Batteriesystemtechnik. MTZ-Motortechnische Zeitschrift 74: 416-421.
  • 10. Bouvy C, Ginsberg S, Jeck P, et al. (2012) Holistic Battery Pack Design. In: Proceedings of 21 Aachener Kolloquium 2012, Aachen.
  • 11. Janiaud N, Vallet F, Petit M, et al., Electric vehicle powertrain simulation to optimize battery and vehicle performances. 2010 IEEE Vehicle Power and Propulsion Conference. IEEE, 2010: 1-5.
  • 12. Albers A, Radimersky A, Brezger F (2015) Funktionale Wechselwirkungen von Batteriesystemen in elektrifizierten Fahrzeugen. In: Proceedings of Stuttgarter Symposium für Produktentwicklung 2015. Stuttgart.
  • 13. Ropohl G, Aggteleky B, Systemtechnik, Grundlagen und Anwendung. Hanser, 1975.
  • 14. Albers A, Muschik S (2010) Development of System of Objectives in early activities of product development processes. In: Proceedings of the TMCE 2010. Ancona.
  • 15. Albers A, Braun A (2011) A generalized framework to compass and to support complex product engineering processes. Int J Prod Dev 15: 6-25.
  • 16. Albers A, Lohmeyer Q, Ebel B (2011) Dimensions of objectives in interdisciplinary product development projects. Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol 2: Design Theory and Research Methodology, Lyngby/Copenhagen, Denmark, 15-19.
  • 17. Albers A, Bursac N, Wintergerst E (2015) Product Generation Development—Importance and Challenges from a Design Research Perspective. New Dev Mech Mech Eng: 16-21.
  • 18. Albers A (2010) Five Hypotheses about Engineering Processes and their Consequences. Proceedings of the TMCE 2010.
  • 19. Albers A, Behrendt M, Klingler S, et. al (2016) Verifikation und Validierung im Produktentstehungsprozess, In: Lindemann, U. Editor. Handbuch Produktentwicklung. München: Carl Hanser Verlag GmbH & Co. KG, 541-569.
  • 20. Radimersky A (2013) MMUB—Modulares Multi-Use Batteriesystem. Presented at the FVA Infotagung, Würzburg.
  • 21. Bause K, Radimersky A, Ott S (2015) Anforderungen an Getriebe in E-Fahrzeugen unter Berücksichtigung der Wechselwirkungen im Antriebssystem. In: Proceedings of Dresdner Maschinenkolloquium. Dresden.
  • 22. Gwinner P, Idler S, Otto M, Stahl K (2015) Gear Design for a High-Speed E-Drive1—Gear Concepts for High-Speed E-Motive Applications. In: Proceedings of 15th International VDI Congress Drivetrain for Vehicles. Friedrichshafen.
  • 23 Heinrich D (2016) Modelling the driver’s behavior to investigate the dynamic loads on the drivetrain. PhD In: Forschungsberichte; Band 92. Karlsruhe: Institute of Product Engineering at Karlsruhe Institute of Technology (KIT).
  • 24. Nekola M, Co-supervisor: Radimersky A (2016) Analyse der Wechselwirkungen innerhalb des elektrischen Antriebssystems. IPEK—Institute of Product Engineering at Karlsruhe Institute of Technology (KIT). Bachelorthesis.
  • 25. Vogel S, Co-supervisor: Boog S (2013) Entwicklung einer Modellbibliothek für Batteriesimulationen in elektrifizierten Antriebssystemen. IPEK—Institute of Product Engineering at Karlsruhe Institute of Technology (KIT). Diplomathesis.
  • 26. Tremblay O, Dessaint L (2009) Experimental Validation of a Battery Dynamic Model for EV Applications. World Electr Vehicle J 3: 1-10.


This article has been cited by

  • 1. Young-Woo Song, Michael Herzog, Beate Bender, Understanding the Initial Requirements Definition in Early Design Phases, Proceedings of the Design Society: International Conference on Engineering Design, 2019, 1, 1, 3751, 10.1017/dsi.2019.382

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Sascha Ott, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved