Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Energy aspects of microalgal biodiesel production

Department of Civil and Environmental Engineering, Mississippi State University, Mississippi State, MS 39762, USA

Topical Section: Energy Policy and Economics

Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.
  Figure/Table
  Supplementary
  Article Metrics

Keywords microalgae; biodiesel; energy balance; extraction; transesterification; sustainability; cultivation; separation and purification

Citation: Edith Martinez-Guerra, Veera Gnaneswar Gude. Energy aspects of microalgal biodiesel production. AIMS Energy, 2016, 4(2): 347-362. doi: 10.3934/energy.2016.2.347

References

  • 1. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294-306.    
  • 2. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: A review. Renew Sust Energ Rev 14: 217-232.
  • 3. Moody JW, McGinty CM, Quinn JC (2014) Global evaluation of biofuel potential from microalgae. Proc Natl Acad Sci 111: 8691-8696.    
  • 4. Lardon L, Helias A, Sialve B, et al. (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43: 6475-6481.    
  • 5. Uduman N, Qi Y, Danquah MK, et al. (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 20: 12701-12715.
  • 6. Batan L, Quinn J, Willson B, et al. (2010) Net Energy and Greenhouse Gas Emission Evaluation of Biodiesel Derived from Microalgae. Environ Sci Technol 44: 7975-7980.    
  • 7. Stephenson AL, Kazamia E, Dennis JS, et al. (2010) Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors. Energ Fuel 24: 4062-4077.    
  • 8. Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energ 88: 3499-3506.
  • 9. Liu X, Saydah B, Eranki P, et al. (2013) Pilot-scale data provided enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technol 148: 163-171.
  • 10. Ozkan A, Kinney K, Katz L, et al. (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresource Technol 114: 542-548.
  • 11. Molina Grima E, Belarbi EH, AciénFernández FG, et al. (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20: 491-515.
  • 12. Jorquera O, Kiperstok A, Sales EA, et al. (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101: 1406-1413.    
  • 13. Slade R, Bauen A (2013) Microalgae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass bioenerg 53: 29-38.
  • 14. Singh M, Shukla R, Das K (2013) Harvesting of microalgal biomass in Biotechnological applications of microalgae. CRC Press: 77-88.
  • 15. Vandamme D, 2013. Flocculation based harvesting processes for microalgae biomass production (Doctoral dissertation, UGent).
  • 16. Sanghi R, Singh V, Green Chemistry for Environmental Remediation. John Wiley & Sons; 2012. Chapter 8.4.
  • 17. Reddy HK, Muppaneni T, Patil PD, et al. (2014) Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel 115: 720-726.    
  • 18. Ali M, Watson IA (2015) Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production. Renew Energy 76: 470-477.
  • 19. Martinez-Guerra E, Gude VG, Mondala A, et al. (2014) Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent. Bioresource Technol 156: 240-247.
  • 20. Martinez-Guerra E, Gude VG, Mondala A, et al. (2014b) Microwave and ultrasound enhanced extractive-transesterification of algal lipids. Appl Energ 129: 354-363.
  • 21. Patil PD, Gude VG, Mannarswamy A, et al. (2012) Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 97: 822-831.
  • 22. Chen CL, Huang CC, Ho KC, et al. (2015) Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes. Bioresource Technol 194: 179-186.
  • 23. Cheng J, Yu T, Li T, et al. (2013) Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresource Technol 131: 531-535.
  • 24. Koberg M, Cohen M, Ben-Amotz A, et al. (2011) Bio-diesel production directly from the microalgae biomass of nannochloropsis by microwave and ultrasound radiation. Bioresource Technol 102: 4265-4269.
  • 25. Araujo GS, Matos LJBL, Fernandes JO, et al. (2013) Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 20: 95-98.    
  • 26. Wiyarno B, Yunus RM, Mel M (2010) Ultrasound Extraction Assisted (UEA) of oil from microalgae (nannochloropsis sp.). Int J Sci Eng Technol 3: 65-71.
  • 27. Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49: 2979-2985.
  • 28. Adam F, Abert-Vian M, Peltier G, et al. (2012) Solvent-free ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technol 114: 457-465.
  • 29. Lee JY, Yoo C, Ju SY, et al. (2010) Comparison of several methods for effective lipid extraction from microalgaemicroalgae. Bioresource Technol 101: S75-S77.
  • 30. Balasundaram B, Skills SC, Llewellyn CA (2012) A low energy process for the recovery of bioproducts from cyanobacteria using a ball mill. Biochem Eng J 69: 48-56.
  • 31. McGarry MG (1970) Alga flocculation with aluminium sulfate and polyelectrolytes. J Water Pollut Control Fed 42: R191-201.
  • 32. Benemann JR, Kopman BL, Weissman DE, et al. Development of microalgae harvesting and high rate pond technologies in California. In: Shelef G, Soeder CJ, editors. Algal biomass. Amsterdam: Elsevier; 1980, 457.
  • 33. Moraine R, Shelef G, Sandbank F, Bar-Moshe Z, Shvartzbard I. Recovery of sewage borne algae: flocculation and centrifugation technique. In: Shelef G, Soeder CJ, editors. Algae biomass. Amsterdam: Elsevier; 1980, 531-546.
  • 34. Koopman B, Lincoln EP (1983) Autoflotation harvesting of algae from high rate pond effluents. Agric Wastes 5: 231-246.    
  • 35. Lincoln EP (1985) Resource recovery with microalgae. Arch Hydrobiol 20: 25-34.
  • 36. Buelna G, Bhattarai KK, de la Nuoe J, et al. (1990) Evaluation of various flocculants for the recovery of algal biomass grown on pig-Waste. Biol Waste 31: 211-222.    
  • 37. Harith ZT, Yusoff FM, Mohamed MS, et al. (2009) Effect of different flocculants on the flocculation performance of microalgae, Chaetoceroscalcitrans, cells. Afr J Biotechnol 8: 5971-5978.
  • 38. Bosma R, van Spronsen WA, Tramper J, et al. (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15: 143-153.
  • 39. Zhang X, Hu Q, Sommerfeld M, et al. (2010) Harvesting algal biomass for biofuelsusing ultrafiltration membranes. Bioresour Technol 101: 5297-5304.    
  • 40. Zou S, Gu Y, Xiao D, et al. (2011) The role of physical and chemical parameters on forwardosmosis membrane fouling during algae separation. J Membr Sci 366: 356-362.    
  • 41. Mohn F (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. Algae Biomass: 547-571.
  • 42. Bilad MR, Vandamme D, Foubert I, et al. (2012) Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technol 111: 343-352.
  • 43. Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Bio 12: 165-178.
  • 44. Supple D. MIT Energy Club (https://mitei.mit.edu/research). Accessed February 5, 2016.
  • 45. University of Washington (http://www.ocean.washington.edu). Accessed February 5, 2016.
  • 46. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14: 2596-2610.
  • 47. Gude VG, Patil PD, Deng S, et al. (2011) Microwave enhanced methods for biodiesel production and other environmental applications. Green chemistry for environmental remediation. New York: Wiley Interscience, 209-249.
  • 48. Gude VG, Patil P, Martinez-Guerra E, et al. (2013). Microwave energy potential for biodiesel production. Sustainable Chemical Processes 1: 1-31.    
  • 49. Ma G, Hu W, Pei H, et al. (2016) In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation. Energ Convers Manage 90: 41-46.
  • 50. Kanitkar AV, Master’s Thesis. Lousiana State University, Baton Rougue, LA.2010
  • 51. Kanitkar A, Balasubramanian S, Lima M, et al. (2011) A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves. Bioresource Technol 102: 7896-7902.
  • 52. Balasubramanian S, Allen JD, Kanitkar A, et al. (2011) Oil extraction from Scenedesmusobliquus using a continuous microwave system--design, optimization, and quality characterization. Bioresource Technol 102: 3396-3403.
  • 53. Stavarache C, Vinatoru M, Maeda Y, et al. (2007) Ultrasonically driven continuous process for vegetable oil transesterification. Ultrason Sonochem 14: 413-417.
  • 54. Santos FFP, Rodrigues S, Fernandes FAN (2009) Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Process Technol 90: 312-316.    
  • 55. Cintas P, Mantegna S, Gaudino EC, et al. (2010) A new pilot flow reactor for high intensity ultrasound irradiation. Application to the synthesis of biodiesel. Ultrason Sonochem 17: 985-989.    
  • 56. Chisti Y (2013) Constraints to commercialization of algal fuels. J biotechnol 167: 201-214.
  • 57. Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial Life Cycle Assessment to Inform Process Design of Industrial Production of Algal Biodiesel. Environ Sci Technol 45: 7060-7067.    
  • 58. Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102: 50-56.    
  • 59. Chowdhury R, Viamajala S, Gerlach R (2012) Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration. Bioresour Technol 108: 102-111.
  • 60. Clarens AF, Nassau H, Resurreccion EP, et al. (2011) Environmental Impacts of Algae-Derived Biodiesel and Bioelectricity for Transportation. Environ Sci Technol 45: 7554-7560.    
  • 61. Frank ED, Palou-Rivera I, Elgowainy A, et al. (2011) Life- Cycle Analysis of Algal Lipid Fuels with the GREET Model; Argonne National Laboratory: Argonne, IL, 2011.
  • 62. Khoo HH, Sharratt PN, Das P, et al. (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: Preliminary results and comparisons. Bioresour Technol 102: 5800-5807.
  • 63. Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae Haematococcus pluvialis and Nannochloropsis. Appl Energy 88: 3507-3514.    
  • 64. Sander K, Murthy G (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15: 704-714.
  • 65. Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17: 33-39.    
  • 66. Shirvani T, Yan X, Inderwildi OR, et al. (2011) Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ Sci 4: 3773-3778.    
  • 67. Vasudevan V, Stratton RW, Pearlson MN, et al. (2012) Environmental Performance of Algal Biofuel Technology Options. Environ Sci Technol 46: 2451-2459.    
  • 68. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 26: 126-131.    
  • 69. Fast SA, Kokabian B, Gude VG (2014) Chitosan enhanced coagulation of algal turbid waters–Comparison between rapid mix and ultrasound coagulation methods. Chem Eng J 244: 403-410.    
  • 70. Fast SA, Gude VG (2015) Ultrasound-chitosan enhanced flocculation of low algal turbid waters. J Ind Eng Chem 24: 153-160.    
  • 71. Patil PD, Gude VG, Mannarswamy A, et al. (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technol 102: 118-122.    
  • 72. Patil PD, Gude VG, Mannarswamy A, et al. (2011) Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technol 102: 1399-1405.    
  • 73. Martinez-Guerra E, Gude VG (2016) Energy analysis of extractive transesterification of algal lipids for biocrude production. Biofuels, in press.
  • 74. Yang J, Xu M, Zhang X, et al. (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technol 102: 159-165.
  • 75. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Biochem Cell Bio 37: 911-917
  • 76. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509.
  • 77. Gude VG (2015) Synergism of microwaves and ultrasound for advanced biorefineries. Resource-Efficient Technologies 1: 116-125.    

 

This article has been cited by

  • 1. Thomas J. Arana, Veera Gnaneswar Gude, A microbial desalination process with microalgae biocathode using sodium bicarbonate as an inorganic carbon source, International Biodeterioration & Biodegradation, 2018, 10.1016/j.ibiod.2018.04.003
  • 2. Alessandra Otondo, Bahareh Kokabian, Savannah Stuart-Dahl, Veera Gnaneswar Gude, Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris, Journal of Environmental Chemical Engineering, 2018, 10.1016/j.jece.2018.04.064
  • 3. Veera Gnaneswar Gude, Integrating bioelectrochemical systems for sustainable wastewater treatment, Clean Technologies and Environmental Policy, 2018, 10.1007/s10098-018-1536-0
  • 4. Zaira Navas-Anguita, Diego García-Gusano, Diego Iribarren, A review of techno-economic data for road transportation fuels, Renewable and Sustainable Energy Reviews, 2019, 112, 11, 10.1016/j.rser.2019.05.041

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Veera Gnaneswar Gude, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved