Citation: Betsy H. Salazar, Kristopher A. Hoffman, Anilkumar K. Reddy, Sridhar Madala, Ravi K. Birla. Noninvasive Measurement of EKG Properties of 3D Artificial Heart Muscle[J]. AIMS Cell and Tissue Engineering, 2017, 1(1): 12-30. doi: 10.3934/celltissue.2017.1.12
[1] | Chungen Liu, Huabo Zhang . Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29(5): 3281-3295. doi: 10.3934/era.2021038 |
[2] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[3] | Xiaoyong Qian, Jun Wang, Maochun Zhu . Existence of solutions for a coupled Schrödinger equations with critical exponent. Electronic Research Archive, 2022, 30(7): 2730-2747. doi: 10.3934/era.2022140 |
[4] | Ping Yang, Xingyong Zhang . Existence of nontrivial solutions for a poly-Laplacian system involving concave-convex nonlinearities on locally finite graphs. Electronic Research Archive, 2023, 31(12): 7473-7495. doi: 10.3934/era.2023377 |
[5] | Shiyong Zhang, Qiongfen Zhang . Normalized solution for a kind of coupled Kirchhoff systems. Electronic Research Archive, 2025, 33(2): 600-612. doi: 10.3934/era.2025028 |
[6] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[7] | Lingzheng Kong, Haibo Chen . Normalized solutions for nonlinear Kirchhoff type equations in high dimensions. Electronic Research Archive, 2022, 30(4): 1282-1295. doi: 10.3934/era.2022067 |
[8] | Jun Wang, Yanni Zhu, Kun Wang . Existence and asymptotical behavior of the ground state solution for the Choquard equation on lattice graphs. Electronic Research Archive, 2023, 31(2): 812-839. doi: 10.3934/era.2023041 |
[9] | Zijian Wu, Haibo Chen . Multiple solutions for the fourth-order Kirchhoff type problems in RN involving concave-convex nonlinearities. Electronic Research Archive, 2022, 30(3): 830-849. doi: 10.3934/era.2022044 |
[10] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
Our goal of this paper is to consider the existence of nodal solution and ground state solution for the following fractional Kirchhoff equation:
{−(a+b‖u‖2K)LKu+V(x)u=|u|2∗α−2u+kf(x,u),x∈Ω,u=0,x∈R3∖Ω, | (1) |
where
LKu(x)=12∫R3(u(x+y)+u(x−y)−2u(x))K(y)dy,x∈R3, |
the kernel
(ⅰ)
(ⅱ) there exists
(ⅲ)
We note that when
(−Δ)αu(x)=−C(α)2∫R3(u(x+y)+u(x−y)−2u(x))|y|3+2αdy |
and in this case
∫R3∫R3|u(x)−u(y)|2K(x−y)dxdy=2C(α)∫R3|(−Δ)α/2u(x)|2dx, |
where
When
{(−Δ)αu+V(x)u=|u|2∗α−2u+kf(x,u),x∈Ω,u=0,x∈R3∖Ω. | (2) |
Equation (2) is derived from the fractional Schrödinger equation and the nonlinearity
(a+b∫R3∫R3|u(x)−u(y)|2|x−y|3+2αdxdy)(−Δ)αu=f(x,u), | (3) |
where
utt+(a+b∫R3∫R3|u(x)−u(y)|2|x−y|3+2αdxdy)(−Δ)αu=f(x,u). | (4) |
As a special significant case, the nonlocal aspect of the tension arises from nonlocal measurements of the fractional length of the string. For more mathematical and physical background on Schrödinger-Kirchhoff type problems, we refer the readers to [6] and the references therein.
In the remarkable work of Caffarelli and Silvestre [2], the authors express this nonlocal operator
In past few years, some researchers began to search for nodal solutions of Schrödinger type equation with critical growth nonlinearity and have got some interesting results. For example, Zhang [20] considered the following Schrödinger-Poisson system:
{−Δu+u+k(x)ϕu=a(x)|u|p−2u+u5,x∈R3,−Δϕ=k(x)u2,x∈R3, | (5) |
where
Wang [17] studies the following Kirchhoff-type equation:
{−(a+b∫Ω|∇u|2dx)Δu=|u|4u+λf(x,u), x∈Ω,u=0, x∈∂Ω, | (6) |
where
However, as for fractional Kirchhoff types equation, to the best of our knowledge, few results involved the existence and asymptotic behavior of ground state and nodal solutions in case of critical growth. If
It's worth noting that, the Brouwer degree method used in [18] strictly depends on the nonlinearity
Throughout this paper, we let
E={u∈X:∫R3V(x)u2dx<∞,u=0a.e.inR3∖Ω}, |
where the space X introduced by Servadei and Valdinoci ([12,13]) denotes the linear space of Lebesgue measurable functions
((x,y)→(u(x)−u(y))√K(x−y)∈L2((R3×R3)∖(Ωc×Ωc),dxdy) |
with the following norm
||u||2X=||u||2L2+∫Q|u(x)−u(y)|2K(x−y)dxdy, |
where
⟨u,v⟩=a2∫R3∫R3(u(x)−u(y))(v(x)−v(y))K(x−y)dxdy+∫ΩV(x)uvdx,∀u,v∈E |
and the norm
‖u‖2=a2∫R3∫R3|u(x)−u(y)|2K(x−y)dxdy+∫ΩV(x)u2dx. |
The following result for the space
Lemma 1.1. ([12]) Let
A weak solution
12(a+b‖u‖2K)∫R3∫R3(u(x)−u(y))(v(x)−v(y))K(x−y)dxdy+∫ΩV(x)u(x)v(x)dx−∫Ω|u(x)|2∗α−2u(x)v(x)dx−k∫Ωf(x,u(x))v(x)dx=0, |
for any
⟨u,v⟩+b‖u‖2K(u,v)K−k∫Ωf(x,u)vdx−∫Ω|u|2∗α−2uvdx=0,∀v∈E. |
As for the function
(f1):
(f2): There exists
(f3):
Remark 1. We note that under the conditions (
The main results can be stated as follows.
Theorem 1.2. Suppose that
Remark 2. The ground state nodal solution
Jk(uk)=ck:=infu∈MkJk(u), |
where
u+=max{u(x),0},u−=min{u(x),0}. |
We recall that the nodal set of a continuous function
Theorem 1.3. Suppose that
Jk(uk)>2c∗, |
where
Comparing with the literature, the above two results can be regarded as a supplementary of those in [3,4,14,17].
The remainder of this paper is organized as follows. In Section 2, we give some useful preliminaries. In Section 3, we study the existence of ground state and nodal solutions of (1) and we prove Theorems 1.1-1.2.
We define the energy functional associated with equation (1) as follows:
Jk(u)=12‖u‖2+b4‖u‖4K−k∫ΩF(x,u)dx−12∗α∫Ω|u|2∗αdx,∀u∈E. |
According to our assumptions on
⟨J′k(u),v⟩=⟨u,v⟩+b‖u‖2K(u,v)K−k∫Ωf(x,u)vdx−∫Ω|u|2∗α−2uvdx,∀u,v∈E. |
Note that, since (1) involves pure critical nonlinearity
For fixed
H(s,t)=⟨J′k(su++tu−),su+⟩,G(s,t)=⟨J′k(su++tu−),tu−⟩. |
The argument generally used is to modify the method developed in [11]. The nodal Nehari manifold is defined by
Mk={u∈E,u±≠0and⟨J′k(u),u+⟩=⟨J′k(u),u−⟩=0}, | (7) |
which is a subset of the Nehari manifold
Jk(u)=Jk(u+)+Jk(u−), |
it brings difficulties to construct a nodal solution.
The following result describes the shape of the nodal Nehari manifold
Lemma 2.1. Assume that
Proof. From
|f(x,t)|≤ε|t|+Cε|t|q−1,∀t∈R. | (8) |
By above equality and Sobolev's embedding theorems, we have
H(s,t):=s2‖u+‖2+b‖su++tu−‖2K(su++tu−,su+)K−∫Ω|su+|2∗αdx−k∫Ωf(x,su+)su+dx−ast2∫R3∫R3[u+(x)u−(y)+u−(x)u+(y)]K(x−y)dxdy≥s2‖u+‖2−C1s2∗α‖u+‖2∗α−kεC2s2‖u+‖2−kCεC3sq‖u+‖q. | (9) |
By choosing
G(s,t):=t2‖u−‖2+b‖su++tu−‖2K(su++tu−,tu−)K−∫Ω|tu−|2∗αdx−k∫Ωf(x,tu−)tu−dx−ast2∫R3∫R3[u+(x)u−(y)+u−(x)u+(y)]K(x−y)dxdy>0, | (10) |
for
H(δ1,t)>0,G(s,δ1)>0. | (11) |
For any
H(δ2,t)≤δ22‖u+‖2+b‖δ2u++tu−‖2K(δ2u++tu−,δ2u+)K−δ22∗α∫R3|u+|2∗αdx+δ2tD(u). |
Similarly, we have
G(s,δ2)≤δ22‖u−‖2+b‖su++δ2u−‖2K(su++δ2u−,δ2u−)K−δ22∗α∫R3|u−|2∗αdx+sδ2D(u). |
By choosing
H(δ2,t)<0,G(s,δ2)<0 | (12) |
for all
Following (11) and (12), we can use Miranda's Theorem (see Lemma 2.4 in [17]) to get a positive pair
Lastly, we will prove that
s2u‖u+‖2+s2uD(u)+s4ub(‖u+‖2K+‖u−‖2K+2D(u))(‖u+‖2K+D(u))≥s2u‖u+‖2+sutuD(u)+b(s2u‖u+‖2K+t2u‖u−‖2K+2sutuD(u))(s2u‖u+‖2K+sutuD(u))=s2∗αu∫R3|u+|2∗αdx+k∫R3f(x,suu+)suu+dx. | (13) |
On the other hand,
‖u+‖2+D(u)+b(‖u+‖2K+‖u−‖2K+2D(u))(‖u+‖2K+D(u))≤∫R3|u+|2∗αdx+k∫R3f(x,u+)u+dx. | (14) |
From (13) - (14), we can see that
(1s2u−1)(‖u+‖2+D(u))≥(s2∗α−4u−1)∫R3|u+|2∗αdx+k∫R3[f(x,suu+)(suu+)3−f(x,u+)(u+)3](u+)4dx. |
So we have
Lemma 2.2. There exists
Proof. For any
‖u±‖2+b‖u‖2K(u,u±)K=k∫R3f(x,u±)u±dx+∫R3|u±|2∗αdx. |
Hence, in view of (8), we have
‖u±‖2≤kεC1‖u±‖2+kC2‖u±‖q+C3‖u±‖2∗α. |
By choosing
‖u±‖≥ρ | (15) |
for some
f(x,t)t−4F(x,t)≥0, | (16) |
and
Jk(u)=14‖u‖2+(14−12∗α)∫R3|u|2∗αdx+k4∫R3[f(x,u)u−4F(x,u)]dx≥14‖u‖2. |
So
Let
s2∗αk∫R3|u+|2∗αdx+t2∗αk∫R3|u−|2∗αdx≤‖sku++tku−‖2+b‖sku++tku−‖4K≤2s2k‖u+‖2+2t2k‖u−‖2+4bs4k‖u+‖4K+4bt4k‖u−‖4K, |
which implies
‖sknu++tknu−‖2+b‖sknu++tknu−‖4K=∫R3|sknu++tknu−|2∗αdx+kn∫R3f(sknu++tknu−)(sknu++tknu−)dx. | (17) |
Because
0≤ck≤Jk(sku++tku−)≤s2k‖u+‖2+t2k‖u−‖2+2bs4k‖u+‖4K+2bt4k‖u−‖4K, |
so
u±n→u±inLp(R3)∀p∈(2,2∗α),u±n(x)→u±(x)a.e.x∈R3. |
Denote
S:=infu∈E∖{0}‖u‖2(∫R3|u|2∗αdx)22∗α. |
Sobolev embedding theorem insures that
By
‖u±n‖2−‖u±n−u±‖2=2⟨u±n,u±⟩−‖u±‖2. |
By taking
limn→∞‖u±n‖2=limn→∞‖u±n−u±‖2+‖u±‖2. |
On the other hand, by (8) we have
∫R3F(x,su±n)dx→∫R3F(x,su±)dx. |
Then,
lim infn→∞Jk(su+n+tu−n)≥s22limn→∞(‖u+n−u+‖2+‖u+‖2)+t22limn→∞(‖u−n−u−‖2+‖u−‖2)+bs44[limn→∞‖u+n−u+‖2K+‖u+‖2K]2+bt44[limn→∞‖u−n−u−‖2K+‖u−‖2K]2+stlim infn→∞D(un)+bs2t24a2lim infn→∞D2(un)+bs2t22lim infn→∞(‖u+n‖2K‖u−n‖2K)+bs3t2alim infn→∞(D(un)‖u+n‖2K)+bst32alim infn→∞(D(un)‖u−n‖2K)−s2∗α2∗αlimn→∞(|u+n−u+|2∗α2∗α+|u+|2∗α2∗α)−t2∗α2∗αlimn→∞(|u−n−u−|2∗α2∗α+|u−|2∗α2∗α)−k∫R3F(x,su+)dx−k∫R3F(x,tu−)dx, |
where
lim infn→∞Jk(su+n+tu−n)≥Jk(su++tu−)+s22limn→∞‖u+n−u+‖2+t22limn→∞‖u−n−u−‖2−s2∗α2∗αlimn→∞|u+n−u+|2∗α2∗α−t2∗α2∗αlimn→∞|u−n−u−|2∗α2∗α+bs42limn→∞‖u+n−u+‖2K‖u+‖2K+bs44(limn→∞‖u+n−u+‖2K)2+bt42limn→∞‖u−n−u−‖2K‖u−‖2K+bt44(limn→∞‖u−n−u−‖2K)2=Jk(su++tu−)+s22A1−s2∗α2∗αB1+t22A2−t2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+bt42A4‖u−‖2K+bt44A24, |
where
A1=limn→∞‖u+n−u+‖2,A2=limn→∞‖u−n−u−‖2,B1=limn→∞|u+n−u+|2∗α2∗α,B2=limn→∞|u−n−u−|2∗α2∗α,A3=limn→∞‖u+n−u+‖2K,A4=limn→∞‖u−n−u−‖2K. |
From the inequality above, we deduce that
Jk(su++tu−)+s22A1−s2∗α2∗αB1+t22A2−t2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+bt42A4‖u−‖2K+bt44A24≤ck. | (18) |
We next prove
β=α3S32α≤α3(A1(B1)22∗α)32α. |
It happens that,
α3(A1(B1)22∗α)32α=maxs≥0{s22A1−s2∗α2∗αB1}≤maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}. |
The inequality (18) and
β≤maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}≤ck<β, |
which is a contradiction. Thus
Then, we consider the key point to the proof of Theorem 1.1, that is
Similarly, we only prove
Case 1:
ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23=maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}, |
ˉt22A2−ˉt2∗α2∗αB2+bˉt42A4‖u−‖2K+bˉt44A24=maxt≥0{t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24}. |
Since
φu(su,tu)=max(s,t)∈[0,ˉs]×[0,ˉt]φu(s,t). |
If
By direct computation, we get
s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23>0, | (19) |
t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24>0, | (20) |
for all
β≤ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23+t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24, |
β≤ˉt22A2−ˉt2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+s22A1−s2∗α2∗αB1+bˉt42A4‖u−‖2K+bˉt44A24. |
In view of (18), it follows that
ck≥Jk(suu++tuu−)+s2u2A1−s2∗αu2∗αB1+t2u2A2−t2∗αu2∗αB2+bs4u2A3‖u+‖2K+bs4u4A23+bt4u2A4‖u−‖2K+bt4u4A24>Jk(suu++tuu−)≥ck. |
It is impossible. The proof of Case 1 is completed.
Case 2:
φu(su,tu)=max(s,t)∈[0,ˉs]×[0,∞)φu(s,t). |
We need to prove that
β≤ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23+t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24. |
Thus also from (20) and
ck≥Jk(suu++tuu−)+s2u2A1−s2∗αu2∗αB1+t2u2A2−t2∗αu2∗αB2+bs4u2A3‖u+‖2K+bs4u4A23+bt4u2A4‖u−‖2K+bt4u4A24>Jk(suu++tuu−)≥ck, |
which is a contradiction.
Since
⟨J′k(u),u±⟩≤lim infn→∞‖u±n‖2+blim infn→∞‖un‖2K(un,u±n)K−limn→∞∫R3f(x,u±n)u±ndx−limn→∞∫R3|u±n|2∗α+lim infn→∞L(un)≤limn→∞⟨J′k(un),u±n⟩=0. |
By Lemma 2.1, we know
ck≤Jk(˜u)−14⟨J′k(˜u),˜u⟩=14(‖suu+‖2+‖tuu−‖2)+(14−12∗α)(|suu+|2∗α2∗α+|tuu−|2∗α2∗α)+k4∫R3[f(x,suu+)(suu+)−4F(x,suu+)]dx+k4∫R3[f(x,tuu−)(tuu−)−4F(x,tuu−)]dx≤lim infn→∞[Jk(un)−14⟨J′k(un),un⟩]=ck. |
So, we have completed proof of Lemma 2.2.
In this section, we will prove main results.
Proof. Since
Jk(su+k+tu−k)<ck. | (21) |
If
‖J′k(v)‖≥θ,forall‖v−uk‖≤3δ. |
We know by the result (15), if
¯ck:=max∂QI∘g<ck. | (22) |
Let
To finish the proof of Theorem 1.1, one of the key points is to prove that
\begin{align} \max\limits_{(s,t)\in\bar{Q}}J _{ k}(\eta(1,g(s,t))) < c_k. \end{align} | (23) |
The other is to prove that
\begin{align} J _{ k}(\eta(1,v))\leq J _{ k}(\eta(0,v)) = J _{ k}(v),\;\;\forall v\in E. \end{align} | (24) |
For
\begin{align*} J _{ k}(\eta(1,g(s,t)))\leq J _{ k}(g(s,t)) < c_k. \end{align*} |
If
\begin{align*} J _{ k}(\eta(1,g(1,1)))\leq c_k-\varepsilon < c_k. \end{align*} |
Thus (23) holds. Then, let
\begin{align*} \Upsilon(s,t): = (\frac{1}{s}\langle J'_k(\varphi(s,t)),(\varphi(s,t))^{^{+}}\rangle, \frac{1}{t}\langle J'_k(\varphi(s,t)),(\varphi(s,t))^{^{-}}\rangle). \end{align*} |
The claim holds if there exists
\begin{align*} \|g(s,t)-u_k\|^{2} = &\|(s-1)u_k^{+}+(t-1)u_k^{-}\|^{2}\\ \geq&|s-1|^2\|u_k^{+}\|^{2} > |s-1|^2(6\delta)^{2}, \end{align*} |
and
\begin{align*} \Upsilon(\frac{1}{2},t) = \large(2\langle J'_k(\frac{1}{2}u_k^{+}+t u_k^{-}),\frac{1}{2}u_k^{+}\rangle,\frac 1t\langle J _{ k}'(\frac{1}{2}u_k^{+}+t u_k^{-}),tu^{-}\rangle\large). \end{align*} |
On the other hand, from (9) and
\begin{align*} H(t,t) = &(t^{2}-t^4)(\|u^{+}\|^{2}+D(u))+(t^{4}-t^{2_\alpha^*}) \int_{\mathbb{R}^{3}}|u^{+}|^{2^{\ast}_{\alpha}}dx\\ &+kt^4\int_{\mathbb{R}^{3}}\left(f(x,u^+)- \frac{f(x,tu^{+})}{t^3}\right) u^{+}dx. \end{align*} |
According to
\begin{align*} H(\frac{1}{2},t) = &\|\frac{1}{2}u_k^{+}\|^2+\frac{t}{2}D(u_k)\\ &+b\big(\frac{1}{4}\|u_k^{+}\|_{K}^2+t^2\|u_k^{-}\|_{K}^2+ \frac taD(u_k)\big)\big(\frac{1}{4}\|u_k^{+}\|_{K}^2+\frac{t}{2a}D(u_k)\big)\\ &-(\frac{1}{2})^{2^{\ast}_{\alpha}}\int_{\mathbb{R}^{3}}|u_k^{+}|^{2^{\ast}_{\alpha}}dx - k\int_{\mathbb{R}^{3}}f(x,\frac{1}{2}u_k^{+})\frac{1}{2}u_k^{+}dx\geq H(\frac 12, \frac 12) > 0, \end{align*} |
which implies that
\begin{align} H(\frac{1}{2},t) > 0,\;\;\forall t\in[\frac{1}{2},\frac{3}{2}]. \end{align} | (25) |
Analogously,
\begin{align*} H(\frac{3}{2},t) = &\|\frac{3}{2}u_k^{+}\|^2+\frac{3t}{2}D(u_k) +b\big(\frac{9}{4}\|u_k^{+}\|_{K}^2+t^2\|u_k^{-}\|_{K}^2\\ &+\frac{3t}aD(u_k)\big)\big(\frac{9}{4}\|u_k^{+}\|_{K}^2+\frac{3t}{2a}D(u_k)\big)\\ &-(\frac{3}{2})^{2^{\ast}_{\alpha}}\int_{\mathbb{R}^{3}}|u_k^{+}|^{2^{\ast}_{\alpha}}dx - k\int_{\mathbb{R}^{3}}f(x,\frac{3}{2}u_k^{+})\frac{3}{2}u_k^{+}dx\leq H(\frac{3}{2},\frac{3}{2}) < 0, \end{align*} |
that is,
\begin{align} H(\frac{3}{2},t) < 0,\;\;\forall t\in[\frac{1}{2},\frac{3}{2}]. \end{align} | (26) |
By the same way,
\begin{align} G(s,\frac{1}{2}) > 0,\;\;\forall s\in[\frac{1}{2},\frac{3}{2}],\;\;\rm{and}\;\; G(s,\frac{3}{2}) > 0,\;\;\forall s\in[\frac{1}{2},\frac{3}{2}]. \end{align} | (27) |
From (25)-(27), the assumptions of Miranda's Theorem (see Lemma 2.4 in [17]) are satisfied. Thus, there exists
Proof. Recall that
Firstly, we prove that
\begin{align*} \beta\leq&\frac{\tilde{t}^{2}}{2}A-\frac{\tilde{t}^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B : = \max\limits_{t\geq0}\{\frac{t^{2}}{2}A-\frac{t^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B\}\\ \leq&\max\limits_{t\geq0}\{\frac{t^{2}}{2}A-\frac{t^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B +\frac{bt^{4}}{4}(C^2+2C\|v_k\|_{K}^2)\}\le c^* < \beta. \end{align*} |
Which is a contradiction.
Then, we prove that
c^*\le J _{ k}(t_vv_k) < J _{ k}(t_vv_k)+\frac{t_v^{2}}{2}A-\frac{t_v^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B +\frac{bt_v^{4}}{4}(C^2+2C\|v_k\|_{K}^2)\le c^*. |
From the above arguments we know
\begin{align*} c^*\le& J _{ k}(\tilde v)-\frac 14 \langle J'_k(\tilde{v}),\tilde{v}\rangle \le\frac 14\|v_k\|^2\\ &+(\frac 1{4}-\frac 1{2^{\ast}_{\alpha}})|v_k|_{2^{\ast}_{\alpha}}^{2^{\ast}_{\alpha}}+\frac k4\int_{\mathbb{R}^3}[f(x,v_k)v_k-4F(x,v_k)]dx\\ = &\liminf\limits_{n\to \infty}[J _{ k}(v_n)-\frac 14 \langle J'_k(v_n),v_n\rangle] = c^*. \end{align*} |
Therefore,
By standard arguments, we can find
s_{u^{+}}u^{+}\in \mathcal{N}_k,\;\;\; t_{u^{-}}u^{-}\in \mathcal{N}_k. |
Thus, the above fact follows that
\begin{align*} 2c^{\ast}\leq J _{ k}(s_{u^{+}}u^{+})+J _{ k}(t_{u^{-}}u^{-})\leq J _{ k}(s_{u^{+}}u^{+}+t_{u^{-}}u^{-}) < J _{ k}(u^{+}+u^{-}) = c_k. \end{align*} |
[1] | Colvin-Adams M, Smith JM, Heubner BM, et al. (2015) OPTN/SRTR 2013 Annual Data Report: heart. Am J Transplant: Off J Am Soc Transplant Am Soc Transpl Surg 15 Suppl 2: 1-28. |
[2] |
Langer R, and Vacanti JP (1993) Tissue engineering. Science 260: 920-926. doi: 10.1126/science.8493530
![]() |
[3] | Zimmermann WH, Didie M, Doker S, et al. (2006) Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res 71: 419-429. |
[4] | Bursac N, Papadaki M, Cohen RJ, et al. (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 277: H433-444. |
[5] | Radisic M, Fast VG, Sharifov OF, et al. (2009) Optical mapping of impulse propagation in engineered cardiac tissue. Tissue Eng, Part A 15: 851-860. |
[6] | Shimizu T, Yamato M, Akutsu T, et al. (2002) Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J Biomed Mater Res 60: 110-117. |
[7] | Ye L, Zimmermann WH, Garry DJ, et al. (2013) Patching the heart: cardiac repair from within and outside. Circ Res 113: 922-932. |
[8] | Baar K, Birla R, Boluyt MO, et al. (2005) Self-organization of rat cardiac cells into contractile 3-D cardiac tissue. FASEB J 19: 275. |
[9] | Blan NR, and Birla RK (2008) Design and fabrication of heart muscle using scaffold-based tissue engineering. J Biomed Mater Res, Part A 86A: 195-208. |
[10] |
Evers R, Khait L, Birla RK (2011) Fabrication of functional cardiac, skeletal, and smooth muscle pumps in vitro. Artif Organs 35: 69-74. doi: 10.1111/j.1525-1594.2010.01018.x
![]() |
[11] | Huang YC, Khait L, Birla RK (2007) Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J Biomed Mater Res, Part A 80: 719-731. |
[12] | Khait L, Hodonsky CJ, Birla RK (2009) Variable optimization for the formation of three-dimensional self-organized heart muscle. In Vitro Cell Dev Biol: Anim 45: 592-601. |
[13] | Migneco F, Hollister SJ, Birla RK (2008) Tissue-engineered heart valve prostheses: 'state of the heart'. Regener Med 3: 399-419. |
[14] | Bian W, Badie N, Herman IV, et al. (2014) Robust T-tubulation and maturation of cardiomyocytes using tissue-engineered epicardial mimetics. Biomaterials 35: 3819-3828. |
[15] | Meyer T, Boven KH, Gunther E, et al. (2004) Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf 27: 763-772. |
[16] | Salazar B, Reddy A, Tao Z, et al. (2015) 32-Channel System to Measure the Electrophysiological Properties of Bioengineered Cardiac Muscle. IEEE Trans Biomed Eng 62: 1614-1622. |
[17] | Egert U, Banach K, Meyer T (2006) Analysis if Cardiac Myocyte activity Dynamics with Micro-Electrode Arrays, In: Taketani M, Baudry M, Advances in Network Electrophysiology: Using Multi-Electrode Arrays. New York Springer-Verlag, 274-290. |
[18] | Meiry G, Reisner Y, Feld Y, et al. (2001) Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes. J Cardiovasc Electrophysiol 12: 1269-1277. |
[19] | Tao ZW, Mohamed M, Hogan M, et al. (2014) Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel. J Tissue Eng Regener Med. |
[20] | Shrier A, and Clay JR (1982) Comparison of the pacemaker properties of chick embryonic atrial and ventricular heart cells. J Membr Biol 69: 49-56. |
[21] | Mark GE, and Strasser FF (1966) Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp Cell Res 44: 217-233. |
[22] | Fraser RS, Harley C, Wiley T (1967) Electrocardiogram in the normal rat. J Appl Physiol 23: 401-402. |
1. | Yue Wang, Wei Wei, Ying Zhou, The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations, 2023, 12, 2075-1680, 45, 10.3390/axioms12010045 |