Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Strategies to investigate protein turnover with fluorescent protein reporters in eukaryotic organisms

  • Received: 26 February 2020 Accepted: 16 April 2020 Published: 23 April 2020
  • In higher eukaryotes, defects in regulated protein turnover are intimately linked to development of diseases and aging. Systematic investigation of proteostasis and protein degradation pathways is of high importance for understanding basic cellular events as well as developmental processes in higher organisms. Recently, novel fluorescent protein-based tools for monitoring protein degradation and mapping degradation pathways were described that facilitate this task. Here we give an overview of these tools and relate them to biophysical properties of fluorescent proteins. We focus on methods for the identification of degradation pathways, the discovery of novel degradation sequences, the investigation of proteome dynamics, and the characterization of protein stability. One can expect systematic application of these tools in the near future by systems biology approaches enhancing understanding of the ubiquitin-proteasome system from single protein degradation pathways to its influence on developmental processes.

    Citation: Jonathan Trauth, Johannes Scheffer, Sophia Hasenjäger, Christof Taxis. Strategies to investigate protein turnover with fluorescent protein reporters in eukaryotic organisms[J]. AIMS Biophysics, 2020, 7(2): 90-118. doi: 10.3934/biophy.2020008

    Related Papers:

    [1] Eid Elghaly Hassan, Diping Zhang . The usage of logistic regression and artificial neural networks for evaluation and predicting property-liability insurers' solvency in Egypt. Data Science in Finance and Economics, 2021, 1(3): 215-234. doi: 10.3934/DSFE.2021012
    [2] Jawad Saleemi . Political-obsessed environment and investor sentiments: pricing liquidity through the microblogging behavioral perspective. Data Science in Finance and Economics, 2023, 3(2): 196-207. doi: 10.3934/DSFE.2023012
    [3] Paarth Thadani . Financial forecasting using stochastic models: reference from multi-commodity exchange of India. Data Science in Finance and Economics, 2021, 1(3): 196-214. doi: 10.3934/DSFE.2021011
    [4] Aihua Li, Qinyan Wei, Yong Shi, Zhidong Liu . Research on stock price prediction from a data fusion perspective. Data Science in Finance and Economics, 2023, 3(3): 230-250. doi: 10.3934/DSFE.2023014
    [5] Obinna D. Adubisi, Ahmed Abdulkadir, Chidi. E. Adubisi . A new hybrid form of the skew-t distribution: estimation methods comparison via Monte Carlo simulation and GARCH model application. Data Science in Finance and Economics, 2022, 2(2): 54-79. doi: 10.3934/DSFE.2022003
    [6] Yaya Su, Yi Qu, Yuxuan Kang . Online public opinion and asset prices: a literature review. Data Science in Finance and Economics, 2021, 1(1): 60-76. doi: 10.3934/DSFE.2021004
    [7] Xiaoling Chen, Xingfa Zhang, Yuan Li, Qiang Xiong . Daily LGARCH model estimation using high frequency data. Data Science in Finance and Economics, 2021, 1(2): 165-179. doi: 10.3934/DSFE.2021009
    [8] Bilal Ahmed Memon, Hongxing Yao . Correlation structure networks of stock market during terrorism: evidence from Pakistan. Data Science in Finance and Economics, 2021, 1(2): 117-140. doi: 10.3934/DSFE.2021007
    [9] John Leventides, Evangelos Melas, Costas Poulios . Extended dynamic mode decomposition for cyclic macroeconomic data. Data Science in Finance and Economics, 2022, 2(2): 117-146. doi: 10.3934/DSFE.2022006
    [10] John Leventides, Evangelos Melas, Costas Poulios, Paraskevi Boufounou . Analysis of chaotic economic models through Koopman operators, EDMD, Takens' theorem and Machine Learning. Data Science in Finance and Economics, 2022, 2(4): 416-436. doi: 10.3934/DSFE.2022021
  • In higher eukaryotes, defects in regulated protein turnover are intimately linked to development of diseases and aging. Systematic investigation of proteostasis and protein degradation pathways is of high importance for understanding basic cellular events as well as developmental processes in higher organisms. Recently, novel fluorescent protein-based tools for monitoring protein degradation and mapping degradation pathways were described that facilitate this task. Here we give an overview of these tools and relate them to biophysical properties of fluorescent proteins. We focus on methods for the identification of degradation pathways, the discovery of novel degradation sequences, the investigation of proteome dynamics, and the characterization of protein stability. One can expect systematic application of these tools in the near future by systems biology approaches enhancing understanding of the ubiquitin-proteasome system from single protein degradation pathways to its influence on developmental processes.


    Due to the difficulty in measuring the biomass of plankton, mathematical models of plankton populations are important methods for understanding the physical and biological processes of plankton. Various phytoplankton-zooplankton models (PZMs) have been studied: An NPZD model [1], a stochastic PZM [2], a plankton-nutrient system [3], a marine phytoplankton-zooplankton ecological model (PZEM) [4], Trophic phytoplankton-zooplankton models (PZM) [5], a bioeconomic PZM with time delays [6], a two-zooplankton one-phytoplankton PZM [7], a phytoplankton and two zooplankton PZM with toxin-producing delay [8], planktonic animal and plant PZM [9], and other PZMs [10, 11, 12]. In [12], Wang et al. investigated the following PZEM:

    {dPdt=plant growthrP(1PK)plant losse1PZ1+e1h1P+e2h2A,dZdt=n1e1PZ+n2e2AZ1+e1h1P+e2h2Aanimal gainτZnatural deathσPZh+Panimal death. (1.1)

    Fractional-order reaction-diffusion equation can describe the dynamic behavior of real systems more accurately. In recent years, fractional-order models have made remarkable progress in fields such as biomedicine, ecology, and public health. In biomedicine, fractional-order models have been used to study tumor growth [13] and hepatitis B virus (HBV) treatment [14], revealing their advantages in describing the complex dynamic behaviors of biological systems. In ecology, fractional-order models have demonstrated their potential in the study of ecosystem complexity by analyzing the dynamic behaviors of plant-herbivore interactions [15]. In public health, the fractional model has been applied to analyze the transmission of smoking behavior [16] and the correlation between human papilloma virus (HPV) and cervical cancer [17], highlighting their utility in public health research. These studies not only enrich the theoretical application of fractional models but also have made significant progress in numerical analysis, providing new tools and methods for solving complex biomedical and ecological problems [13, 17]. For example, in ecology, fractional PZEMs can more accurately describe the complex dynamics of ecosystems, including population fluctuations and interactions. Li et al. [18] studied an established fractional-order delayed zooplankton-phytoplankton model. Javidi and Ahmad [19] studied dynamic analysis of time fractional-order phytoplankton-toxic PZM. Kumar et al. [20] studied a fractional plankton-oxygen modeling. The proposed fractional-order PZEM extends traditional integer-order models by incorporating memory effects through fractional derivatives, which better capture long-term ecological interactions. This model accounts for toxic substances and additional food transmission, factors critical to understanding algal blooms, and population collapse. Models often neglect cross-diffusion and fractional dynamics, limiting their ability to simulate complex spatiotemporal patterns. Our work bridges this gap, offering insights into chaotic attractors and pattern formation under realistic ecological constraints. In this paper, we investigate the following fractional-order PZEM:

    {α1Ptα1=plant growthrP(1PK)plant losse1PZ1+e1h1P+e2h2A+plant diffusiond112P,α2Ztα2=n1e1PZ+n2e2AZ1+e1h1P+e2h2Aanimal gainτZnatural deathσPZh+Panimal death+d212P+d312Zplant and animal diffusion, (1.2)

    where P and Z represent the population densities of phytoplankton and zooplankton, respectively, at time t. 2 stands for the Laplacian operator of the two-dimensional plane, Ω is a bounded connected region with smooth boundaries Ω, and d11 and d31 represent the diffusion coefficients of phytoplankton and zooplankton, respectively. These parameters characterize the stochastic movement of individuals within a population from areas of high concentration to those of lower density. d21 is a cross-diffusion coefficient that indicates the effect of the presence of phytoplankton on the movement of zooplankton populations. αi(i=1,2) is the fractional-order orders, 0<αi<1 and α1Ptα1,α2Ztα2 are the Grünwald-Letnikov (GL) fractional derivative. t is the time variable. The meanings of the parameters in the model are shown in Table 1.

    Table 1.  Parameter and biological significance in the model.
    Parameter Ecological Significance
    r The intrinsic growth rate of phytoplankton
    K The carrying capacity of the environment for phytoplankton
    h1 The time zooplankton need to process one unit of phytoplankton
    h2 The time zooplankton need to process one unit of supplementary food
    e1 The capacity of zooplankton to prey on phytoplankton
    e2 The capacity of zooplankton to forage for supplementary food
    n1 The nutritional value of phytoplankton
    n2 The nutritional value of supplementary food
    A The biomass of supplementary food
    τ The mortality rate of zooplankton
    σ The proportion of toxins released by phytoplankton
    h The half-saturation constant

     | Show Table
    DownLoad: CSV

    Several numerical schemes have been used to solve the Fractional-order reaction-diffusion equation, the Galerkin method [21, 22], the Fourier spectral method [23, 24], the finite difference method [25, 26], the operational matrix method [27, 28], and so on [29, 30, 31, 32, 33, 34]. In this paper, we investigate dynamic properties and numerical solutions of the fractional-order PZEM (1.2). The major contributions of this paper are as follows:

    (a) The concept of the phytoplankton-zooplankton ecological model is first extended to fractional-order PZEM that incorporates the effects of toxic substances and additional food transmission in the environment. This model leverages the memory effect of fractional-order derivatives to more effectively capture biological significance compared to traditional integer-order models.

    (b) Stability, Turing instability, Hopf bifurcation, and weakly nonlinear property are analyzed for the PZEM. a new high-precision numerical method is developed for the fractional PZEM without diffusion term, and a discretization method is established for the PZEM with a diffusion term.

    (c) Numerical simulations show some novel chaotic attractor and pattern dynamical behaviors of the PZEM.

    The paper is organized as follows: In Section 2, we give the stability and Hopf bifurcation analysis. In Section 3, we detail weakly nonlinear analysis. In Section 4, we give the numerical algorithm and the numerical simulation results of the system. Finally, in Section 5, we the summarize paper.

    In this section, we investigate the stability of the equilibrium point and the emergence of Hopf bifurcation. Let

    ˉu=e1h1P,ˉv=e1rZ,t=rT,κ=e1h1K,α=n1h2n2h1,τ=n1rh1,ζ=n2e2h1n1A,m=τr,μ=τr,G=e1hh1.

    Equation (1.2) is converted to the following form:

    {α1tα1ˉu=ˉu(1ˉuκ)ˉuˉv1+αζ+ˉu+d12ˉu,α2tα2ˉv=τ(ˉu+ζ)ˉv1+αζ+ˉumˉvμˉuˉvG+ˉu+d22ˉu+d32ˉv, (2.1)

    where, d1=e1h1d11,d2=e1h1d21,d3=e1rd31.

    We analyze the stability of Eq (2.1) without the diffusion term.

    {α1tα1ˉu=ˉu(1ˉuκ)ˉuˉv1+αζ+ˉu,α2tα2ˉv=τ(ˉu+ζ)ˉv1+αζ+ˉumˉvμˉuˉvG+ˉu. (2.2)

    Solving the following equation:

    {ˉu(1ˉuκ)ˉuˉv1+αζ+ˉu=0,τ(ˉu+ζ)ˉv1+αζ+ˉumˉvμˉuˉvG+ˉu=0. (2.3)

    We can get the following equilibrium points of Eq (2.2):

    E0=(0,0),E1=(κ,0),E=(ˉu,ˉv), (2.4)

    where

    ˉv=(1+αζ+ˉu)(1ˉuκ).

    u represents the positive solution to the quadratic equation (2.5)

    ˉD1ˉu2+ˉD2ˉu+ˉD3=0, (2.5)

    where

    ˉD1=τmμ,ˉD3=τζGmGmαζG,ˉD2=τζ+τGmαζmGμαζμm.

    Solving Eq (2.5), we can get:

    {ˉu1,2=(τζ+τHmαζmHμαζμm)2(τmμ)±(τζ+τHmαζmHμαζμm)24(τmμ)(τζHmHmαζH)2(τmμ),ˉv=(1+αζ+ˉu)(1ˉuκ). (2.6)

    The Jacobian matrix associated with E=(ˉu,ˉv) is formulated as follows

    J=[a11a12a21a22], (2.7)

    where

    a11=12ˉuκˉv(1+αζ)(1+αζ+ˉu)2, a12=ˉu1+αζ+ˉu,a21=τˉv(1+αζζ)(1+αζ+ˉu)2μˉvG(G+ˉu)2, a22=τ(ˉu+ζ)1+αζ+ˉumμˉuG+ˉu.

    When (α1,α2)=(1,1), the characteristic equation at the equilibrium point is as follows:

    λ2+Tr0λ+0=0, (2.8)

    where,

    Tr0=a11+a22,0=a11a22a21a12.

    Let α=0.55,τ=4.1,ζ=0.72,G=8.43,μ=0.79,κ=2.38, and m=2.45. The system's equilibrium point and its associated eigenvalues are presented in Table 2.

    Table 2.  The calculation results of the equilibrium point, eigenvalue, and argument of the system.
    Equilibrium point Eigenvalues of Jacobian matrix Stability
    0 0 –0.3354 1 Unstability
    2.3800 0 –1 0.7421 Unstability
    0.3131 1.4843 0.0138–0.4838i 0.0138+0.4838i Unstability

     | Show Table
    DownLoad: CSV

    It can be seen from Table 3 that all three equilibrium points are unstable points, and the system may generate chaos. Next, we introduce a high-precision numerical method for numerical simulation.

    Table 3.  Comparison of methods for problem (2.9) when β=0.9 and t[0,1].
    Method α=0.4 α=0.7 α=1
    h=0.01 h=0.05 h=0.01 h=0.05 h=0.01 h=0.05
    Closed-from solution [35] 3.2307e-02 5.4302e-02 4.5734e-02 2.5713e-01 2.0716e-01 4.5136e-01
    Present method 8.9463e-05 5.6724e-04 9.1684e-05 7.3524e-04 2.1527e-04 4.5136e-03

     | Show Table
    DownLoad: CSV

    In simulations of this section, let α=1.1,τ=4.4,ζ=0.8,G=8,n=1.75,κ=5.3, and m=2.5 and initial conditions u0=1 and v0=1. We set the time step size h=0.01 and the time as T=600 for simulation. Figure 1 shows numerical results at (α1,α2)=(0.895,0.994).

    Figure 1.  Comparative numerical result of the two methods of the model (α,τ,ζ,G,n,κ,m)=(1.1,4.4,0.8,8,1.75,5.3,2.5), α1=0.895, and α2=0.994.

    We consider the following fractional order GL initial value problem

    {Dαty(t)=tβ,y(0)=0. (2.9)

    Numerical simulations are performed for Eq (2.9). Compared with the closed-from solution, the simulation results of the high-precision numerical method are in good agreement with the simulation results of other methods, and the accuracy is higher. This verifies the effectiveness of the high-precision numerical method.

    We first consider the following GL differential equation:

    dαdtαy(t)=f(t,y(t)). (2.10)

    According to [36], we can get the high-precision numerical method [36, 37, 38, 39]:

    y(tk)=hαf(tk,y(tk1))mi=1ϑ(α,p)jy(tkj), (2.11)

    where,

    {ϑ(α,p)0=g0,k=0,ϑ(α,p)k=1g0k1i=0(1i1+αk)giϑ(α,p)ki,k=1,2,....,p1,ϑ(α,p)k=1g0pi=0(1i1+αk)giϑ(α,p)ki,k=p,p+1,p+2,.... (2.12)
    (g0g1g2gp)=(1111123p+112232(p+1)212p3p(p+1)p)1(012p). (2.13)

    Where m=[tk/h]+1, h is the step size. Therefore, a high-precision numerical method for the system (2.2) is the following

    {ˉuk=hα1(ˉuk1(1ˉuk1κ)ˉuk1ˉvk11+αζ+ˉuk1)+ˉu0mj=1ϑ(α1,p)jˉukj,ˉvk=hα2(τ(ˉuk+ζ)ˉvk11+αζ+ˉukmˉvk1μˉukˉvk1G+ˉuk)+ˉv0mj=1ϑ(α2,p)jˉvkj. (2.14)

    According to [36, 40], the least common order of the system is identified as 0.9819. Let (α1,α2)=(1.05,0.95),α=0.55,τ=4.1,ζ=0.72,G=8.43,μ=0.79,κ=2.38, and m=2.45, and the characteristic equation of the system is given by

    λ401066728823λ212478990071λ19+10396924437077=0, (2.15)

    with characteristic roots λ1,2=1.0358±0.0439i, as |arg(λ1,2)|=0.0423<π40. This indicates that the instability of the system may generate chaos. It can be seen from Figure 2 that the system generates chaos. The chaotic phenomenon of the system gradually disappears over time and tends to a stable state.

    Figure 2.  Numerical simulation of phase diagrams and time series plot of system (2.2) at (α1,α2)=(1.05,0.95)..

    We set different orders (α1,α2)=(1.1,0.95) to observe the influence of the order on the dynamic behavior of the system at parameters α=0.55,τ=4.1,ζ=0.72,G=8.43,n=0.79,κ=2.38, and m=2.45. The characteristic equation of the system is given by

    λ411066728823λ222478990071λ19+10396924437077=0, (2.16)

    with characteristic roots λ1,2=1.0021±0.2687i, as |arg(λ1,2)|=0.2620<π40. It indicates that the instability of the system may generate chaos. It can be seen from Figure 3 that the system is in a quasi-periodic state.

    Figure 3.  Numerical simulation of phase diagrams and time series plot of system (2.2) at (α1,α2)=(1.1,0.95)..

    To gain a clearer view of the system's dynamic behavior, Figure 4 shows the phase diagram of the system under different α orders.

    Figure 4.  Comparison of the phytoplankton-zooplankton phase diagram of the system (2.2) at different fractional-order derivatives.

    Next, we explore the potential for a Hopf bifurcation at E. A Hopf bifurcation is critical as it marks a transition in the model's stability and the emergence of periodic solutions. To achieve this, the characteristic roots of system (2.2) must be purely complex.

    The solution to system (2.2) is obtained as follows:

    λ1,2=Tr0±Tr204det02. (2.17)

    When α=1, system (2.2) undergoes a destabilizing Hopf bifurcation under the conditions tr0=0 and det0>0. Given that the stability of system (2.2) is influenced by the fractional derivative, this derivative can be considered a parameter in the Hopf bifurcation. We now determine the conditions for the Hopf bifurcation for system (2.2) around parameter E, α=αh:

    (1) At the equilibrium point E, the Jacobian matrix possesses a pair of complex conjugate eigenvalues λ1,2=ai+ibi, which transition to being purely imaginary at α=αh;

    (2) m(αh)=0 where m(α)=απ2min1i2|arg(λi)|;

    (3) m(α)α|α=αh0.

    We now demonstrate that E experiences a Hopf bifurcation as α crosses the value αh.

    Proof. Given that tr204det0<0 and tr0>0, the eigenvalues form a complex conjugate pair with a positive real component. Thus,

    0<arg(λ12)=tan1(4det0tr20tr0)<π2, (2.18)

    and απ2>|tan1(4det0tr20tr0)| for some α. Let αhπ2=|tan1(4det0tr20tr0)|, get αh=2πtan1(4det0tr20tr0). Moreover, m(α)α|α=αh=π20. Therefore, all Hopf conditions satisfy.

    Above, we analyze the dynamical behavior of fractional system (2.2). The expression of the solution of system (2.1) involves more complex special functions, such as the Mittag-Leffler function and other hypergeometric functions. Although the form of the solution exists, its expression is very large. Therefore, in this section, we reveal various spatiotemporal behaviors around the Turing bifurcation threshold d2 and derive the amplitude equations associated with system (2.1) at α1=α2=1 using multi-scale and weakly nonlinear analysis. The solution of system (2.1) is written in the following form:

    (ˉuˉv)=(ˉuˉv)+3j=1(AˉujAˉvj)eiqjr+c.c., (3.1)

    where (Aˉuj,Aˉvj)T represents the magnitude of the wave vector qj, fulfilling the condition that |qj|=qT.

    Adding a perturbation to the equilibrium point E(u,v), such that ˉu=ˉu+u, ˉv=ˉv+v, and substituting them into system (2.1), and performing a Taylor expansion, we can get the following form:

    {ut=a11u+a12v+k20u2+k02v2+k11uv+k30u3+k03v3+k21u2v+k12uv2+d12u,vt=a11u+a22v+m20u2+m02v2+m11uv+m30u3+m03v3+m21u2v+m12uv2+d22u+d32v, (3.2)

    where

    k02=0,k03=0,k12=0,m02=0,m03=0,m12=0,k11=1+αζ(1+αζ+ˉu)2,m11=(1+αζζ)τ(1+αζ+ˉu)2μG(G+ˉu)2,k21=1+αζ(1+αζ+ˉu)3,m21=τ(1+αζζ)(1+αζ+ˉu)3+μG(G+ˉu)3,k30=(1+αζ)(1ˉuκ)(1+αζ+ˉu)3,m30=τ(1ˉuκ)(1+αζζ)(1+αζ+ˉu)3μGˉv(G+ˉu)4,k20=1κ+(1+αζ)(1ˉuκ)(1+αζ+ˉu)2,m20=τ(1+αζζ)(1ˉuκ)(1+αζ+ˉu)2+μGˉv(G+ˉu)3.

    Let U=(u,v)T and system (3.2) can be simplified as

    Ut=LU+N(U,U), (3.3)
    L=(a11+d12a12a21+d22a22+d32),

    where

    N=(k20u2+k02v2+k11uv+k30u3+k03v3+k21u2v+k12uv2m20u2+m02v2+m11uc+m30u3+m03v3+m21u2v+m12uv2).

    Here, L denotes a linear operator and N represents a nonlinear operator.

    We expand parameter d2 with a sufficiently small parameter ε, so we can obtain:

    dT2=εd(1)2+ε2d(2)2+ε3d(3)2+O(ε3). (3.4)

    We develop variable U and nonlinear term N, respectively, the small parameter ε:

    U=(uv)=ε(u1v1)+ε2(u2v2)+ε3(u3v3)+O(ε3), (3.5)
    N=ε2N2+ε3N3+O(ε4), (3.6)

    where

    N2=(k20u21+k11u1v1m20u21+m11u1v1),N3=(2k20u1u2+k11u1v2+k11u2v1+k30u31+k21u21v12m20u1u2+m11u1v2+m11u2v1+m30u31+m21u21v1).

    We decompose operator L into the following form:

    L=Lc+(d2dT2)M, (3.7)

    where

    Lc=(d12+a11a12dT22+a21d32+a22),M=(b11b12b21b22).

    Using the multiple-scale approach, we differentiate the system's time scales into T1=εt,T2=ε2t,T3=ε3t, which are mutually independent. Consequently, the time derivative can be articulated as:

    t=εT1+ε2T2+ε3T3+O(ε3). (3.8)

    Substituting Eqs (3.4)–(3.8) into Eq (3.3), we can obtain the following equation:

    ε:Lc(u1v1)=0, (3.9)
    ε2:Lc(u2v2)=T1(u1v1)d(1)2M(u1v1)N2, (3.10)
    ε3:Lc(u3v3)=T1(u2v2)+T2(u1v1)d(1)2M(u2v2)d(2)2M(u1v1)N3. (3.11)

    The 1st order of (O(ε)):

    Lc(u1v1)=0. (3.12)

    The solution of Eq (3.12) is

    (u1v1)=(φ1)3j=1(Wjeiqjr)+c.c., (3.13)

    where φ=a12a11d1q2c,|qj|=qc,qc=qT(dT2). Additionally, Wj denotes the amplitude of eiqjr.

    The 2nd order of (O(ε2)):

    Lc(u2v2)=T1(u1v1)d(1)2M(u1v1)N2=(FuFv), (3.14)

    Fju and Fjv(j=1,2,3) are the coefficients with respect to eiqjr in Fu and Fv, respectively.

    Using the Fredholm solvability condition for Eq (3.14), the vector function on the right-hand side must be perpendicular to the zero eigenvalue of L+c. The zero eigenvector of Lc is:

    (1ψ)eiqjr+c.c., j=1,2,3, (3.15)

    with ψ=a11d1q2ca21dT2q2c. From the orthogonal condition:

    (1,ψ)(FjuFjv)=0,j=1,2,3. (3.16)

    Utilizing the Fredholm solvability condition as stated in Eq (3.16), we arrive at the following:

    {(φ+ψ)W1T1=d(1)2η0W1+2(η1+ψη2)¯W2¯W3,(φ+ψ)W2T1=d(1)2η0W2+2(η1+ψη2)¯W1¯W3,(φ+ψ)W3T1=d(1)2η0W3+2(η1+ψη2)¯W1¯W2, (3.17)

    where

    {η0=(φb11+b22)+ψ(φb21+b22),η1=12k20φ2+k11φ,η2=12m20φ2+m11φ.

    Next, higher-order disturbance terms are introduced:

    (u2v2)=(U0V0)+3j=1(UjVj)eiqjr+3j=1(UjjVjj)e2iqjr+(U12V12)ei(q1q2)r+(U23V23)ei(q2q3)r+(U31V31)ei(q3q1)r+c.c.. (3.18)

    We substitute formulas (3.13) and (3.18) into formula (3.10). By solving the equations corresponding to different modes, it is known that the coefficients have the following forms:

    (U0V0)=(u00v00)(|W1|2+|W2|2+|W3|2), Uj=φYj,(UjjVjj)=(u11v11)W2j,(UijVij)=(ˉuˉv)Wi¯Wj,

    where

    (ˉu00ˉv00)=2a11a22a21a12(a22η1a12η2a11η2a21η1), (3.19)
    (ˉu11ˉv11)=(a12η2(a224d3q2c)η1(a114d1q2c)(a224d3q2c)(a214dT2q2c)a12(a214dT2q2c)η1(a114d1q2c)η2(a114d1q2c)(a224d3q2c)(a214dT2q2c)a12), (3.20)
    (ˉuˉv)=2(a12η2(a223d3q2c)η1(a113d1q2c)(a223d3q2c)(a213dT2q2c)a12(a213dT2q2c)η1(a113d1q2c)η2(a113d1q2c)(a223d3q2c)(a213dT2q2c)a12). (3.21)

    From the orthogonal condition, we obtain:

    {(φ+ψ)(Y1T1+W1T2)=η0(d(2)2W1+d(1)2Y1)[(Q1+ψR1)|W1|2+(Q2+ψR2)(|W2|2+|W3|2)]W1+2(η1+ψη2)(¯W2¯Y3+¯W3¯Y2),(φ+ψ)(Y2T1+W2T2)=η0(d(2)2W2+d(1)2Y2)[(Q1+ψR1)|W2|2+(Q2+ψR2)(|W1|2+|W3|2)]W2+2(η1+ψη2)(¯W1¯Y3+¯W3¯Y1),(φ+ψ)(Y3T1+W3T2)=η0(d(2)2W3+d(1)2Y3)[(Q1+ψR1)|W3|2+(Q2+ψR2)(|W2|2+|W1|2)]W3+2(η1+ψη2)(¯W2¯Y1+¯W1¯Y2), (3.22)

    where

    Q1=(2φk20+k11)(u00+u11)φk11(v00+v11)3k30φ33k21φ2,Q2=(2φk20+k11)(u00+u)φk11(v00+v)6k30φ36k21φ2,R1=(2φm20+m11)(u00+u11)φm11(v00+v11)3m30φ33m21φ2,R2=(2φm20+m11)(u00+u)φm11(v00+v)6m30φ36m21φ2.

    The amplitude Aj is the coefficient of eiqjr at each level, so

    Aj=εWj+ε2Yj+O(ε3). (3.23)

    Substituting Eqs (3.17) and (3.22) into Eq (3.23), we get the following amplitude equations:

    {τ0Z1t=ηZ1+χˉZ2ˉZ3[g1|Z1|2+g2(|Z2|2+|Z3|2)]Z1,τ0Z2t=ηZ2+χˉZ1ˉZ3[g1|Z2|2+g2(|Z1|2+|Z3|2)]Z2,τ0Z3t=ηZ3+χˉZ1ˉZ2[g1|Z3|2+g2(|Z1|2+|Z2|2)]Z3, (3.24)

    where

    η=d2dT2dT2,τ0=φ+ψdT2[(φb11+b12)+ψ(φb21+b22)],χ=k20φ2+2k11φ+m20φ2ψ+2m11φψdT2[(φb11+b12)+ψ(φb21+b22)],g1=Q1+ψR1dT2[(φb11+b12)+ψ(φb21+b22)],g2=Q2+ψR2dT2[(φb11+b12)+ψ(φb21+b22)].

    Since each amplitude Aj=ωjeiθj(j=1,2,3) in Eq (3.24) can be decomposed into mode ωj=|Aj| and phase angle θj, substituting Aj into Eq (3.24) to separate the real and imaginary parts yields the following equation:

    {τ0θt=χω21ω22+ω21ω23+ω22ω23ω1ω2ω3sinθ,τ0ω1t=ηω1+χω2ω3cosθ[g1ω31+g2(ω22+ω23)ω1],τ0ω1t=ηω1+χω2ω3cosθ[g1ω31+g2(ω22+ω23)ω1],τ0ω1t=ηω1+χω2ω3cosθ[g1ω31+g2(ω22+ω23)ω1], (3.25)

    where, θ=θ1+θ2+θ3. From Eq (3.25), it can be deduced that the solution is stable under the conditions χ>0,ψ=0 and χ<0,ψ=π. The solutions of Eq (3.25) are shown in Table 4.

    Table 4.  The relationship between pattern shape and steady-state solutions.
    Conditions Solution Pattern shape
    ω1=ω2=ω3=0 Stationary state
    ω1=ηg1,ω2=ω3=0 Strip pattern
    η>η1=χ24(g1+2g2) ω1=ω2=ω3=|χ|±χ2+4(g1+2g2)η2(g1+2g2) Hexagon pattern
    g2>g1,η>g1ω21 ω1=|χ|g2g1,ω2=ω3=ηg1ω21g1+g2 Mixed state

     | Show Table
    DownLoad: CSV

    In this section, we conduct numerical simulations to verify the theoretical analysis and observe its pattern dynamic behavior. In order to observe the dynamic behavior, we introduce the numerical method of the PZEM model (2.1). If 0<αi<1(i=1,2), the time derivative is expressed by formula (2.11), and the space derivative is expressed by the following formula (4.2). If αi=1(i=1,2), we employ the Euler discretization approach for conducting numerical simulations in a two-dimensional domain Ω=[0,Lx]×[0,Ly]. We select Lx=250,Ly=250, a time increment Δt=0.2, and a spatial increment Δh=0.69. We denote unpq=u(xp,yq,nΔt) and vnpq=v(xp,yq,nΔt). The model (2.1) is discretized using the Euler method, as outlined below:

    {ˉun+1pqˉunpqΔt=ˉunpq(1ˉunpqκ)ˉunpqˉvnpq1+αζ+ˉunpq+d12ˉunpq,ˉvn+1pqˉvnpqΔt=τ(ˉunpq+ζ)ˉvnpq1+αζ+ˉunpqmˉvnpqμˉunpqˉvnpqG+ˉunpq+d22ˉunpq+d32ˉvnpq, (4.1)

    where

    {2ˉupq=ˉup+1,q+1+ˉup1,q1+ˉup+1,q1+ˉup1,q+1+4(ˉup+1,q+ˉup1,q+ˉup,q+1+ˉup,q1)20ˉupq6h2,2ˉvpq=ˉvp+1,q+1+ˉvp1,q1+ˉvp+1,q1+ˉvp1,q+1+4(ˉvp+1,q+ˉvp1,q+ˉvp,q+1+ˉvp,q1)20ˉvpq6h2. (4.2)

    Next, we select the parameters shown in Table 5 and use Eq (4.1) to conduct numerical simulations.

    Table 5.  Parameter values.
    α τ ζ G n κ m κc d1 d2 d3
    0.55 4.1 0.72 8.43 0.79 2.38 2.45 1.91 0.0036 0.00158 0.0141

     | Show Table
    DownLoad: CSV

    The parameter values are shown in Table 5, and the calculation results are as follows:

    E=(0.3131,1.4843),χ=0.4312,η=0.2461,τ0=0.3270,g1=1.2869,g2=1.7464.

    The initial conditions are specified as follows:

    u(x,y,0)=u(1+0.1(rand0.5)),v(x,y,0)=v(1+0.1(rand0.5)).

    The outcomes of the numerical simulation indicate that speckle and mixed-structure patterns emerge in the graphical representation with this particular set of parameters, as illustrated in Figure 5.

    Figure 5.  Density distribution pattern of system (2.1) at α=0.55,τ=4.1,ζ=0.72,G=8.43,n=0.79,κ=2.38,m=2.45,d1=0.0036,d2=0.00158,d3=0.0141, and α1=α2=1.

    Now, we use the parameters in Table 5 and symmetric initial conditions to perform numerical simulations by changing parameters d1, d2, and d3. Numerical simulation was carried out with other parameters remaining unchanged, and the results showed that there is a symmetric mixed structure solution. The subsequent figure illustrates the intricate pattern evolution of the symmetric mixed pattern across parameters. We select the following symmetric initial conditions:

    u(x,y,0)={u,x,y(80,120),u0.001,other,v(x,y,0)={v,x,y(80,120),v0.001,other.

    Figure 6 shows the spatial distribution patterns of phytoplankton and zooplankton at different diffusion coefficients, d2. The diffusion coefficient d reflects the influence of phytoplankton on the distribution of zooplankton. When d2=0.003, phytoplankton and zooplankton form highly clustered patterns, with zooplankton closely following the prey. When d2=0.005, phytoplankton and zooplankton are more dispersed, and the zooplankton pattern is more complex. This indicates that the diffusion ability of phytoplankton affects the hunting efficiency of zooplankton, and zooplankton tend to migrate to areas with a high density of phytoplankton. When d2=0.004, the distribution densities of phytoplankton and zooplankton are between the distribution densities of phytoplankton and zooplankton at d2=0.003 and d2=0.005.

    Figure 6.  Population density distribution pattern of phytoplankton and zootoplankton with with different parameters d1=0.002 and d3=0.018.

    Let d1=0.002,d2=0.004, and d3=0.015 through the observation of the distribution pattern of plankton population density in Figure 7. At t=6000, the system presents an incomplete pattern structure. Phytoplankton begins to form an irregular pattern distribution, while zooplankton shows an aggregation pattern following predation. At t=8000, the pattern structure gradually forms a stable state. At t=10000, the system reaches a stable state and forms a predator aggregation area that is misaligned with the plant pattern. We find that as time goes by, t, the distribution pattern of plankton population density becomes more complex. This indicates that the system presents a complex competitive process over time. This reflects the process by which the ecosystem reaches a stable state through dynamic adjustment.

    Figure 7.  The distribution patterns of phytoplankton and zooplankton population densities at different time periods.

    Let parameter d1=0.002,d2=0.004, and d3=0.017, the patterns of phytoplankton and zooplankton at different times are shown in Figure 8a1a4 and Figure 8c1c4. For diffusion coefficients at d1=0.002,d2=0.006, and d3=0.017, the patterns of phytoplankton and zooplankton at different times are shown in Figure 8b1b4 and Figure 8d1d4. In Figure 8, the density of phytoplankton gradually increases over time. It can be seen from the pattern that the difference between the high-density area and the low-density area significantly increases. The internal structure of the pattern becomes more complex, showing more details and layers. The distribution pattern of zooplankton shows a significantly misaligned predation aggregation area with that of plants, and the density of predation hotspots continues to increase over time. It can be seen from the pattern that the spatial distribution of phytoplankton and zooplankton shows complex dynamic behaviors.

    Figure 8.  Population density distribution patterns of phytoplankton and zootoplankton with parameters d1=0.002 and d3=0.017.

    Through the analysis of the patterns of phytoplankton and zooplankton, we see that, as time goes by, the patterns of zooplankton evolve from simple patterns to complex ones, demonstrating the complexity of this ecosystem. The diffusion coefficient is highly sensitive to the generation of patterns. A smaller diffusion coefficient leads to more regular and symmetrical patterns, while a larger diffusion coefficient results in more complex and irregular patterns, significantly affecting the distribution pattern of plankton. The initial conditions and diffusion coefficient significantly impact the long-term ecological behavior of the model. Moreover, initial conditions affect the formation of the pattern, while the parameters affect the distribution structure of the ecosystem.

    We combine theoretical analysis with numerical simulation to deeply explore the dynamic behavioral characteristics of the fractional-order PZEM. In theoretical analysis, we conduct stability, Turing instability, Hopf bifurcation, and nonlinear analysis for the PZEM. In numerical methods, we develop a high-precision numerical method for fractional-order PZEM without diffusion terms and verify the superiority of this method through comparison with other methods. Moreover, an effective discretization method is established for the model with diffusion terms. The numerical simulation results not only verify the correctness of the theoretical analysis, but also demonstrate complex dynamic behaviors at different diffusion coefficients. Moreover, the system presents significantly different spatial pattern evolution characteristics. The results reveal that the diffusion coefficient is crucial to the generation of patterns. A bigger diffusion coefficient will lead to more complex and irregular pattern structures, which directly affects the spatial distribution patterns of plankton populations. Furthermore, the initial conditions and the diffusion coefficient have a decisive influence on the long-term ecological behavior of the model: The initial conditions affect the formation process of the pattern, while the diffusion coefficient affects the dynamic evolution of the pattern structure. In future work, we will explore the response mechanism of the system at the coupling effect of multiple factors, as well as the effect of dynamic behavior for fractional-order.

    Conceptualization, Methodology, Software, Data, Formal analysis and Funding acquisition, Writing-original draft and writing-review and editing: Shuai Zhang, Hao Lu Zhang, Yu Lan Wang and Zhi Yuan Li. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This paper is supported by Doctoral research start-up Fund of Inner Mongolia University of Technology (DC2300001252) and the Natural Science Foundation of Inner Mongolia (2024LHMS06025).

    The authors declare that there are no conflicts of interest regarding the publication of this article.


    Acknowledgments



    The authors thank Alexander Monroe for critical reading of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft grant TA320-7-1 and the BMBF grant 031B0358A.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] Mishin AS, Belousov VV, Solntsev KM, et al. (2015) Novel uses of fluorescent proteins. Curr Opin Chem Biol 27: 1-9. doi: 10.1016/j.cbpa.2015.05.002
    [2] Shcherbakova DM, Baloban M, Verkhusha VV (2015) Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr Opin Chem Biol 27: 52-63. doi: 10.1016/j.cbpa.2015.06.005
    [3] Rodriguez EA, Campbell RE, Lin JY, et al. (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42: 111-129. doi: 10.1016/j.tibs.2016.09.010
    [4] Hampton RY, Koning A, Wright R, et al. (1996) In vivo examination of membrane protein localization and degradation with green fluorescent protein. Proc Natl Acad Sci 93: 828-833. doi: 10.1073/pnas.93.2.828
    [5] Terskikh A, Fradkov A, Ermakova G, et al. (2000) ‘Fluorescent timer’: Protein that changes color with time. Science 290: 1585-1588. doi: 10.1126/science.290.5496.1585
    [6] Subach FV, Subach OM, Gundorov IS, et al. (2009) Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 5: 118-126. doi: 10.1038/nchembio.138
    [7] Khmelinskii A, Keller PJ, Bartosik A, et al. (2012) Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat Biotechnol 30: 708-714. doi: 10.1038/nbt.2281
    [8] Zhang L, Gurskaya NG, Merzlyak EM, et al. (2007) Method for real-time monitoring of protein degradation at the single cell level. Biotechniques 42: 446-450. doi: 10.2144/000112453
    [9] Taxis C, Hitt R, Park SH, et al. (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 278: 35903-35913. doi: 10.1074/jbc.M301080200
    [10] Balleza E, Kim JM, Cluzel P (2018) Systematic characterization of maturation time of fluorescent proteins in living cells. Nat Methods 15: 47-51. doi: 10.1038/nmeth.4509
    [11] Maeder CI, Hink MA, Kinkhabwala A, et al. (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9: 1319-1326. doi: 10.1038/ncb1652
    [12] Subach OM, Cranfill PJ, Davidson MW, et al. (2011) An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One 6: e28674. doi: 10.1371/journal.pone.0028674
    [13] Langan RA, Boyken SE, Ng AH, et al. (2019) De novo design of bioactive protein switches. Nature 572: 205-210. doi: 10.1038/s41586-019-1432-8
    [14] Subach OM, Gundorov IS, Yoshimura M, et al. (2008) Conversion of red fluorescent protein into a bright blue probe. Chem Biol 15: 1116-1124. doi: 10.1016/j.chembiol.2008.08.006
    [15] Wei J, Gibbs JS, Hickman HD, et al. (2015) Ubiquitous autofragmentation of fluorescent proteins creates abundant defective ribosomal products (DRiPs) for immunosurveillance. J Biol Chem 290: 16431-16439. doi: 10.1074/jbc.M115.658062
    [16] Goedhart J, Von Stetten D, Noirclerc-Savoye M, et al. (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3: 751. doi: 10.1038/ncomms1738
    [17] Ng AH, Nguyen TH, Gómez-Schiavon M, et al. (2019) Modular and tunable biological feedback control using a de novo protein switch. Nature 572: 265-269. doi: 10.1038/s41586-019-1425-7
    [18] Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6: 178-182. doi: 10.1016/S0960-9822(02)00450-5
    [19] Rizzo MA, Springer GH, Granada B, et al. (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22: 445-449. doi: 10.1038/nbt945
    [20] Cubitt AB, Woollenweber LA, Heim R (1998) Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 58: 19-30. doi: 10.1016/S0091-679X(08)61946-9
    [21] Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114: 837-838.
    [22] Cookson NA, Mather WH, Danino T, et al. (2011) Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol Syst Biol 7: 561. doi: 10.1038/msb.2011.94
    [23] Jungbluth M, Renicke C, Taxis C (2010) Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 4: 176. doi: 10.1186/1752-0509-4-176
    [24] Taxis C, Stier G, Spadaccini R, et al. (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5: 267. doi: 10.1038/msb.2009.25
    [25] Hasenjäger S, Trauth J, Hepp S, et al. (2019) Optogenetic downregulation of protein levels with an ultrasensitive switch. ACS Synth Biol 8: 1026-1036. doi: 10.1021/acssynbio.8b00471
    [26] Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33-38. doi: 10.1016/0378-1119(95)00685-0
    [27] Pepperkok R, Squire A, Geley S, et al. (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9: 269-272. doi: 10.1016/S0960-9822(99)80117-1
    [28] Seefeldt B, Kasper R, Seidel T, et al. (2008) Fluorescent proteins for single-molecule fluorescence applications. J Biophotonics 1: 74-82. doi: 10.1002/jbio.200710024
    [29] Sarkisyan KS, Goryashchenko AS, Lidsky PV, et al. (2015) Green fluorescent protein with anionic tryptophan-based chromophore and long fluorescence lifetime. Biophys J 109: 380-389. doi: 10.1016/j.bpj.2015.06.018
    [30] Halter M, Tona A, Bhadriraju K, et al. (2007) Automated live cell imaging of green fluorescent protein degradation in individual fibroblasts. Cytom Part A: J Int Soc Anal Cytol 71: 827-834. doi: 10.1002/cyto.a.20461
    [31] Yen HCS, Xu Q, Chou DM, et al. (2008) Global protein stability profiling in mammalian cells. Science 322: 918-923. doi: 10.1126/science.1160489
    [32] Yen HCS, Elledge SJ (2008) Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322: 923-929. doi: 10.1126/science.1160462
    [33] Reichard EL, Chirico GG, Dewey WJ, et al. (2016) Substrate ubiquitination controls the unfolding ability of the proteasome. J Biol Chem 291: 18547-18561. doi: 10.1074/jbc.M116.720151
    [34] Lin HC, Yeh CW, Chen YF, et al. (2018) C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol Cell 70: 602-613. doi: 10.1016/j.molcel.2018.04.006
    [35] Khmelinskii A, Meurer M, Ho CT, et al. (2016) Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Mol Biol Cell 27: 360-370. doi: 10.1091/mbc.e15-07-0525
    [36] Krentz NAJ, van Hoof D, Li Z, et al. (2017) Phosphorylation of NEUROG3 links endocrine differentiation to the cell cycle in pancreatic progenitors. Dev Cell 41: 129-142. doi: 10.1016/j.devcel.2017.02.006
    [37] Link CD, Fonte V, Hiester B, et al. (2006) Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide. J Biol Chem 281: 1808-1816. doi: 10.1074/jbc.M505581200
    [38] Papagiannakis A, de Jonge JJ, Zhang Z, et al. (2017) Quantitative characterization of the auxin-inducible degron: a guide for dynamic protein depletion in single yeast cells. Sci Rep 7: 1-13. doi: 10.1038/s41598-017-04791-6
    [39] Usherenko S, Stibbe H, Muscò M, et al. (2014) Photo-sensitive degron variants for tuning protein stability by light. BMC Syst Biol 8: 128. doi: 10.1186/s12918-014-0128-9
    [40] Qian SB, Ott DE, Schubert U, et al. (2002) Fusion proteins with COOH-terminal ubiquitin are stable and maintain dual functionality in vivo. J Biol Chem 277: 38818-38826. doi: 10.1074/jbc.M205547200
    [41] Li X, Zhao X, Fang Y, et al. (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273: 34970-34975. doi: 10.1074/jbc.273.52.34970
    [42] Iconomou M, Saunders DN (2016) Systematic approaches to identify E3 ligase substrates. Biochem J 473: 4083-4101. doi: 10.1042/BCJ20160719
    [43] Shaner NC, Lin MZ, McKeown MR, et al. (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5: 545-551. doi: 10.1038/nmeth.1209
    [44] Zacharias DA, Violin JD, Newton AC, et al. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296: 913-916. doi: 10.1126/science.1068539
    [45] Shimomura O, Johnson F H, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59: 223-239. doi: 10.1002/jcp.1030590302
    [46] Niwa H, Inouye S, Hirano T, et al. (1996) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci 93: 13617-13622. doi: 10.1073/pnas.93.24.13617
    [47] Prasher DC, Eckenrode VK, Ward WW, et al. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229-233. doi: 10.1016/0378-1119(92)90691-H
    [48] Patterson GH, Knobel SM, Sharif WD, et al. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73: 2782-2790. doi: 10.1016/S0006-3495(97)78307-3
    [49] Iizuka R, Yamagishi-Shirasaki M, Funatsu T (2011) Kinetic study of de novo chromophore maturation of fluorescent proteins. Anal Biochem 414: 173-178. doi: 10.1016/j.ab.2011.03.036
    [50] Yoo TH, Link AJ, Tirrell DA (2007) Evolution of a fluorinated green fluorescent protein. Proc Natl Acad Sci 104: 13887-13890. doi: 10.1073/pnas.0701904104
    [51] Pédelacq JD, Cabantous S, Tran T, et al. (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24: 79-88. doi: 10.1038/nbt1172
    [52] Durrieu L, Kirrmaier D, Schneidt T, et al. (2018) Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis. Mol Syst Biol 14: e8355. doi: 10.15252/msb.20188355
    [53] Kowalski L, Bragoszewski P, Khmelinskii A, et al. (2018) Determinants of the cytosolic turnover of mitochondrial intermembrane space proteins. BMC Biol 16: 66. doi: 10.1186/s12915-018-0536-1
    [54] Dederer V, Khmelinskii A, Huhn AG, et al. (2019) Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. Elife 8: e45506. doi: 10.7554/eLife.45506
    [55] Alber AB, Paquet ER, Biserni M, et al. (2018) Single live cell monitoring of protein turnover reveals intercellular variability and cell-cycle dependence of degradation rates. Mol Cell 71: 1079-1091. doi: 10.1016/j.molcel.2018.07.023
    [56] Zhang H, Linster E, Gannon L, et al. (2019) Tandem fluorescent protein timers for noninvasive relative protein lifetime measurement in plants. Plant Physiol 180: 718-731. doi: 10.1104/pp.19.00051
    [57] Fernandez-Rodriguez J, Voigt CA (2016) Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res 44: 6493-6502. doi: 10.1093/nar/gkw537
    [58] Yu H, Singh Gautam AKS, Wilmington SR, et al. (2016) Conserved sequence preferences contribute to substrate recognition by the proteasome. J Biol Chem 291: 14526-14539. doi: 10.1074/jbc.M116.727578
    [59] Donà E, Barry JD, Valentin G, et al. (2013) Directional tissue migration through a self-generated chemokine gradient. Nature 503: 285-289. doi: 10.1038/nature12635
    [60] Khmelinskii A, Blaszczak E, Pantazopoulou M, et al. (2014) Protein quality control at the inner nuclear membrane. Nature 516: 410-413. doi: 10.1038/nature14096
    [61] Kats I, Khmelinskii A, Kschonsak M, et al. (2018) Mapping degradation signals and pathways in a eukaryotic N-terminome. Mol Cell 70: 488-501. doi: 10.1016/j.molcel.2018.03.033
    [62] Castells-Ballester J, Zatorska E, Meurer M, et al. (2018) Monitoring protein dynamics in protein o-mannosyltransferase mutants in vivo by tandem fluorescent protein timers. Molecules 23: 2622. doi: 10.3390/molecules23102622
    [63] Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373: 663-664. doi: 10.1038/373663b0
    [64] Benanti JA, Cheung SK, Brady MC, et al. (2007) A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat Cell Biol 9: 1184-1191. doi: 10.1038/ncb1639
    [65] Costantini LM, Baloban M, Markwardt ML, et al. (2015) A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 6: 7670. doi: 10.1038/ncomms8670
    [66] Kremers GJ, Goedhart J, van den Heuvel DJ, et al. (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46: 3775-3783. doi: 10.1021/bi0622874
    [67] Sekar K, Gentile AM, Bostick JW, et al. (2016) N-terminal-based targeted, inducible protein degradation in Escherichia coli. PLoS One 11: e0149746. doi: 10.1371/journal.pone.0149746
    [68] Shaner NC, Lambert GG, Chammas A, et al. (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10: 407-409. doi: 10.1038/nmeth.2413
    [69] Molina RS, Tran TM, Campbell RE, et al. (2017) Blue-shifted green fluorescent protein homologues are brighter than enhanced green fluorescent protein under two-photon excitation. J Phys Chem Lett 8: 2548-2554. doi: 10.1021/acs.jpclett.7b00960
    [70] Griesbeck O, Baird GS, Campbell RE, et al. (2001) Reducing the environmental sensitivity of yellow fluorescent protein mechanism and applications. J Biol Chem 276: 29188-29194. doi: 10.1074/jbc.M102815200
    [71] Wiens MD, Hoffmann F, Chen Y, et al. (2018) Enhancing fluorescent protein photostability through robot-assisted photobleaching. Integr Biol 10: 419-428. doi: 10.1039/C8IB00063H
    [72] Cranfill PJ, Sell BR, Baird MA, et al. (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13: 557-562. doi: 10.1038/nmeth.3891
    [73] Miyawaki A, Griesbeck O, Heim R, et al. (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci 96: 2135-2140. doi: 10.1073/pnas.96.5.2135
    [74] Ormö M, Cubitt AB, Kallio K, et al. (1996) Crystal structure of the aequorea victoria green fluorescent protein. Science 273: 1392-1395. doi: 10.1126/science.273.5280.1392
    [75] Rekas A, Alattia JR, Nagai T, et al. (2002) Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem 277: 50573-50578. doi: 10.1074/jbc.M209524200
    [76] Zhao W, Pferdehirt L, Segatori L (2018) Quantitatively predictable control of cellular protein levels through proteasomal degradation. ACS Synth Biol 7: 540-552. doi: 10.1021/acssynbio.7b00325
    [77] Eden E, Geva-Zatorsky N, Issaeva I, et al. (2011) Proteome half-life dynamics in living human cells. Science 331: 764-768. doi: 10.1126/science.1199784
    [78] Nagai T, Ibata K, Park ES, et al. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20: 87-90. doi: 10.1038/nbt0102-87
    [79] Chassin H, Müller M, Tigges M, et al. (2019) A modular degron library for synthetic circuits in mammalian cells. Nat Commun 10: 2013. doi: 10.1038/s41467-019-09974-5
    [80] Shaner NC, Campbell RE, Steinbach P a, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567-1572. doi: 10.1038/nbt1037
    [81] Merzlyak EM, Goedhart J, Shcherbo D, et al. (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4: 555-557. doi: 10.1038/nmeth1062
    [82] Renicke C, Schuster D, Usherenko S, et al. (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol 20: 619-626. doi: 10.1016/j.chembiol.2013.03.005
    [83] Strack RL, Strongin DE, Bhattacharyya D, et al. (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5: 955-957. doi: 10.1038/nmeth.1264
    [84] Bindels DS, Haarbosch L, van Weeren L, et al. (2017) mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14: 53-56. doi: 10.1038/nmeth.4074
    [85] Campbell RE, Tour O, Palmer AE, et al. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci 99: 7877-7882. doi: 10.1073/pnas.082243699
    [86] Shcherbo D, Murphy CS, Ermakova GV, et al. (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418: 567-574. doi: 10.1042/BJ20081949
    [87] Shcherbo D, Merzlyak EM, Chepurnykh TV, et al. (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4: 741-746. doi: 10.1038/nmeth1083
    [88] Filonov GS, Piatkevich KD, Ting L-M, et al. (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29: 757-761. doi: 10.1038/nbt.1918
    [89] Nemet I, Ropelewski P, Imanishi Y (2015) Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components. Photochem Photobiol Sci 14: 1787-1806. doi: 10.1039/C5PP00174A
    [90] Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5: 5659. doi: 10.1038/ncomms6659
    [91] Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425-479. doi: 10.1146/annurev.biochem.67.1.425
    [92] Pickart CM (2004) Back to the future with ubiquitin. Cell 116: 181-190. doi: 10.1016/S0092-8674(03)01074-2
    [93] Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. Essays Biochem 41: 15-30. doi: 10.1042/EB0410015
    [94] Metzger MB, Pruneda JN, Klevit RE, et al. (2014) RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta-Mol Cell Res 1843: 47-60. doi: 10.1016/j.bbamcr.2013.05.026
    [95] Thrower JS, Hoffman L, Rechsteiner M, et al. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94-102. doi: 10.1093/emboj/19.1.94
    [96] Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18: 579-586. doi: 10.1038/ncb3358
    [97] Kwon YT, Ciechanover A (2017) The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 42: 873-886. doi: 10.1016/j.tibs.2017.09.002
    [98] Yu H, Matouschek A (2017) Recognition of client proteins by the proteasome. Annu Rev Biophys 46: 149-173. doi: 10.1146/annurev-biophys-070816-033719
    [99] Varshavsky A (1991) Naming a targeting signal. Cell 64: 13-15. doi: 10.1016/0092-8674(91)90202-A
    [100] Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9: 679-689. doi: 10.1038/nrm2468
    [101] Tomita T, Matouschek A (2019) Substrate selection by the proteasome through initiation regions. Protein Sci 28: 1222-1232.
    [102] Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta - Rev Cancer 1786: 153-177. doi: 10.1016/j.bbcan.2008.05.004
    [103] Erales J, Coffino P (2014) Ubiquitin-independent proteasomal degradation. Biochim Biophys Acta-Mol Cell Res 1843: 216-221. doi: 10.1016/j.bbamcr.2013.05.008
    [104] Dohmen RJ, Willers I, Marques AJ (2007) Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. Biochim Biophys Acta-Mol Cell Res 1773: 1599-1604. doi: 10.1016/j.bbamcr.2007.05.015
    [105] Ha SW, Ju D, Xie Y (2012) The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits. Biochem Biophys Res Commun 419: 226-231. doi: 10.1016/j.bbrc.2012.01.152
    [106] Lutz AP, Schladebeck S, Renicke C, et al. (2018) Proteasome activity is influenced by the HECT_2 protein Ipa1 in budding yeast. Genetics 209: 157-171. doi: 10.1534/genetics.118.300744
    [107] Scheffer J, Hasenjäger S, Taxis C (2019) Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum–associated degradation pathway. Mol Biol Cell 30: 2558-2570. doi: 10.1091/mbc.E18-12-0754
    [108] Hitchcock AL, Krebber H, Frietze S, et al. (2001) The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol Biol Cell 12: 3226-3241. doi: 10.1091/mbc.12.10.3226
    [109] Hoppe T, Matuschewski K, Rape M, et al. (2001) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 14: 148-151.
    [110] Leestemaker Y, Ovaa H (2017) Tools to investigate the ubiquitin proteasome system. Drug Discov Today Technol 26: 25-31. doi: 10.1016/j.ddtec.2017.11.006
    [111] Conole D, Mondal M, Majmudar JD, et al. (2019) Recent developments in cell permeable deubiquitinating enzyme activity-based probes. Front Chem 7: 876. doi: 10.3389/fchem.2019.00876
    [112] Hewings DS, Flygare JA, Bogyo M, et al. (2017) Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. FEBS J 284: 1555-1576. doi: 10.1111/febs.14039
    [113] Ella H, Reiss Y, Ravid T (2019) The hunt for degrons of the 26S proteasome. Biomolecules 9: 230. doi: 10.3390/biom9060230
    [114] Chalfie M, Tu Y, Euskirchen G, et al. (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802-805. doi: 10.1126/science.8303295
    [115] Wang S, Hazelrigg T (1994) Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369: 400-403. doi: 10.1038/369400a0
    [116] Cronin SR, Hampton RY (1999) Measuring protein degradation with green fluorescent protein. Methods Enzymol 302: 58-73. doi: 10.1016/S0076-6879(99)02010-8
    [117] Cronin SR, Khoury A, Ferry DK, et al. (2000) Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. J Cell Biol 148: 915-924. doi: 10.1083/jcb.148.5.915
    [118] Jiang X, Coffino P, Li X (2004) Development of a method for screening short-lived proteins using green fluorescent protein. Genome Biol 5: R81. doi: 10.1186/gb-2004-5-10-r81
    [119] Hampton RY, Rine J (1994) Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol 125: 299-312. doi: 10.1083/jcb.125.2.299
    [120] Gierisch ME, Giovannucci TA, Dantuma NP (2020) Reporter-based screens for the ubiquitin/proteasome system. Front Chem 8: 64. doi: 10.3389/fchem.2020.00064
    [121] Dantuma NP, Lindsten K, Glas R, et al. (2000) Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 18: 538-543. doi: 10.1038/75406
    [122] van Wijk SJ, Fulda S, Dikic I, et al. (2019) Visualizing ubiquitination in mammalian cells. EMBO Rep 20: e46520. doi: 10.15252/embr.201846520
    [123] Rajan S, Djambazian H, Dang HCP, et al. (2011) The living microarray: A high-throughput platform for measuring transcription dynamics in single cells. BMC Genomics 12: 115. doi: 10.1186/1471-2164-12-115
    [124] Chou TF, Deshaies RJ (2011) Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system. J Biol Chem 286: 16546-16554. doi: 10.1074/jbc.M110.215319
    [125] He L, Binari R, Huang J, et al. (2019) In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. Elife 8: e46181. doi: 10.7554/eLife.46181
    [126] Mei L, Fan Y, Lv X, et al. (2018) Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proc Natl Acad Sci 115: 4276-4281. doi: 10.1073/pnas.1717735115
    [127] Ando H, Hirose M, Kurosawa G, et al. (2017) Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells. Sci Rep 7: 1-16. doi: 10.1038/s41598-016-0028-x
    [128] Sharifnia P, Kim KW, Wu Z, et al. (2017) Distinct cis elements in the 3′ UTR of the C. elegans cebp-1 mRNA mediate its regulation in neuronal development. Dev Biol 429: 240-248. doi: 10.1016/j.ydbio.2017.06.022
    [129] Toneff MJ, Sreekumar A, Tinnirello A, et al. (2016) The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol 14: 47. doi: 10.1186/s12915-016-0269-y
    [130] Stacer AC, Wang H, Fenner J, et al. (2015) Imaging reporters for proteasome activity identify tumor- and metastasis-initiating cells. Mol Imaging 14: 414-428. doi: 10.2310/7290.2015.00016
    [131] Langenbach KJ, Elliott JT, Tona A, et al. (2006) Thin films of type 1 collagen for cell by cell analysis of morphology and tenascin-C promoter activity. BMC Biotechnol 6: 14. doi: 10.1186/1472-6750-6-14
    [132] Raser JM, O'Shea EK (2005) Noise in gene expression: Origins, consequences, and control. Science 309: 2010-2013. doi: 10.1126/science.1105891
    [133] Deng W, Bates JA, Wei H, et al. (2020) Tunable light and drug induced depletion of target proteins. Nat Commun 11: 304. doi: 10.1038/s41467-019-14160-8
    [134] Gilon T, Chomsky O, Kulka RG (2000) Degradation signals recognized by the Ubc6p-Ubc7p ubiquitin-conjugating enzyme pair. Mol Cell Biol 20: 7214-7219. doi: 10.1128/MCB.20.19.7214-7219.2000
    [135] Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552-1555. doi: 10.1126/science.292.5521.1552
    [136] Schipper-Krom S, Sanz AS, van Bodegraven EJ, et al. (2019) Visualizing proteasome activity and intracellular localization using fluorescent proteins and activity-based probes. Front Mol Biosci 6: 56. doi: 10.3389/fmolb.2019.00056
    [137] Dyson MR (2016) Fundamentals of expression in mammalian cells. Advances in Experimental Medicine and Biology Switzerland: Springer, 217-224. doi: 10.1007/978-3-319-27216-0_14
    [138] Voss U, Larrieu A, Wells DM (2013) From jellyfish to biosensors: The use of fluorescent proteins in plants. Int J Dev Biol 57: 525-533. doi: 10.1387/ijdb.130208dw
    [139] Colman-Lerner A, Gordon A, Serra E, et al. (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature 437: 699-706. doi: 10.1038/nature03998
    [140] Gordon A, Colman-lerner A, Chin TE, et al. (2007) Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nat Methods 4: 175-181. doi: 10.1038/nmeth1008
    [141] Grossmann G, Krebs M, Maizel A, et al. (2018) Green light for quantitative live-cell imaging in plants. J Cell Sci 131: jcs209270. doi: 10.1242/jcs.209270
    [142] Croce AC, Bottiroli G (2017) Autofluorescence spectroscopy for monitoring metabolism in animal cells and tissues. Histochemistry of Single Molecules New York: Humana Press, 15-43. doi: 10.1007/978-1-4939-6788-9_2
    [143] Feuchtinger A, Walch A, Dobosz M (2016) Deep tissue imaging: a review from a preclinical cancer research perspective. Histochem Cell Biol 146: 781-806. doi: 10.1007/s00418-016-1495-7
    [144] Zhao W, Bonem M, McWhite C, et al. (2014) Sensitive detection of proteasomal activation using the Deg-On mammalian synthetic gene circuit. Nat Commun 5: 3612. doi: 10.1038/ncomms4612
    [145] Adam V, Nienhaus K, Bourgeois D, et al. (2009) Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 48: 4905-4915. doi: 10.1021/bi900383a
    [146] Adam V, Moeyaert B, David CC, et al. (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18: 1241-1251. doi: 10.1016/j.chembiol.2011.08.007
    [147] Gurskaya NG, Verkhusha VV, Shcheglov AS, et al. (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24: 461-465. doi: 10.1038/nbt1191
    [148] Hoi H, Shaner NC, Davidson MW, et al. (2010) A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J Mol Biol 401: 776-791. doi: 10.1016/j.jmb.2010.06.056
    [149] Hamer G, Matilainen O, Holmberg CI (2010) A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods 7: 473-478. doi: 10.1038/nmeth.1460
    [150] Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297: 1873-1877. doi: 10.1126/science.1074952
    [151] Heidary DK, Fox A, Richards CI, et al. (2017) A high-throughput screening assay using a photoconvertable protein for identifying inhibitors of transcription, translation, or proteasomal degradation. SLAS Discov 22: 399-407.
    [152] Kiuchi T, Nagai T, Ohashi K, et al. (2011) Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J Cell Biol 193: 365-380. doi: 10.1083/jcb.201101035
    [153] Drocco JA, Grimm O, Tank DW, et al. (2011) Measurement and perturbation of morphogen lifetime: Effects on gradient shape. Biophys J 101: 1807-1815. doi: 10.1016/j.bpj.2011.07.025
    [154] Rogers KW, Bläßle A, Schier AF, et al. (2015) Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP). JoVE 95: e52266.
    [155] Plachta N, Bollenbach T, Pease S, et al. (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13: 117-123. doi: 10.1038/ncb2154
    [156] Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43: 835-869. doi: 10.1146/annurev.bi.43.070174.004155
    [157] Schimke RT, Doyle D (1970) Control of enzyme levels in animal tissues. Annu Rev Biochem 39: 929-976. doi: 10.1146/annurev.bi.39.070170.004433
    [158] McShane E, Sin C, Zauber H, et al. (2016) Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167: 803-815.e21. doi: 10.1016/j.cell.2016.09.015
    [159] Verzijlbergen KF, Menendez-Benito V, van Welsem T, et al. (2010) Recombination-induced tag exchange to track old and new proteins. Proc Natl Acad Sci 107: 64-68. doi: 10.1073/pnas.0911164107
    [160] Buchwalter A, Schulte R, Tsai H, et al. (2019) Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. Elife 8: e49796. doi: 10.7554/eLife.49796
    [161] Toyama BH, Drigo RA, Lev-Ram V, et al. (2019) Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J Cell Biol 218: 433-444. doi: 10.1083/jcb.201809123
    [162] van Deventer S, Menendez-Benito V, van Leeuwen F, et al. (2015) N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. J Cell Sci 128: 109-117. doi: 10.1242/jcs.157354
    [163] Hughes AL, Hughes CE, Henderson KA, et al. (2016) Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. Elife 5: e13943. doi: 10.7554/eLife.13943
    [164] Thayer NH, Leverich CK, Fitzgibbon MP, et al. (2014) Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc Natl Acad Sci 111: 14019-14026. doi: 10.1073/pnas.1416079111
    [165] Koren I, Timms RT, Kula T, et al. (2018) The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal Degrons. Cell 173: 1622-1635.e14. doi: 10.1016/j.cell.2018.04.028
    [166] Wilmington SR, Matouschek A (2016) An inducible system for rapid degradation of specific cellular proteins using proteasome adaptors. PLoS One 11: e0152679. doi: 10.1371/journal.pone.0152679
    [167] Mizuguchi H, Xu Z, Ishii-Watabe A, et al. (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1: 376-382. doi: 10.1006/mthe.2000.0050
    [168] Wong ET, Ngoi SM, Lee CGL (2002) Improved co-expression of multiple genes in vectors containing internal ribosome entry sites (IRESes) from human genes. Gene Ther 9: 337-344. doi: 10.1038/sj.gt.3301667
    [169] Licursi M, Christian SL, Pongnopparat T, et al. (2011) In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression. Gene Ther 18: 631-636. doi: 10.1038/gt.2011.11
    [170] Koh EYC, Ho SCL, Mariati, et al. (2013) An internal ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in mammalian cells. PLoS One 8: e82100. doi: 10.1371/journal.pone.0082100
    [171] Chappell SA, Edelman GM, Mauro VP (2000) A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci 97: 1536-1541. doi: 10.1073/pnas.97.4.1536
    [172] Hennecke M (2001) Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 29: 3327-3334. doi: 10.1093/nar/29.16.3327
    [173] Al-Allaf FA, Abduljaleel Z, Athar M, et al. (2019) Modifying inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector: Construction of optimised cassette for gene therapy of familial hypercholesterolemia. Non-coding RNA Res 4: 1-14. doi: 10.1016/j.ncrna.2018.11.005
    [174] Kim JH, Lee SR, Li LH, et al. (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6: 1-8.
    [175] De Felipe P, Luke GA, Brown JD, et al. (2010) Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol J 5: 213-223. doi: 10.1002/biot.200900134
    [176] Lo CA, Kays I, Emran F, et al. (2015) Quantification of protein levels in single living cells. Cell Rep 13: 2634-2644. doi: 10.1016/j.celrep.2015.11.048
    [177] de Felipe P (2004) Skipping the co-expression problem: The new 2A ‘CHYSEL’ technology. Genet Vaccines Ther 2: 13. doi: 10.1186/1479-0556-2-13
    [178] Luke GA, Ryan MD (2018) Using the 2A protein coexpression system: Multicistronic 2A vectors expressing gene(s) of interest and reporter proteins. Reporter Gene Assays New York: Humana Press, 31-48. doi: 10.1007/978-1-4939-7724-6_3
    [179] Kreidenweiss A, Hopkins A V., Mordmüller B (2013) 2A and the auxin-based degron system facilitate control of protein levels in Plasmodium falciparum. PLoS One 8: 2-7. doi: 10.1371/journal.pone.0078661
    [180] Hepp S, Trauth J, Hasenjäger S, et al. (2020) An optogenetic tool for induced protein stabilization based on the Phaeodactylum tricornutum aureochrome 1a LOV domain. J Mol Biol .
    [181] Yu H, Kago G, Yellman CM, et al. (2016) Ubiquitin-like domains can target to the proteasome but proteolysis requires a disordered region. EMBO J 35: 1522-1536. doi: 10.15252/embj.201593147
    [182] Fernandes AC, Uytterhoeven V, Kuenen S, et al. (2014) Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration. J Cell Biol 207: 453-462. doi: 10.1083/jcb.201406026
    [183] Saeki Y, Kudo T, Sone T, et al. (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28: 359-371. doi: 10.1038/emboj.2008.305
    [184] Nager AR, Baker TA, Sauer RT (2011) Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease. J Mol Biol 413: 4-16. doi: 10.1016/j.jmb.2011.07.041
    [185] Yamaguchi N, Colak-Champollion T, Knaut H (2019) zGrad is a nanobody-based degron system that inactivates proteins in zebrafish. Elife 8: e43125. doi: 10.7554/eLife.43125
    [186] Botman D, de Groot DH, Schmidt P, et al. (2019) In vivo characterisation of fluorescent proteins in budding yeast. Sci Rep 9: 2234. doi: 10.1038/s41598-019-38913-z
    [187] El Mouridi S, Lecroisey C, Tardy P, et al. (2017) Reliable CRISPR/Cas9 genome engineering in Caenorhabditis elegans using a single efficient sgRNA and an easily recognizable phenotype. G3: Genes, Genomes, Genetics 7: 1429-1437.
    [188] Barondeau DP, Kassmann CJ, Tainer J a, et al. (2006) Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. J Am Chem Soc 128: 4685-4693. doi: 10.1021/ja056635l
    [189] Chudakov DM, Matz MV., Lukyanov S, et al. (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90: 1103-1163. doi: 10.1152/physrev.00038.2009
    [190] Borst JW, Visser AJWG (2010) Fluorescence lifetime imaging microscopy in life sciences. Meas Sci Technol 21: 102002. doi: 10.1088/0957-0233/21/10/102002
    [191] Burgstaller S, Bischof H, Gensch T, et al. (2019) PH-Lemon, a fluorescent protein-based pH reporter for acidic compartments. ACS Sensors 4: 883-891. doi: 10.1021/acssensors.8b01599
    [192] Fan Y, Ai HW (2016) Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments. Anal Bioanal Chem 408: 2901-2911. doi: 10.1007/s00216-015-9280-3
    [193] Sugiura K, Tanaka H, Kurisu G, et al. (2019) Multicolor redox sensor proteins can visualize redox changes in various compartments of the living cell. Biochim Biophys Acta-Gen Subj 1863: 1098-1107. doi: 10.1016/j.bbagen.2019.01.016
    [194] Germond A, Fujita H, Ichimura T, et al. (2016) Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophys Rev 8: 121-138. doi: 10.1007/s12551-016-0195-9
    [195] Li W, Houston KD, Houston JP (2017) Shifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry. Sci Rep 7: 1-11. doi: 10.1038/s41598-016-0028-x
    [196] Costantini LM, Snapp EL (2013) Fluorescent proteins in cellular organelles: Serious pitfalls and some solutions. DNA Cell Biol 32: 622-627. doi: 10.1089/dna.2013.2172
    [197] Jain RK, Joyce PBM, Molinete M, et al. (2001) Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J 360: 645-649. doi: 10.1042/bj3600645
    [198] Ashikawa Y, Ihara M, Matsuura N, et al. (2011) GFP-based evaluation system of recombinant expression through the secretory pathway in insect cells and its application to the extracellular domains of class C GPCRs. Protein Sci 20: 1720-1734. doi: 10.1002/pro.707
    [199] Boevink P, Martin B, Oparka K, et al. (1999) Transport of virally expressed green fluorescent protein through the secretory pathway in tobacco leaves is inhibited by cold shock and brefeldin A. Planta 208: 392-400. doi: 10.1007/s004250050574
    [200] Kaberniuk AA, Morano NC, Verkhusha VV, et al. (2017) moxDendra2: an inert photoswitchable protein for oxidizing environments. Chem Commun 53: 2106-2109. doi: 10.1039/C6CC09997A
    [201] Costantini LM, Subach OM, Jaureguiberry-bravo M, et al. (2013) Cysteineless non-glycosylated monomeric blue fluorescent protein, secBFP2, for studies in the eukaryotic secretory pathway. Biochem Biophys Res Commun 430: 1114-1119. doi: 10.1016/j.bbrc.2012.12.028
    [202] Kaberniuk AA, Mohr MA, Verkhusha VV, et al. (2018) moxMaple3: a photoswitchable fluorescent protein for PALM and protein highlighting in oxidizing cellular environments. Sci Rep 8: 1-10. doi: 10.1038/s41598-018-32955-5
    [203] Grotzke JE, Lu Q, Cresswell P (2013) Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. Proc Natl Acad Sci 110: 3393-3398. doi: 10.1073/pnas.1300328110
    [204] Rajan RS, Illing ME, Bence NF, et al. (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci 98: 13060-13065. doi: 10.1073/pnas.181479798
    [205] Trojanowski JQ, Lee VM-Y (2000) “Fatal attractions” of proteins: A comprehensive hypothetical mechanism underlying Alzheimer's disease and other neurodegenerative disorders. Ann N Y Acad Sci 924: 62-67. doi: 10.1111/j.1749-6632.2000.tb05561.x
    [206] Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32: 407-414. doi: 10.1016/j.tibs.2007.08.003
  • This article has been cited by:

    1. Yangyan Zeng, Yidong Zhou, Wenzhi Cao, Dongbin Hu, Yueping Luo, Haiting Pan, Big data analysis of water quality monitoring results from the Xiang River and an impact analysis of pollution management policies, 2023, 20, 1551-0018, 9443, 10.3934/mbe.2023415
    2. Xiangzheng Fu, Yifan Chen, Sha Tian, DlncRNALoc: A discrete wavelet transform-based model for predicting lncRNA subcellular localization, 2023, 20, 1551-0018, 20648, 10.3934/mbe.2023913
    3. Dongliang Yang, Zhichao Ren, Ge Zheng, The impact of pension insurance types on the health of older adults in China: a study based on the 2018 CHARLS data, 2023, 11, 2296-2565, 10.3389/fpubh.2023.1180024
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(11425) PDF downloads(974) Cited by(12)

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog