Citation: Michael R Hamblin. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation[J]. AIMS Biophysics, 2017, 4(3): 337-361. doi: 10.3934/biophy.2017.3.337
[1] | Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev . The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, 2021, 29(6): 3909-3993. doi: 10.3934/era.2021068 |
[2] | Fei Ma, Min Yin, Yanhui Teng, Ganglian Ren . Nonlinear generalized semi-Jordan triple derivable mappings on completely distributive commutative subspace lattice algebras. Electronic Research Archive, 2023, 31(8): 4807-4817. doi: 10.3934/era.2023246 |
[3] | Xiuhai Fei, Cuixian Lu, Haifang Zhang . Nonlinear Jordan triple derivable mapping on ∗-type trivial extension algebras. Electronic Research Archive, 2024, 32(3): 1425-1438. doi: 10.3934/era.2024066 |
[4] | Quanguo Chen, Yong Deng . Hopf algebra structures on generalized quaternion algebras. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154 |
[5] |
Kengo Matsumoto .
|
[6] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[7] | Peigen Cao, Fang Li, Siyang Liu, Jie Pan . A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27(0): 1-6. doi: 10.3934/era.2019006 |
[8] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[9] | Juxiang Sun, Guoqiang Zhao . Gorenstein invariants under right Quasi-Frobenius extensions. Electronic Research Archive, 2025, 33(6): 3561-3570. doi: 10.3934/era.2025158 |
[10] | Ming Ding, Zhiqi Chen, Jifu Li . The properties on F-manifold color algebras and pre-F-manifold color algebras. Electronic Research Archive, 2025, 33(1): 87-101. doi: 10.3934/era.2025005 |
The algebraic classification (up to isomorphism) of algebras of dimension
The algebraic study of central extensions of associative and non-associative algebras has been an important topic for years (see, for example, [10,20] and references therein). Our method for classifying nilpotent commutative algebras is based on the calculation of central extensions of nilpotent algebras of smaller dimensions from the same variety (first, this method has been developed by Skjelbred and Sund for Lie algebra case in [20]) and the classifications of all complex
Throughout this paper, we use the notations and methods well written in [10], which we have adapted for the commutative case with some modifications. Further in this section we give some important definitions.
Let
Let
ϕθ(x,y)=θ(ϕ(x),ϕ(y)). |
It is easy to verify that
Let
Call the set
The following result shows that every algebra with a non-zero annihilator is a central extension of a smaller-dimensional algebra.
Lemma 1.1. Let
dim(Ann(A))=m≠0. |
Then there exists, up to isomorphism, a unique
Proof. Let
P(xy)=P((x−P(x)+P(x))(y−P(y)+P(y)))=P(P(x)P(y))=[P(x),P(y)]A′. |
Since
Definition 1.2. Let
Our task is to find all central extensions of an algebra
Let
W1=⟨[θ1],[θ2],…,[θs]⟩,W2=⟨[ϑ1],[ϑ2],…,[ϑs]⟩∈Gs(H2(A,C)), |
we easily have that if
Ts(A)={W=⟨[θ1],…,[θs]⟩∈Gs(H2(A,C)):s⋂i=1Ann(θi)∩Ann(A)=0}, |
which is stable under the action of
Now, let
E(A,V)={Aθ:θ(x,y)=s∑i=1θi(x,y)ei and ⟨[θ1],[θ2],…,[θs]⟩∈Ts(A)}. |
We also have the following result, which can be proved as in [10,Lemma 17].
Lemma 1.3. Let
Orb⟨[θ1],[θ2],…,[θs]⟩=Orb⟨[ϑ1],[ϑ2],…,[ϑs]⟩. |
This shows that there exists a one-to-one correspondence between the set of
The idea of the definition of a
((xy)a)b+((xb)a)y+x((yb)a)=((xy)b)a+((xa)b)y+x((ya)b). |
The above described method gives all commutative (
θ(x,y)=θ(y,x), |
θ((xy)a,b)+θ((xb)a,y)+θ(x,(yb)a)=θ((xy)b,a)+θ((xa)b,y)+θ(x,(ya)b). |
for all
Z2D(D,C)={θ∈Z2C(D,C):θ(x,y)=θ(y,x),θ((xy)a,b)+θ((xb)a,y)+θ(x,(yb)a)=θ((xy)b,a)+θ((xa)b,y)+θ(x,(ya)b) for all x,y,a,b∈D}. |
Observe that
Rs(D)={W∈Ts(D):W∈Gs(H2D(D,C))}, |
Us(D)={W∈Ts(D):W∉Gs(H2D(D,C))}. |
Then
Let us introduce the following notations. Let
NΞj—jth5−dimensional family ofcommutative non−CCD−algebras with parametrs Ξ.Nij—jth i−dimensional non−CCD−algebra.Ni∗j—jth i−dimensional CCD−algebra. |
Remark 1. All families of algebras from our final list do not have intersections, but inside some families of algebras there are isomorphic algebras. All isomorphisms between algebras from a certain family of algebras constucted from the representative
Thanks to [8] we have the complete classification of complex
N3∗01,N4∗01:e1e1=e2H2C=H2DN3∗02,N4∗02:e1e1=e2e1e2=e3H2C≠H2DN3∗03,N4∗03:e1e2=e3H2C=H2DN3∗04,N4∗04:e1e1=e2e2e2=e3H2C≠H2DN4∗05:e1e1=e2e1e3=e4H2C=H2DN4∗06:e1e1=e2e3e3=e4H2C=H2DN4∗07:e1e1=e4e2e3=e4H2C=H2DN4∗08:e1e1=e2e1e2=e3e2e2=e4H2C≠H2DN4∗09:e1e1=e2e2e3=e4H2C≠H2DN4∗10:e1e1=e2e1e2=e4e3e3=e4H2C≠H2DN4∗11:e1e1=e2e1e3=e4e2e2=e4H2C≠H2DN4∗12:e1e1=e2e2e2=e4e3e3=e4H2C≠H2DN4∗13(λ):e1e1=e2e1e2=e3e1e3=e4e2e2=λe4H2C≠H2DN4∗14:e1e2=e3e1e3=e4H2C≠H2DN4∗15:e1e2=e3e1e3=e4e2e2=e4H2C≠H2DN4∗16:e1e2=e3e1e3=e4e2e3=e4H2C≠H2DN4∗17:e1e2=e3e3e3=e4H2C≠H2DN4∗18:e1e1=e4e1e2=e3e3e3=e4H2C≠H2DN4∗19:e1e1=e4e1e2=e3e2e2=e4e3e3=e4H2C≠H2DN401:e1e1=e2e1e2=e3e2e3=e4N402:e1e1=e2e1e2=e3e1e3=e4e2e3=e4N403:e1e1=e2e1e2=e3e3e3=e4N404:e1e1=e2e1e2=e3e2e2=e4e3e3=e4N405:e1e1=e2e1e3=e4e2e2=e3N406:e1e1=e2e1e2=e4e1e3=e4e2e2=e3N407:e1e1=e2e2e2=e3e2e3=e4N408:e1e1=e2e1e3=e4e2e2=e3e2e3=e4N409:e1e1=e2e2e2=e3e3e3=e4N410:e1e1=e2e2e2=e3e1e2=e4e3e3=e4N411(λ):e1e1=e2e1e2=λe4e2e2=e3e2e3=e4e3e3=e4 |
Here we will collect all information about
CohomologyAutomorphismsN3∗02e1e1=e2e1e2=e3H2D(N3∗02)=⟨[Δ13],[Δ22]⟩,H2C(N3∗02)=H2D(N3∗02)⊕⟨[Δ23],[Δ33]⟩ϕ=(x00yx20z2xyx3) |
Let us use the following notations:
∇1=[Δ13],∇2=[Δ22],∇3=[Δ23],∇4=[Δ33]. |
Take
ϕT(00α10α2α3α1α3α4)ϕ=(α∗α∗∗α∗1α∗∗α∗2α∗3α∗1α∗3α∗4), |
we have
α∗1=(α1x+α3y+α4z)x3,α∗2=(α2x2+4α3xy+4α4y2)x2,α∗3=(α3x+2α4y)x4,α∗4=α4x6. |
We are interested only in
θ1=α1∇1+α2∇2+α3∇3+α4∇4 and θ2=β1∇1+β2∇2+β3∇3. |
Thus, we have
α∗1=(α1x+α3y+α4z)x3,β∗1=(β1x+β3y)x3,α∗2=(α2x2+4α3xy+4α4y2)x2,β∗2=(β2x+4β3y)x3,α∗3=(α3x+2α4y)x4,β∗3=β3x5.α∗4=α4x6. |
Consider the following cases.
x=2α24β2, y=−α3α4β2, z=α23(−2β1+β2)+2α4(α2β1−α1β2), |
we have the representatives
x=4β3α4,y=−β2α4,z=β2α3−4α1β3, |
we have the representative
x=4β1−β24β3,y=β22−4β1β216β23,z=(4β1−β2)(8β1α3β3−4β1β2α4−8α1β33+β22α4)32β33α4, |
we have the representative
x=√4α2β23−4β2α3β3+β22α44β23α4, y=−β2√α4β22−4α3β2β3+4α2β238β23√α4, z=(8β1α3β3−4β1β2α4−8α1β33+β22α4)√4α2β23−4β2α3β3+β22α416β33α4√α4, |
we have the family of representatives
Summarizing, we have the following distinct orbits:
⟨∇1,∇2+∇4⟩,⟨∇1+4∇2,−24(∇2+∇3)⟩,⟨∇1+λ∇2,∇3⟩,⟨∇1+λ∇2,∇4⟩,⟨α∇1+∇3,∇2+∇4⟩,⟨∇1+∇3,∇4⟩,⟨∇2,−3∇3⟩,⟨∇2,∇4⟩,⟨∇3,∇4⟩. |
Note that the algebras constructed from the orbits
N12:e1e1=e2e1e2=e3e1e3=e4e2e2=e5e3e3=e5N4168:e1e1=e2e1e2=e3e1e3=e4e2e2=4e4−24e5e2e3=−24e5Nλ,0170:e1e1=e2e1e2=e3e1e3=e4e2e2=λe4e2e3=e5Nλ,0184:e1e1=e2e1e2=e3e1e3=e4e2e2=λe4e3e3=e5Nα13:e1e1=e2e1e2=e3e1e3=αe4e2e2=e5e2e3=e4e3e3=e5N14:e1e1=e2e1e2=e3e1e3=e4e2e3=e4e3e3=e5N−176:e1e1=e2e1e2=e3e2e2=e4e2e3=−3e5N080:e1e1=e2e1e2=e3e2e2=e4e3e3=e5N15:e1e1=e2e1e2=e3e2e3=e4e3e3=e5 |
Here we will collect all information about
N3∗04e1e1=e2e2e2=e3H2D(N3∗04)=⟨[Δ12]⟩,H2C(N3∗04)=H2D(N3∗04)⊕⟨[Δ13],[Δ23],[Δ33]⟩ϕ=(x000x20z0x4) |
Let us use the following notations:
∇1=[Δ12],∇2=[Δ13],∇3=[Δ23],∇4=[Δ33]. |
Take
ϕT(0α1α2α10α3α2α3α4)ϕ=(α∗α∗1α∗2α∗1α∗∗α∗3α∗2α∗3α∗4), |
we have
α∗1=(α1x+α3z)x2,α∗2=(α2x+α4z)x4,α∗3=α3x5,α∗4=α4x8. |
Consider the following cases:
θ1=α1∇1+α2∇2+α3∇3+α4∇4 and θ2=β1∇1+β2∇2+β3∇3. |
Thus, we have
α∗1=(α1x+α3z)x2,β∗1=(β1x+β3z)x2,α∗2=(α2x+α4z)x4,β∗2=β2x5,α∗3=α3x6,β∗3=β3x6.α∗4=α4x8. |
Then we consider the following subcases:
x=√α3α4−1 and z=−α1√α3−1α−14, |
we have the representative
x=√β1β2 and z=(α1β2−β1α2)√β1(β1α4−β2α3)√β2, |
we have the family of representatives
2.
α∗1=(α1x+α3z)x2,β∗1=β1x3,α∗2=α2x5,β∗2=β2x5,α∗3=α3x6, |
and consider the following subcases:
3.
Summarizing, we have the following distinct orbits:
⟨∇1,∇2⟩, ⟨∇1,∇2+∇3⟩, ⟨∇1,∇3⟩, ⟨∇1,∇3+∇4⟩, ⟨∇1,∇4⟩, ⟨∇1+∇2,α∇1+∇3+∇4⟩O(α)=O(−α), ⟨∇1+∇2,∇3⟩, ⟨∇1+∇2,α∇3+∇4⟩α≠1, ⟨β∇1+∇2+∇3,α∇1+∇4⟩, ⟨α∇1+∇3,∇1+∇4⟩O(α)=O(−η3α)=O(η23α), ⟨∇1+∇3,∇4⟩, ⟨∇1+∇4,∇2⟩, ⟨∇2,∇3⟩, ⟨∇2,∇3+∇4⟩, ⟨∇2,∇4⟩, ⟨∇3,∇4⟩. |
Note that, the orbit
N076:e1e1=e2e1e2=e3e1e4=e5e2e2=e4N16:e1e1=e2e1e2=e4e1e3=e5e2e2=e3e2e3=e5N17:e1e1=e2e1e2=e4e2e2=e3e2e3=e5N18:e1e1=e2e1e2=e4e2e2=e3e2e3=e5e3e3=e5N19:e1e1=e2e1e2=e4e2e2=e3e3e3=e5Nα20:e1e1=e2e1e2=e4+αe5e1e3=e4e2e2=e3e2e3=e5e3e3=e5N21:e1e1=e2e1e2=e4e1e3=e4e2e2=e3e2e3=e5Nα≠122:e1e1=e2e1e2=e4e1e3=e4e2e2=e3e2e3=αe5e3e3=e5Nα,β23:e1e1=e2e1e2=βe4+αe5e1e3=e4e2e2=e3e2e3=e4e3e3=e5Nα24:e1e1=e2e1e2=αe4+e5e2e2=e3e2e3=e4e3e3=e5N25:e1e1=e2e1e3=e4e2e2=e3e2e3=e4e3e3=e5N26:e1e1=e2e1e2=e4e1e3=e5e2e2=e3e3e3=e4N27:e1e1=e2e1e3=e4e2e2=e3e2e3=e5N28:e1e1=e2e1e3=e4e2e2=e3e2e3=e5e3e3=e5N29:e1e1=e2e1e3=e4e2e2=e3e3e3=e5N30:e1e1=e2e2e2=e3e2e3=e4e3e3=e5 |
Here we will collect all information about
N4∗02e1e1=e2e1e2=e3H2D(N4∗02)=⟨[Δ13],[Δ22],[Δ14],[Δ24],[Δ44]⟩H2C(N4∗02)=H2D(N4∗02)⊕⟨[Δ23],[Δ33],[Δ34]⟩ϕ=(x000qx200w2xqx3re00t) |
Let us use the following notations:
∇1=[Δ13],∇2=[Δ14],∇3=[Δ22],∇4=[Δ23],∇5=[Δ24],∇6=[Δ33],∇7=[Δ34],∇8=[Δ44]. |
Take
ϕT(00α1α20α3α4α5α1α4α6α7α2α5α7α8)ϕ=(α∗α∗∗α∗1α∗2α∗∗α∗3α∗4α∗5α∗1α∗4α∗6α∗7α∗2α∗5α∗7α∗8), |
we have
α∗1=(α1x+α4q+α6w+α7e)x3,α∗2=(α1x+α4q+α6w+α7e)r+(α2x+α5q+α7w+α8e)t,α∗3=(α3x2+4α4xq+4α6q2)x2,α∗4=(α4x+2α6q)x4,α∗5=(α4r+α5t)x2+2(α6r+α7t)xq,α∗6=α6x6,α∗7=(α6r+α7t)x3,α∗8=α6r2+2α7rt+α8t2. |
We interested in
x=4√α2α4−α1α5,t=α24,r=−α4α5,q=−α14√α2α4−α1α5α4, |
we have the representative
x=α3−4α1α4,t=(α3−4α1)4α24(α2α4−α1α5),r=α5(α3−4α1)4α34(α1α5−α2α4),q=4α21−α1α3α24, |
we have the representative
x=α4α8,t=α34α28,q=−α1α8,r=−α24α5α28,e=α1α5−α2α4, |
we have the representative
x=α3−4α1α4,t=√(α3−4α1)5α24√α8,q=4α21−α1α3α24,r=−α5√(α3−4α1)5α34√α8,e=(4α1−α3)(α2α4−α1α5)α24α8, |
we have the representative
2.
x=2α27,q=−α5α7,e=−2α1α7,w=α25+2α1α8−2α2α7,t=−2α7,r=α8, |
we have the representative
x=1, q=−α52α7, e=−α1α7, w=α25+2α1α8−2α2α72α27, t=α3α7, r=−α3α82α27, |
we have the representative
x=√α7,t=α4,e=α3−4α14√α7,r=−α4α82α7,q=−α3√α74α4,w=4α1α4α8−4α2α4α7+α3(α5α7−α4α8)4α4√α37, |
we have the representative
x=−α32α4+α5α7−α4α82α27,q=α3(α3α27−2α4α5α7+α24α8)8α24α27,w=(α3α27−2α4α5α7+α24α8)(4α2α4α7−4α1α4α8+α3(−α5α7+α4α8))8α24α47,e=(4α1−α3)(α3α27−2α4α5α7+α24α8)8α4α37,t=(α3α27−2α4α5α7+α24α8)24α4α57,r=−α8(α3α27−2α4α5α7+α24α8)28α4α67, |
we have the representative
3.
x=1,t=α26α2α6−α1α7,q=−α42α6,r=α6α7α1α7−α2α6,e=0,w=α24−2α1α6α6, |
we have the representative
x=√α3α6−α24α26,t=√(α3α6−α24)5α36(α2α6−α1α7),q=−α4√α3α6−α242α26,r=−√(α3α6−α24)5α7α46(α2α6−α1α7),e=0, |
and
t=α26α5α6−α4α7x4, q=−α42α6x, r=α6α7α4α7−α5α6x4, e=0, w=α24−2α1α6α6x, |
we have the representatives
t=α6x3√α6α8−α27,q=−α4x2α6,r=−α7x3√α6α8−α27,e=(α1α7−α2α6)xα6α8−α27,w=(α242α26+α1α8−α2α7α27−α6α8)x, |
we have the representatives
x=α5α6−α4α7√α26(α6α8−α27),t=(α5α6−α4α7)3α26(α27−α6α8)2,q=α4(α4α7−α5α6)2α6√α26(α6α8−α27),r=α7(α4α7−α5α6)3α36(α27−α6α8)2,e=α6(α5α6−α4α7)(α4α5α6−α24α7+2α6(−α2α6+α1α7))2α36√(α6α8−α27)3,w=α6(α5α6−α4α7)(α24α8−α4α5α7+2α6(α2α7−α1α8))2α36√(α6α8−α27)3, |
we have the representative
Summarizing, we have the following distinct orbits
⟨∇2+∇3+∇4⟩,⟨∇2+α∇3+∇5+∇6⟩,⟨∇2+∇3+∇6⟩,⟨∇2+∇4⟩,⟨∇2+∇6⟩,⟨∇3+∇4+∇8⟩,⟨∇3+∇5+∇6⟩,⟨α∇3+∇5+∇6+∇8⟩,⟨∇3+∇6+∇8⟩,⟨∇3+∇7⟩,⟨∇4+∇5+∇7⟩,⟨∇4+∇7⟩,⟨∇4+∇8⟩,⟨∇5+∇6⟩,⟨∇6+∇8⟩,⟨∇7⟩, |
which gives the following new algebras:
N31:e1e1=e2e1e2=e3e1e4=e5e2e2=e5e2e3=e5Nα32:e1e1=e2e1e2=e3e1e4=e5e2e2=αe5e2e4=e5e3e3=e5N33:e1e1=e2e1e2=e3e1e4=e5e2e2=e5e3e3=e5N34:e1e1=e2e1e2=e3e1e4=e5e2e3=e5N35:e1e1=e2e1e2=e3e1e4=e5e3e3=e5N36:e1e1=e2e1e2=e3e2e2=e5e2e3=e5e4e4=e5N37:e1e1=e2e1e2=e3e2e2=e5e2e4=e5e3e3=e5Nα38:e1e1=e2e1e2=e3e2e2=αe5e2e4=e5e3e3=e5e4e4=e5N39:e1e1=e2e1e2=e3e2e2=e5e3e3=e5e4e4=e5N40:e1e1=e2e1e2=e3e2e2=e5e3e4=e5N41:e1e1=e2e1e2=e3e2e3=e5e2e4=e5e3e4=e5N42:e1e1=e2e1e2=e3e2e3=e5e3e4=e5N43:e1e1=e2e1e2=e3e2e3=e5e4e4=e5N44:e1e1=e2e1e2=e3e2e4=e5e3e3=e5N45:e1e1=e2e1e2=e3e3e3=e5e4e4=e5N46:e1e1=e2e1e2=e3e3e4=e5 |
Here we will collect all information about
N4∗04e1e1=e2e2e2=e3H2D(N4∗04)=⟨[Δ12],[Δ14],[Δ24],[Δ44]⟩,H2C(N4∗04)=H2D(N4∗04)⊕⟨[Δ13],[Δ23],[Δ33],[Δ34]⟩ϕ=(x0000x200y0x4rz00t) |
Let us use the following notations:
∇1=[Δ12],∇2=[Δ13],∇3=[Δ14],∇4=[Δ23],∇5=[Δ24],∇6=[Δ33],∇7=[Δ34],∇8=[Δ44]. |
Take
ϕT(0α1α2α3α10α4α5α2α4α6α7α3α5α7α8)ϕ=(α∗α∗1α∗2α∗3α∗1α∗∗α∗4α∗5α∗2α∗4α∗6α∗7α∗3α∗5α∗7α∗8), |
we have
α∗1=(α1x+α4y+α5z)x2,α∗2=(α2x+α6y+α7z)x4,α∗3=(α2x+α6y+α7z)r+(α3x+α7y+α8z)t,α∗4=α4x6,α∗5=(α4r+α5t)x2,α∗6=α6x8,α∗7=(α6r+α7t)x4,α∗8=α6r2+2α7rt+α8t2. |
We interested in
x=α2α5, t=α42α25, z=−α1α2, r=−α32α3α25, y=0, |
we have the representative
x=α3, t=√α2α28, z=−α3, r=0, y=0, |
we have the representative
x=√α1α2−1, t=4√α51α−32√α−18, z=−√α1α−12α3α−18, r=0, y=0, |
we have the representative
x=α25α2α8,t=α55α22α38,z=−α1α5α2α8,r=α45(α1α8−α3α5)α32α38,y=0, |
we have the representative
2.
3.
4.
(b)
(c)
x=5√α1α−16,t=10√α81α−36α−58,z=−α3α−185√α1α−16,y=0,r=0, |
we have the representative
x=√α4α−16, t=α24√α−36α−18, z=−α3α−18√α4α−16, y=0, r=0, |
we have the representative
Summarizing, we have the following distinct orbits:
⟨∇1+∇2+∇8⟩,⟨∇1+∇3+∇6⟩,⟨α∇1+∇3+∇4+∇6⟩O(α)=O(−α),⟨α∇1+β∇4+∇5+∇6+∇8⟩O(α,β)=O(−α,β)=O(±iα,−β),⟨α∇1+∇4+∇6+∇8⟩O(α)=O(−α),⟨∇1+∇4+∇7⟩,⟨α∇1+∇4+∇5+∇7⟩O(α)=O(−α),⟨∇1+∇5+∇7⟩,⟨∇1+∇6+∇8⟩,⟨∇1+∇7⟩,⟨∇2+∇3+∇4⟩,⟨∇2+∇4+∇8⟩,⟨∇2+∇5⟩,⟨∇2+∇5+∇8⟩,⟨∇2+∇8⟩,⟨∇3+∇4⟩,⟨α∇3+∇4+∇5+∇6⟩O(α)=O(−α),⟨∇3+∇5+∇6⟩,⟨∇3+∇6⟩,⟨∇4+∇7⟩,⟨∇4+∇8⟩,⟨∇5+∇6⟩,⟨∇5+∇7⟩,⟨∇6+∇8⟩,⟨∇7⟩. |
Hence, we have the following new algebras:
N47:e1e1=e2e1e2=e5e1e3=e5e2e2=e3e4e4=e5N48:e1e1=e2e1e2=e5e1e4=e5e2e2=e3e3e3=e5Nα49:e1e1=e2e1e2=αe5e1e4=e5e2e2=e3e2e3=e5e3e3=e5Nα,β50:e1e1=e2e1e2=αe5e2e2=e3e2e3=βe5e2e4=e5e3e3=e5e4e4=e5Nα51:e1e1=e2e1e2=αe5e2e2=e3e2e3=e5e3e3=e5e4e4=e5N52:e1e1=e2e1e2=e5e2e2=e3e2e3=e5e3e4=e5Nα53:e1e1=e2e1e2=αe5e2e2=e3e2e3=e5e2e4=e5e3e4=e5N54:e1e1=e2e1e2=e5e2e2=e3e2e4=e5e3e4=e5N55:e1e1=e2e1e2=e5e2e2=e3e3e3=e5e4e4=e5N56:e1e1=e2e1e2=e5e2e2=e3e3e4=e5N57:e1e1=e2e1e3=e5e1e4=e5e2e2=e3e2e3=e5N58:e1e1=e2e1e3=e5e2e2=e3e2e3=e5e4e4=e5N59:e1e1=e2e1e3=e5e2e2=e3e2e4=e5N60:e1e1=e2e1e3=e5e2e2=e3e2e4=e5e4e4=e5N61:e1e1=e2e1e3=e5e2e2=e3e4e4=e5N62:e1e1=e2e1e4=e5e2e2=e3e2e3=e5Nα63:e1e1=e2e1e4=αe5e2e2=e3e2e3=e5e2e4=e5e3e3=e5N64:e1e1=e2e1e4=e5e2e2=e3e2e4=e5e3e3=e5N65:e1e1=e2e1e4=e5e2e2=e3e3e3=e5N66:e1e1=e2e2e2=e3e2e3=e5e3e4=e5N67:e1e1=e2e2e2=e3e2e3=e5e4e4=e5N68:e1e1=e2e2e2=e3e2e4=e5e3e3=e5N69:e1e1=e2e2e2=e3e2e4=e5e3e4=e5N70:e1e1=e2e2e2=e3e3e3=e5e4e4=e5N71:e1e1=e2e2e2=e3e3e4=e5 |
Here we will collect all information about
N4∗08e1e1=e2e1e2=e3e2e2=e4H2D(N4∗08)=⟨[Δ13],[Δ14]+3[Δ23]⟩H2C(N4∗08)=H2D(N4∗08)⊕⟨[Δ14],[Δ24],[Δ33],[Δ34],[Δ44]⟩ϕ=(x000yx200z2xyx30ty2x2yx4) |
Let us use the following notations:
∇1=[Δ13],∇2=[Δ14]+3[Δ23],∇3=[Δ14],∇4=[Δ24],∇5=[Δ33],∇6=[Δ34],∇7=[Δ44]. |
Take
ϕT(00α1α2+α3003α2α4α13α2α5α6α2+α3α4α6α7)ϕ=(α∗α∗∗α∗1α∗2+α∗3α∗∗α∗∗∗3α∗2α∗4α∗13α∗2α∗5α∗6α∗2+α∗3α∗4α∗6α∗7), |
we have
α∗1=(α1x+3α2y+α5z+α6t)x3+((α2+α3)x+α4y+α6z+α7t)x2y,α∗2=13(3α2x3+(α4+2α5)x2y+3α6xy2+α7y3)x2,α∗3=((α2+α3)x+α4y+α6z+α7t)x4−13(3α2x3+(α4+2α5)x2y+3α6xy2+α7y3)x2,α∗4=(α4x2+2α6xy+α7y2)x4,α∗5=(α5x2+2α6xy+α7y2)x4,α∗6=(α6x+α7y)x6,α∗7=α7x8. |
We are interested in
⟨−14∇2+∇3⟩ and ⟨∇1−14∇2+∇3⟩ |
depending on
2.
3.
x=α2+α3α5, y=3α2α3+3α232α25, z=−(α2+α3)(2α1α5+12α2α3+3α23)4α35, |
we have the representative
x=2(α4−α5),y=3α3,z=0,t=0, |
we have the representative
x=2(α2α5−α2α4+α3α5)+α3α42(α25−α4α5),y=3α3(2(α2α5−α2α4+α3α5)+α3α4)2α5(α5−α4)2,z=−(2α2(α4−α5)−α3(α4+2α5))(4α1(α4−α5)2−24α2α3(α4−α5)+3α23(α4+2α5))8(α4−α5)3α25,t=0, |
we have the family of representatives
4. if
z=y2−α3α6+2y(α5−α4)3α6 and t=−x2α1+xy(4α2+α3)+xzα5+y(yα4+zα6)α6), |
we have
5. if
Summarizing all cases we have the following distinct orbits
⟨∇1−14∇2+∇3⟩,⟨α∇1+∇2+β∇4+∇7⟩O(α,β)=O(−η3α,η23β)=O(η23α,−η3β),⟨∇1+α∇3+∇4⟩O(α)=O(−α),⟨∇1+α∇4+∇7⟩O(α)=O(−α),⟨α∇2+∇3⟩α≠0,−1,⟨∇2+α∇4+∇5⟩,⟨α∇2+β∇4+∇5+∇7⟩O(α,β)=O(−α,β),⟨∇3+∇4+∇5⟩,⟨α∇4+∇5⟩α≠0,1,⟨∇4+α∇5+∇6⟩,⟨∇6⟩, |
which gives the following new algebras:
N72:e1e1=e2e1e2=e3e1e3=e5e1e4=34e5e2e2=e4e2e3=−34e5Nα,β73:e1e1=e2e1e2=e3e1e3=αe5e1e4=e5e2e2=e4e2e3=3e5e2e4=βe5e4e4=e5Nα74:e1e1=e2e1e2=e3e1e3=e5e1e4=αe5e2e2=e4e2e4=e5Nα75:e1e1=e2e1e2=e3e1e3=e5e2e2=e4e2e4=αe5e4e4=e5Nα≠0,−176:e1e1=e2e1e2=e3e1e4=(1+α)e5e2e2=e4e2e3=3αe5Nα77:e1e1=e2e1e2=e3e1e4=e5e2e2=e4e2e3=3e5e2e4=αe5e3e3=e5Nα,β78:e1e1=e2e1e2=e3e1e4=αe5e2e2=e4e2e3=3αe5e2e4=βe5e3e3=e5e4e4=e5N79:e1e1=e2e1e2=e3e1e4=e5e2e2=e4e2e4=e5e3e3=e5Nα≠0,180:e1e1=e2e1e2=e3e2e2=e4e2e4=αe5e3e3=e5Nα81:e1e1=e2e1e2=e3e2e2=e4e2e4=e5e3e3=αe5e3e4=e5N82:e1e1=e2e1e2=e3e2e2=e4e3e4=e5 |
Here we will collect all information about
N4∗09e1e1=e2e2e3=e4H2D(N4∗09)=⟨[Δ12],[Δ13],[Δ22],[Δ33]⟩H2C(N4∗09)=H2D(N4∗09)⊕⟨[Δ14],[Δ24],[Δ34],[Δ44]⟩ϕ=(x0000x20000r0t0sx2r) |
Let us use the following notations:
∇1=[Δ12],∇2=[Δ13],∇3=[Δ14],∇4=[Δ22],∇5=[Δ24],∇6=[Δ33],∇7=[Δ34],∇8=[Δ44]. |
Take
ϕT(0α1α2α3α1α40α5α20α6α7α3α5α7α8)ϕ=(α∗α∗1α∗2α∗3α∗1α∗4α∗∗α∗5α∗1α∗∗α∗6α∗7α∗3α∗5α∗7α∗8), |
we have
α∗1=(α1x+α5t)x2,α∗2=(α2x+α7t)r+(α3x+α8t)s,α∗3=(α3x+α8t)x2r,α∗4=α4x4,α∗5=α5x4r,α∗6=(α6r+α7s)r+(α7r+α8s)s,α∗7=(α7r+α8s)x2r,α∗8=α8r2x4. |
We are interested in
x=α1α−14, r=α1α−13, s=−α1α2α−23, t=0, |
we have the family of representatives
2.
x=4√α4α6α−25, r=α4α5−1, t=−α14√α4α6α−65,s=0, |
we have the representative
r=1,x=3√α2α5−1,t=−α13√α2α−45,s=0, |
we have the representative
x=3√α2α5−1, r=α−163√α42α−15, t=−α13√α2α−45,s=0, |
we have the representative
x=3√α2α−15,r=α4α5−1,t=−α13√α2α−45,s=0, |
we have the family of representatives
x=α3α5−1,r=α43α−35α−16,s=−α2α33α−35α−16,t=−α1α3α−25, |
we have the representative
3.
4.
Summarizing, we have the following distinct orbits:
⟨∇1+∇2+α∇4+β∇5+γ∇6+∇8⟩O(α,β,γ)=O(−η5α,−η35β,−η5γ)=O(η25α,−η5β,η25γ)=O(−η35α,η45β,−η35γ)=O(η45α,η25β,η45γ),⟨∇1+∇3⟩,⟨∇1+∇3+α∇4+β∇5+∇7⟩,⟨∇1+∇3+∇4+α∇6⟩,⟨∇1+∇3+∇6⟩,⟨∇1+∇4+α∇5+β∇6+∇8⟩O(α,β)=O(−α,β),⟨∇1+∇4+α∇5+∇7⟩O(α,β)=O(−α,β),⟨∇1+∇5+α∇6+∇8⟩,⟨∇1+∇5+∇7⟩,⟨∇1+∇6+∇8⟩,⟨∇1+∇7⟩,⟨∇1+∇8⟩,⟨∇2+∇4+∇5+α∇6⟩O(α)=O(η3α)=O(η23α),⟨∇2+∇4+α∇5+β∇6+∇8⟩,⟨∇2+∇5⟩,⟨∇2+∇5+∇6⟩,⟨∇2+∇5+α∇6+∇8⟩O(α,β)=O(−α,β)=O(α,η23β)=O(−α,η23β)=O(−α,−η3β)=O(α,−η3β),⟨∇2+∇6+∇8⟩,⟨∇2+∇8⟩,⟨∇3⟩,⟨∇3+∇4⟩,⟨∇3+∇4+∇5+α∇6⟩,⟨∇3+α∇4+∇5+∇7⟩,⟨∇3+∇4+∇6⟩,⟨∇3+∇5⟩,⟨∇3+∇5+∇6⟩,⟨∇3+∇6⟩,⟨∇4+∇5⟩,⟨∇4+∇5+∇6⟩,⟨∇4+α∇5+∇6+∇8⟩O(α)=O(−α),⟨∇4+∇5+∇7⟩,⟨∇4+∇5+∇8⟩,⟨∇4+∇7⟩,⟨∇4+∇8⟩,⟨∇5⟩,⟨∇5+∇6⟩,⟨∇5+∇6+∇8⟩,⟨∇5+∇7⟩,⟨∇5+∇8⟩,⟨∇6+∇8⟩,⟨∇7⟩,⟨∇8⟩, |
which gives the following new algebras:
Nα,β,γ83:e1e1=e2e1e2=e5e1e3=e5e2e2=αe5e2e3=e4e2e4=βe5e3e3=γe5e4e4=e5N84:e1e1=e2e1e2=e5e1e4=e5e2e3=e4Nα,β85:e1e1=e2e1e2=e5e1e4=e5e2e2=αe5e2e3=e4e2e4=βe5e3e4=e5Nα86:e1e1=e2e1e2=e5e1e4=e5e2e2=e5e2e3=e4e3e3=αe5N87:e1e1=e2e1e2=e5e1e4=e5e2e3=e4e3e3=e5Nα,β88:e1e1=e2e1e2=e5e2e2=e5e2e3=e4e2e4=αe5e3e3=βe5e4e4=e5Nα89:e1e1=e2e1e2=e5e2e2=e5e2e3=e4e2e4=αe5e3e4=e5Nα90:e1e1=e2e1e2=e5e2e3=e4e2e4=e5e3e3=αe5e4e4=e5N91:e1e1=e2e1e2=e5e2e3=e4e2e4=e5e3e4=e5N92:e1e1=e2e1e2=e5e2e3=e4e3e3=e5e4e4=e5N93:e1e1=e2e1e2=e5e2e3=e4e3e4=e5N94:e1e1=e2e1e2=e5e2e3=e4e4e4=e5Nα95:e1e1=e2e1e3=e5e2e2=e5e2e3=e4e2e4=e5e3e3=αe5Nα,β96:e1e1=e2e1e3=e5e2e2=e5e2e3=e4e2e4=αe5e3e3=βe5e4e4=e5N97:e1e1=e2e1e3=e5e2e3=e4e2e4=e5N98:e1e1=e2e1e3=e5e2e3=e4e2e4=e5e3e3=e5Nα99:e1e1=e2e1e3=e5e2e3=e4e2e4=e5e3e3=αe5e4e4=e5N100:e1e1=e2e1e3=e5e2e3=e4e3e3=e5e4e4=e5N101:e1e1=e2e1e3=e5e2e3=e4e4e4=e5N102:e1e1=e2e1e4=e5e2e3=e4N103:e1e1=e2e1e4=e5e2e2=e5e2e3=e4Nα104:e1e1=e2e1e4=e5e2e2=e5e2e3=e4e2e4=e5e3e3=αe5Nα105:e1e1=e2e1e4=e5e2e2=αe5e2e3=e4e2e4=e5e3e4=e5N106:e1e1=e2e1e4=e5e2e2=e5e2e3=e4e3e3=e5N107:e1e1=e2e1e4=e5e2e3=e4e2e4=e5N108:e1e1=e2e1e4=e5e2e3=e4e2e4=e5e3e3=e5N109:e1e1=e2e1e4=e5e2e3=e4e3e3=e5N110:e1e1=e2e2e2=e5e2e3=e4e2e4=e5N111:e1e1=e2e2e2=e5e2e3=e4e2e4=e5e3e3=e5Nα112:e1e1=e2e2e2=e5e2e3=e4e2e4=αe5e3e3=e5e4e4=e5N113:e1e1=e2e2e2=e5e2e3=e4e2e4=e5e3e4=e5N114:e1e1=e2e2e2=e5e2e3=e4e2e4=e5e4e4=e5N115:e1e1=e2e2e2=e5e2e3=e4e3e4=e5N116:e1e1=e2e2e2=e5e2e3=e4e4e4=e5N117:e1e1=e2e2e3=e4e2e4=e5N118:e1e1=e2e2e3=e4e2e4=e5e3e3=e5N119:e1e1=e2e2e3=e4e2e4=e5e3e3=e5e4e4=e5N120:e1e1=e2e2e3=e4e2e4=e5e3e4=e5N121:e1e1=e2e2e3=e4e2e4=e5e4e4=e5N122:e1e1=e2e2e3=e4e3e3=e5e4e4=e5N123:e1e1=e2e2e3=e4e3e4=e5N124:e1e1=e2e2e3=e4e4e4=e5 |
Here we will collect all information about
N4∗10e1e1=e2e1e2=e4e3e3=e4H2D(N4∗10)=⟨[Δ13],[Δ14],[Δ22],[Δ23],[Δ33]⟩H2C(N4∗10)=H2D(N4∗10)⊕⟨[Δ24],[Δ34],[Δ44]⟩ϕ=(x000yx2−zrx0z0r0tz2+2xysx3),r2=x3 |
Let us use the following notations:
∇1=[Δ13],∇2=[Δ14],∇3=[Δ22],∇4=[Δ23],∇5=[Δ24],∇6=[Δ33],∇7=[Δ34],∇8=[Δ44]. |
Take
ϕT(00α1α20α3α4α5α1α4α6α7α2α5α7α8)ϕ=(α∗α∗∗α∗1α∗2α∗∗α∗3α∗4α∗5α∗1α∗4α∗6+α∗∗α∗7α∗2α∗5α∗7α∗8), |
we have
α∗1=−(α3y+α4z+α5t)zrx+(α1x+α4y+α6z+α7t)r+(α2x+α5y+α7z+α8t)s,α∗2=(α2x+α5y+α7z+α8t)x3,α∗3=α3x4+2α5x2(z2+2xy)+α8(z2+2xy)2,α∗4=−(α3x2+α5(z2+2xy))zrx+(α4x2+α7(z2+2xy))r+(α5x2+α8(z2+2xy))s,α∗5=(α5x2+α8(z2+2xy))x3,α∗6=−(α4r−α3zrx+α5s)zrx+(α6r−α4zrx+α7s)r+(α7r−α5zrx+α8s)s−(α3y+α4z+α5t)x2−(α2x+α5y+α7z+α8t)(z2+2xy),α∗7=(α7r−α5zrx+α8s)x3,α∗8=α8x6. |
We are interested in
y=−α22+α2α3+α4α72α27x,z=−α2α7x,s=−3α22α3+α2(α23+6α4α7)+α7(α3α4+2α6α7)4α37√x3,t=α27(α24−2α1α7)+α32α3+α22(α23+3α4α7)+2α2α7(α3α4+α6α7)2α47x, |
we have
y=−α2α5+α27α25x,z=α7α5x,s=α3α7−α4α5α25√x3,t=α2α3α5+α25α6+3α4α5α7−2α3α27α35x, |
we have
3.
Summarizing, we have the following distinct orbits:
⟨∇1+α∇3+∇5⟩O(α)=O(η45α)=O(−η35α)=O(η25α)=O(−η5α),⟨α∇1+∇3+β∇6+∇8⟩O(α,β)=O(−α,β)=O(η3α,η23β)=O(−η3α,η23β)=O(−η23α,−η3β)=O(η23α,−η3β),⟨α∇1+∇4+∇8⟩O(α)=O(−α)=O(η45α)=O(−η45α)=O(η35α)=O(−η35α)=O(η25α)=O(−η25α)=O(η5α)=O(−η5α),⟨∇1+∇8⟩,⟨∇3+∇5⟩,⟨∇3+∇7⟩,⟨∇5⟩,⟨∇6+∇8⟩,⟨∇7⟩,⟨∇8⟩, |
which gives the following new algebras:
Nα125:e1e1=e2e1e2=e4e1e3=e5e2e2=αe5e2e4=e5e3e3=e4Nα,β126:e1e1=e2e1e2=e4e1e3=αe5e2e2=e5e3e3=e4+βe5e4e4=e5Nα127:e1e1=e2e1e2=e4e1e3=αe5e2e3=e5e3e3=e4e4e4=e5N128:e1e1=e2e1e2=e4e1e3=e5e3e3=e4e4e4=e5N129:e1e1=e2e1e2=e4e2e2=e5e2e4=e5e3e3=e4N130:e1e1=e2e1e2=e4e2e2=e5e3e3=e4e3e4=e5N131:e1e1=e2e1e2=e4e2e4=e5e3e3=e4N132:e1e1=e2e1e2=e4e3e3=e4+e5e4e4=e5N133:e1e1=e2e1e2=e4e3e3=e4e3e4=e5N134:e1e1=e2e1e2=e4e3e3=e4e4e4=e5 |
Here we will collect all information about
N4∗11e1e1=e2e1e3=e4e2e2=e4H2D(N4∗11)=⟨[Δ12],[Δ22],[Δ23],[Δ33]⟩H2C(N4∗11)=H2D(N4∗11)⊕⟨[Δ14],[Δ24],[Δ34],[Δ44]⟩ϕ=(x0000x200z0x30t2xzsx4) |
Let us use the following notations:
∇1=[Δ12],∇2=[Δ14],∇3=[Δ22],∇4=[Δ23],∇5=[Δ24],∇6=[Δ33],∇7=[Δ34],∇8=[Δ44]. |
Take
ϕT(0α10α2α1α3α4α50α4α6α7α2α5α7α8)ϕ=(α∗α∗1α∗∗α∗2α∗1α∗3+α∗∗α∗4α∗5α∗∗α∗4α∗6α∗7α∗2α∗5α∗7α∗8), |
we have
α∗1=(α1x+α4z+α5t)x2+2(α2x+α7z+α8t)xz,α∗2=(α2x+α7z+α8t)x4,α∗3=(α3x2+4α5xz+4α8z2)x2−(α6z+α7t)x3−(α2x+α7z+α8t)s,α∗4=(α4x+2α7z)x4+(α5x+2α8z)xs,α∗5=(α5x+2α8z)x5,α∗6=α6x6+2α7x3s+α8s2,α∗7=(α7x3+α8s)x4,α∗8=α8x8. |
We are interested in
x = \sqrt{\frac{\alpha_1}{\alpha_2}}, z = 0, s = \frac{\alpha_1\alpha_3\sqrt{\alpha_1}}{\alpha_2^2\sqrt{\alpha_2}}, t = 0, |
we have the family of representatives
x = \alpha_4+2\alpha_2, z = -\alpha_1, s = \frac{\alpha_3(\alpha_4+2\alpha_2)^3}{\alpha_2}, t = 0, |
we have the the family of representatives
x = \frac{\alpha_2}{\alpha_6}, z = -\frac{\alpha_1\alpha_2}{\alpha_6(\alpha_4+2\alpha_2)}, s = \frac{\alpha_1\alpha^2_2\alpha_6+2\alpha_2^3\alpha_3+\alpha_2^2\alpha_3\alpha_4}{\alpha_6^3(\alpha_4+2\alpha_2)}, t = 0, |
we have the family of representatives
2.
x = 4\alpha_5, z = -\alpha_3, s = -64\alpha_4\alpha_5^2, t = \frac{\alpha_3\alpha_4-4\alpha_1\alpha_5}{\alpha_5} |
we have the representative
\begin{array}{c} x = \frac{\alpha_2}{\alpha_5}, z = -\frac{\alpha_2^2\alpha_4+\alpha_2\alpha_3\alpha_5}{4\alpha_5^3}, s = -\frac{\alpha_2^3\alpha_4}{\alpha_5^4}, \\ t = \frac{(\alpha_2\alpha_4+2\alpha^2_2)(\alpha_2\alpha_4+\alpha_3\alpha_5)-4\alpha_1\alpha_2\alpha_5^2}{4\alpha_5^4},\end{array} |
we have the representative
x = \frac{\alpha_2}{\alpha_5}, z = 0, s = -\frac{\alpha_2^3\alpha_4}{\alpha_5^4}, t = -\frac{\alpha_1\alpha_2}{\alpha_5^2}, |
we have the representative
x = \frac{\sqrt{\alpha_2\alpha_4+\alpha_3\alpha_5}}{\alpha_5}, z = 0, s = -\frac{\alpha_4\sqrt{(\alpha_2\alpha_4+\alpha_3\alpha_5)^3}}{\alpha^4_5}, t = -\frac{\alpha_1\sqrt{\alpha_2\alpha_4+\alpha_3\alpha_5}}{\alpha^2_5}, |
we have the family of representatives
x = \alpha_6-4\alpha_5, z = \alpha_3, s = \frac{\alpha_4(4\alpha_5-\alpha_6)^3}{\alpha_5}, t = \frac{4\alpha_1\alpha_5-\alpha_1\alpha_6-\alpha_3\alpha_4}{\alpha_5}, |
we have the family of representatives
\begin{array}{c} x = \frac{\alpha_2}{\alpha_5}, z = \frac{\alpha_2 (\alpha_2 \alpha_4+\alpha_3 \alpha_5)}{\alpha_5^2\alpha_6-4\alpha_5^2}, s = -\frac{\alpha_4\alpha_2^3}{\alpha^4_5}, \\ t = \frac{\alpha_2 (2 \alpha_2^2 \alpha_4+\alpha_3 \alpha_4 \alpha_5+\alpha_2 (\alpha_4^2+2 \alpha_3 \alpha_5)-\alpha_1 \alpha_5 (4 \alpha_5-\alpha_6))}{\alpha_5^3 (4 \alpha_5-\alpha_6)}, \end{array} |
we have the family of representatives
3.
4.
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+ \nabla_2 - 2 \nabla_4 + \alpha\nabla_6\rangle^{O(\alpha) = O(-\alpha)}, \\ \langle \nabla_1+ \alpha\nabla_3 +\beta \nabla_4+\gamma \nabla_6 + \nabla_8 \rangle^{ { \begin{array}{l} O(\alpha,\beta,\gamma) = O(-\eta_5\alpha,\eta_5^2\beta,-\eta_5^3\gamma) = O(\eta_5^2\alpha,\eta_5^4\beta,-\eta_5\gamma) = \\ O(-\eta_5^3\alpha,-\eta_5\beta,\eta_5^4\gamma) = O(\eta_5^4\alpha,-\eta_5^3\beta,\eta_5^2\gamma)\end{array}}}, \\ \langle \nabla_1+\alpha\nabla_4+\beta\nabla_5+\nabla_7 \rangle ^{O(\alpha,\beta) = O(\alpha,-\beta) = O(-\alpha,-i\beta) = O(-\alpha,i\beta)}, \\ \langle \alpha\nabla_2+ \nabla_3+\nabla_5 + 4\nabla_6 \rangle^{O(\alpha) = O(-\alpha)}, \langle \nabla_2+ \alpha\nabla_4 \rangle, \langle \nabla_2+ \alpha\nabla_4 + \nabla_6 \rangle, \\ \langle \nabla_2+ \nabla_5 + \alpha\nabla_6 \rangle, \langle \nabla_3+ \alpha\nabla_4+\beta\nabla_6 + \nabla_8 \rangle, \langle \nabla_4+ \alpha\nabla_5+\nabla_7 \rangle, \\ \langle \nabla_4+ \alpha\nabla_6+\nabla_8 \rangle, \langle \nabla_5+ \alpha\nabla_6 \rangle, \langle \nabla_5+ \nabla_7 \rangle, \langle \nabla_6+ \nabla_8 \rangle, \langle \nabla_7 \rangle, \langle \nabla_8 \rangle,\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{135}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_4 & e_2e_3 = -2e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{136}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_2e_2 = e_4+\alpha e_5 \\ & & e_2e_3 = \beta e_5 & e_3e_3 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{137}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_3 = \alpha e_5 & e_2e_4 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{138}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ && e_2e_2 = e_4+e_5 & e_2e_4 = e_5 & e_3e_3 = 4e_5 \\ {\mathbf{N}}_{139}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_4 & e_2e_3 = \alpha e_5 \\ {\mathbf{N}}_{140}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_2e_3 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{141}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\& & e_2e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{142}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4+e_5 \\ & & e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{143}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_3 = e_5 & e_2e_4 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{144}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{145}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{146} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{147} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{148} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{149} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline {\mathbf{N}}^{4*}_{12} & \begin{array}{l} e_1e_1 = e_2 \\ e_2e_2 = e_4 \\ e_3e_3 = e_4 \end{array} & \begin{array}{lcl} \mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{12})& = &\\ {\langle [\Delta_{12}],[\Delta_{13}],[\Delta_{23}],[\Delta_{33}]\rangle}\\ \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4*}_{12})& = &\mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{12})\oplus\\ {\langle [\Delta_{14}], [\Delta_{24}], [\Delta_{34}], [\Delta_{44}] \rangle } \end{array} & \phi_{\pm} = \begin{pmatrix} x&0&0&0\\ 0&x^2&0&0\\ 0&0& \pm x^2&0\\ t&0&s&x^4 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{12}], & \nabla_2 = [\Delta_{13}], & \nabla_3 = [\Delta_{14}], & \nabla_4 = [\Delta_{23}], \\ \nabla_5 = [\Delta_{24}], & \nabla_6 = [\Delta_{33}], & \nabla_7 = [\Delta_{34}], & \nabla_8 = [\Delta_{44}]. \end{array} |
Take
\phi_{\pm}^T\begin{pmatrix} 0&\alpha_1&\alpha_2&\alpha_3\\ \alpha_1&0&\alpha_4&\alpha_5\\ \alpha_2&\alpha_4&\alpha_6&\alpha_7\\ \alpha_3&\alpha_5&\alpha_7&\alpha_8 \end{pmatrix}\phi_{\pm} = \begin{pmatrix} \alpha^*&\alpha_1^{*}&\alpha^{*}_2&\alpha_3^*\\ \alpha_1^{*}&0&\alpha^*_4&\alpha^*_5\\ \alpha^{*}_2&\alpha^*_4&\alpha^*_6&\alpha^*_7\\ \alpha^*_3&\alpha^*_5&\alpha^*_7&\alpha^*_8 \end{pmatrix}, |
we have
\begin{array}{ll} \alpha_1^* = (\alpha_1x+\alpha_5t)x^2, & \alpha_2^* = (\alpha_3x+\alpha_8t)s\pm(\alpha_2x+\alpha_7t)x^2, \\ \alpha_3^* = (\alpha_3x+\alpha_8t)x^4, & \alpha_4^* = (\alpha_5s\pm\alpha_4x^2)x^2, \\ \alpha_5^* = \alpha_5x^6, & \alpha_6^* = \alpha_6x^4\pm2\alpha_7sx^2+\alpha_8s^2, \\ \alpha_7^* = (\alpha_8s\pm\alpha_7x^2)x^4, & \alpha_8^* = \alpha_8x^8. \end{array} |
We will consider only the action of
2.
3.
4.
\langle \nabla_2+\alpha\nabla_4+\beta\nabla_5+\gamma\nabla_6+\nabla_8 \rangle; |
\langle \nabla_1+\alpha\nabla_2+\beta\nabla_4+\gamma\nabla_5+\mu\nabla_6+\nabla_8 \rangle. |
Summarizing all cases we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+ \alpha\nabla_2 +\beta\nabla_4+\gamma\nabla_5+\mu\nabla_6+\nabla_8 \rangle^{ { \begin{array}{l}O(\alpha,\beta,\gamma,\mu) = O(\pm \alpha,\pm \eta_5^4 \beta,\eta_5^2\gamma,\eta_5^4\mu) = \\ O(\pm \alpha,\mp \eta_5^3 \beta,\eta_5^4\gamma,-\eta_5^3\mu) = O(\pm \alpha,\pm \eta_5^2 \beta,-\eta_5\gamma,\eta_5^2\mu) = \\ O(\pm \alpha,\mp \eta_5 \beta,-\eta_5^3\gamma,-\eta_5\mu) \end{array}}}, \\ \langle \nabla_1+\nabla_3 +\alpha\nabla_4 + \beta\nabla_6\rangle ^{{ \begin{array}{l} O(\alpha,\beta) = O(-\alpha,\beta) = \\ O(\alpha,-\beta) = O(-\alpha,-\beta) \end{array}}}, \\ \langle \nabla_1+ \alpha\nabla_3 +\beta \nabla_4+\nabla_7 \rangle ^{{ \begin{array}{l} O(\alpha,\beta) = O(-\eta_3\alpha,\eta_3^2\beta) = \\ O(\eta_3^2\alpha,-\eta_3\beta) \end{array}}}, \\ \langle \nabla_2+ \alpha\nabla_3+\nabla_5 + \beta\nabla_6+\gamma\nabla_7 \rangle ^{{ \begin{array}{l} O(\alpha,\beta,\gamma) = O(-\alpha,\beta,-\gamma) = O(-\eta_3\alpha,\eta_3^2\beta,\gamma) = \\ O(\eta_3\alpha,\eta_3^2\beta,-\gamma) = O(\eta_3^2\alpha,-\eta_3\beta,\gamma) = O(-\eta_3^2\alpha,-\eta_3\beta,-\gamma) \end{array}}}, \\ \langle \nabla_2+ \alpha\nabla_4 +\beta\nabla_5 + \gamma\nabla_6+\nabla_8 \rangle ^{ { \begin{array}{l} O(\alpha,\beta,\gamma) = O(-\alpha,\beta,\gamma) = O(\eta_5^4 \alpha,\eta_5^2\beta,\eta_5^4\gamma) = \\ O(-\eta_5^4\alpha,\eta_5^2\beta,\eta_5^4\gamma) = O(-\eta_5^3\alpha,\eta_5^4\beta,-\eta_5^3\gamma) = \\ O(\eta_5^3\alpha,\eta_5^4\beta,-\eta_5^3\gamma) = O(\eta_5^2\alpha,-\eta_5\beta,\eta_5^2\gamma) = \\ O(-\eta_5^2\alpha,-\eta_5\beta,\eta_5^2\gamma) = O(-\eta_5\alpha,-\eta_5^3\beta,-\eta_5\gamma) = \\ O(\eta_5\alpha,-\eta_5^3\beta,-\eta_5\gamma) \end{array}}}, \\ \langle \nabla_3 \rangle, \, \langle \nabla_3+ \nabla_4 +\alpha\nabla_6 \rangle, \, \langle \nabla_3+ \alpha\nabla_4+\nabla_7 \rangle ^{O(\alpha) = O(-\alpha)}, \\ \langle \nabla_3+ \nabla_5+\alpha\nabla_6+\beta\nabla_7 \rangle^{O(\alpha,\beta) = O(\alpha,-\beta)}, \, \langle \nabla_3+\nabla_6 \rangle, \\ \langle \nabla_4+ \alpha\nabla_5+\beta\nabla_6+\nabla_8 \rangle^{{ \begin{array}{l} O(\alpha,\beta) = O(-i\alpha,-\beta) = \\ O(i\alpha,-\beta) = O(-\alpha,\beta) \end{array}}}, \\ \langle \nabla_4+\nabla_7 \rangle, \, \langle \nabla_5+\nabla_6+ \alpha\nabla_7 \rangle^{O(\alpha,\beta) = O(\alpha,-\beta)}, \\ \langle \nabla_5+\alpha\nabla_6+ \nabla_8 \rangle, \, \langle \nabla_5+ \alpha\nabla_7 \rangle^{O(\alpha) = O(-\alpha)}, \, \langle \nabla_6+ \nabla_8 \rangle, \, \langle \nabla_7 \rangle, \, \langle \nabla_8 \rangle,\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{150}^{\alpha, \beta, \gamma, \mu } & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 & e_2e_2 = e_4 \\ && e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = e_4+\mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{151}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4+\beta e_5 \\ {\mathbf{N}}_{152}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_4 \\ && e_2e_3 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{153}^{\alpha, \beta, \gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = e_4+\beta e_5 & e_3e_4 = \gamma e_5 \\ {\mathbf{N}}_{154}^{\alpha, \beta, \gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_4 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4+\gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{155} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 & e_3e_3 = e_4 \\ {\mathbf{N}}_{156}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 \\ && e_2e_3 = e_5 & e_3e_3 = e_4+\alpha e_5 \\ {\mathbf{N}}_{157}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{158}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = e_4+\alpha e_5 & e_3e_4 = \beta e_5 \\ {\mathbf{N}}_{159} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 & e_3e_3 = e_4+e_5 \\ {\mathbf{N}}_{160}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_3 = e_5 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = e_4+\beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{161} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_3 = e_5 \\&& e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{162}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_4 = e_5 \\& & e_3e_3 = e_4+e_5 & e_3e_4 = \alpha e_5 \\ {\mathbf{N}}_{163}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_4 = e_5 \\&& e_3e_3 = e_4+\alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{164}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_4 = e_5 \\&& e_3e_3 = e_4 & e_3e_4 = \alpha e_5 \\ {\mathbf{N}}_{165} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_3e_3 = e_4+e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{166} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{167} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|llll|} \hline {\mathbf{N}}^{4*}_{13}(\lambda) & \;\; e_1e_1 = e_2 \;\; e_1e_2 = e_3 \;\; e_1e_3 = e_4 \;\; e_2e_2 = \lambda e_4 \\ \hline & { \begin{array}{l} \mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{13}(2)) = \langle [\Delta_{22}],4[\Delta_{23}]+[\Delta_{14}],[\Delta_{24}]\rangle,\\\mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4*}_{13}(2)) = \mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{13}(2))\oplus \langle [\Delta_{23}], [\Delta_{33}], [\Delta_{34}], [\Delta_{44}]\rangle \\\mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{13}(\lambda )_{\lambda \neq2}) = \langle [\Delta_{22}],(3\lambda-2)[\Delta_{23}]+[\Delta_{14}]\rangle,\\\mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4*}_{13}(\lambda)_{\lambda \neq2}) = \mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{13}(\lambda)\oplus \langle [\Delta_{23}], [\Delta_{24}], [\Delta_{33}], [\Delta_{34}], [\Delta_{44}] \rangle \end{array} }\\ \hline &{ \phi = \begin{pmatrix} x&0&0&0\\ y&x^2&0&0\\ z&2xy&x^3&0\\ t&\lambda y^2+2xz&(\lambda+2)x^2y&x^4 \end{pmatrix} }\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{lllll} \nabla_1 = [\Delta_{14}]+(3\lambda-2)[\Delta_{23}], & \nabla_2 = [\Delta_{22}], & \nabla_3 = [\Delta_{23}], & \nabla_4 = [\Delta_{24}], \\ \nabla_5 = [\Delta_{33}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&0&0&\alpha_1\\ 0&\alpha_2&(3\lambda-2)\alpha_1+\alpha_3&\alpha_4\\ 0&(3\lambda-2)\alpha_1+\alpha_3&\alpha_5&\alpha_6\\ \alpha_1&\alpha_4&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^{**}&\alpha^{***}&\alpha^{*}&\alpha_1^*\\ \alpha^{***}&\alpha_2^*+\lambda\alpha^{*}&(3\lambda-2)\alpha^*_1+\alpha_3^*&\alpha^*_4\\ \alpha^{*}&(3\lambda-2)\alpha^*_1+\alpha_3^*&\alpha^*_5&\alpha^*_6\\ \alpha^*_1&\alpha^*_4&\alpha^*_6&\alpha^*_7 \end{pmatrix}, |
we have
\begin{array}{lcl} \alpha_1^* = (\alpha_1x+\alpha_4y+\alpha_6z+\alpha_7t)x^4, \\ \alpha_2^* = \alpha_2x^4+4\lambda(\alpha_6y+\alpha_7z)xy^2+\lambda^2\alpha_7y^4+4(\alpha_4z+(\alpha_3+(3\lambda-2)\alpha_1)y)x^3 \\ \qquad\qquad{ +2(4\alpha_6yz+2\alpha_7z^2+(2\alpha_5+\lambda\alpha_4)y^2)x^2 }\\ \qquad{ -\lambda((\lambda+2)(\alpha_4y+\alpha_6z+\alpha_7t)y+((\alpha_3+4\lambda\alpha_1)y+\alpha_5z+\alpha_6t)x)x^2, }\\ \alpha_3^* = [(\lambda+2)(\alpha_4x^2+2\alpha_6xy+2\alpha_7xz+\lambda\alpha_7y^2)y \\\qquad { +((\alpha_3+(3\lambda-2)\alpha_1)x^2+2\alpha_5xy+2\alpha_6xz+\lambda\alpha_6y^2)x]x^2 }\\\qquad\qquad\qquad { -(3\lambda-2)(\alpha_1x+\alpha_4y+\alpha_6z+\alpha_7t)x^4, }\\ \alpha_4^* = (\alpha_4x^2+2\alpha_6xy+2\alpha_7xz+\lambda\alpha_7y^2)x^4, \\ \alpha_5^* = (\alpha_5x^2+2(\lambda+2)\alpha_6xy+(\lambda+2)^2\alpha_7y^2)x^4, \\ \alpha_6^* = (\alpha_6x+(\lambda+2)\alpha_7y)x^6, \\ \alpha_7^* = \alpha_7x^8. \end{array} |
We are interested in
(\alpha_3,\alpha_4,\alpha_5,\alpha_6,\alpha_7)\neq(0,0,0,0,0) {\text{ and }}(\alpha_1,\alpha_4,\alpha_6,\alpha_7)\neq(0,0,0,0). |
Let us consider the following cases:
\langle \alpha\nabla_1+\nabla_3 \rangle_{\alpha\notin \Big\{ 0,\frac{(\lambda-4)}{4(1-\lambda)(\lambda-2) }\Big\};\, \lambda\neq 1,2,4}; |
2.
x = 4 \alpha_4^2, y = -4 \alpha_1 \alpha_4, z = \alpha_1 \alpha_3 (4-\lambda)-\alpha_2 \alpha_4-\alpha_1^2 (8-12 \lambda+3 \lambda^2), t = 0, |
we have the representative
\begin{array}{c} x = \frac{\alpha_3+2(\lambda-2)\alpha_1}{\alpha_4}, y = -\frac{\alpha_1(\alpha_3+2(\lambda-2)\alpha_1)}{\alpha_4^2}, \\z = \frac{(2(2-\lambda)\alpha_1-\alpha_3)(\alpha_2\alpha_4+(\lambda-4)\alpha_1\alpha_3+(3\lambda^2-12\lambda+8)\alpha_1^2)}{4\alpha^3_4}, t = 0,\end{array} |
we have the representative
3.
x = \frac{\alpha_1}{\alpha_5}, y = -\frac{\alpha_1\alpha_3}{2\alpha_5^2}, z = \frac{\alpha_1(2\alpha_2\alpha_5+(\lambda-2)\alpha_3^2+4(\lambda^2-3\lambda+2)\alpha_1\alpha_3)}{2\lambda\alpha_5^3}, t = 0, |
we have the family of representatives
(b) if
x = 4 \alpha_4^3, y = -4 \alpha_1 \alpha_4^2, z = 4 \alpha_1 \alpha_3 \alpha_4-\alpha_2 \alpha_4^2-4 \alpha_1^2 (2 \alpha_4+\alpha_5), t = 0, |
we have the family of representatives
\begin{array}{c} x = \frac{\alpha_3\alpha_4-2\alpha_1(2\alpha_4+\alpha_5)}{\alpha_4\alpha_5)}, y = \frac{\alpha_1(2\alpha_1(2\alpha_4+\alpha_5)-\alpha_3\alpha_4)}{\alpha^2_4\alpha_5)},\\z = \frac{(2\alpha_1(2\alpha_4+\alpha_5)-\alpha_3\alpha_4)(\alpha_2\alpha_4^2-4\alpha_1\alpha_3\alpha_4+4\alpha_1^2(2\alpha_4+\alpha_5))}{4\alpha_4^4\alpha_5}, t = 0, \end{array} |
we have the family of representatives
(c) if
x = \frac{\lambda\alpha_3+2(\lambda^2-2\lambda-4)\alpha_1}{\lambda\alpha_5}, y = -\frac{4\alpha_1(\lambda\alpha_3+2(\lambda^2-2\lambda-4)\alpha_1)}{\lambda^2\alpha^2_5}, z = 0, t = 0, |
we have the family of representatives
\begin{array}{c} x = \frac{\sqrt{4\lambda(\lambda-4)\alpha_1\alpha_3+\lambda^2\alpha_2\alpha_5+4(3\lambda^3-12\lambda^2+8\lambda+16)\alpha_1^2}}{\lambda\alpha_5}, \\ y = -\frac{4\alpha_1\sqrt{4\lambda(\lambda-4)\alpha_1\alpha_3+\lambda^2\alpha_2\alpha_5+4(3\lambda^3-12\lambda^2+8\lambda+16)\alpha_1^2}}{\lambda^2\alpha^2_5}, z = 0, t = 0,\end{array} |
we have the family of representatives
y = -\frac{\alpha_1}{\alpha_4}x, z = -\frac{\alpha_2\alpha_4^2+(\lambda-4)\alpha_1\alpha_3\alpha_4+\alpha_1^2(4\alpha_5+(3\lambda^2-12\lambda+8)\alpha_4)}{\alpha^2_4(4\alpha_4-\lambda\alpha_5)}x, t = 0, |
we have two families of representatives
\langle \alpha\nabla_4+\nabla_5 \rangle_{\alpha\neq\frac{\lambda}{4}} {\text{ and }} \langle \nabla_3+\alpha\nabla_4+\nabla_5 \rangle_{\alpha\neq\frac{\lambda}{4}} |
depending on
4.
5.
\begin{array}{c} y = -\frac{\alpha_6}{\alpha_7(\lambda+2)}x, z = \frac{2(\lambda+2)^2\alpha_4\alpha_7-(\lambda+4)\alpha_6^2}{2(\lambda+2)^2\alpha^2_7}x,\\ t = \frac{(\lambda^2+6\lambda+8)\alpha_4\alpha_6\alpha_7-2(\lambda+2)^2\alpha_1\alpha^2_7-(\lambda+4)\alpha^3_6}{2(\lambda+2)^2\alpha^3_7}x ,\end{array} |
we have
6.
(b) if
x = \sqrt{\frac{\alpha_5}{\alpha_7}}, y = \frac{8\alpha_1-\alpha_3}{2\sqrt{\alpha_5\alpha_7}}, z = \frac{\alpha_7(\alpha_3-8\alpha_1)^2-2\alpha_4\alpha_5^2}{4\alpha_5\alpha_7\sqrt{\alpha_5\alpha_7}}, t = \frac{\alpha_3\alpha_4-2\alpha_1(4\alpha_4+\alpha_5)}{2\alpha_7\sqrt{\alpha_5\alpha_7}}, |
we have the family of representatives
(c) if
x = \frac{\alpha_6}{\alpha_7}, y = 0, z = -\frac{\alpha_4\alpha_6}{2\alpha_7^2}, t = \frac{\alpha_6(\alpha_4\alpha_6-2\alpha_1\alpha_7)}{2\alpha_7^3}, |
we have the family of representatives
\begin{array}{c} x = \frac{\alpha_6}{\alpha_7}, y = \frac{\alpha_6 (\alpha_2 \alpha_7-\alpha_4^2 - 2 \alpha_1 \alpha_6 )}{ 6 \alpha_7 (\alpha_4 \alpha_6 + 8 \alpha_1 \alpha_7 - \alpha_3 \alpha_7))},\\ z = \frac{y^2}{x}-\frac{\alpha_4x}{2\alpha_7}-\frac{\alpha_6y}{\alpha_7}, t = -\frac{x \alpha_1 + y \alpha_4 + z \alpha_6}{\alpha_7},\end{array} |
we have the family of representatives
\langle \alpha\nabla_3+\nabla_5+\nabla_6+\nabla_7 \rangle_{\alpha\neq0,\lambda = -2}; |
\begin{array}{c} x = \frac{\alpha_6}{\alpha_7}, y = \frac{\alpha_6 (\alpha_4 \alpha_6+8 \alpha_1 \alpha_7-\alpha_3 \alpha_7)}{2 \alpha_7 (-\alpha_6^2+\alpha_5 \alpha_7)}, z = \frac{y^2}{x}-\frac{\alpha_4}{2\alpha_7}x-\frac{\alpha_6}{\alpha_7}y,\\t = \frac{(\alpha_4\alpha_6-2\alpha_1\alpha_7)x^2-2\alpha_6\alpha_7y^2+2(\alpha_6^2-\alpha_4\alpha_7)xy}{2\alpha_7^2x},\end{array} |
we have the family of representatives
\langle \alpha\nabla_2+\beta\nabla_5+\nabla_6+\nabla_7 \rangle_{\beta\neq1,\lambda = -2}, |
which will be jointed with the family from the case (6(c)i).
Summarizing all cases we have the following distinct orbits:
\begin{array}{c} \langle (\lambda-4)\nabla_1+4(1-\lambda)(\lambda-2)(\nabla_2+\nabla_3) \rangle_{\lambda \notin \{ 1; 2; 4 \}}, \langle \nabla_1+\alpha\nabla_2+\nabla_5 \rangle_{\lambda = 0, \alpha \neq 0}, \\ \langle \alpha\nabla_1+\nabla_3 \rangle_{\alpha\neq0}, \, \langle \nabla_1+\nabla_5 \rangle, \langle \nabla_2+\alpha\nabla_3+\frac{\lambda}{4}\nabla_4+\nabla_5 \rangle_{\lambda\neq0}^{O(\alpha) = O(-\alpha)}, \\ \langle \nabla_2+\alpha\nabla_3+\beta\nabla_5+\nabla_6 \rangle _{\lambda = 0}^{O(\alpha,\beta) = O(\eta_3^2\alpha,-\eta\beta) = O(-\eta_3\alpha,\eta_3^2\beta)}, \\ \langle \alpha\nabla_2+\nabla_3+ \nabla_7 \rangle_{\lambda\neq-2}^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \langle \alpha\nabla_2+\beta\nabla_5+\nabla_6+\nabla_7 \rangle_{\lambda = -2}, \\ \langle \alpha\nabla_2+\nabla_5+\nabla_7 \rangle, \langle \nabla_2 + \nabla_7 \rangle, \langle \nabla_3+\nabla_4 \rangle, \langle \nabla_3+\alpha\nabla_4+\nabla_5 \rangle_{\alpha\neq0}, \\ \langle \nabla_3+\alpha\nabla_5+\nabla_6 \rangle, \langle \alpha\nabla_3+\nabla_5+\nabla_6+\nabla_7 \rangle_{\alpha\neq0,\lambda = -2}, \langle \nabla_3+\nabla_7 \rangle_{\lambda = -2}, \langle \nabla_4 \rangle_{\lambda\neq 2}, \\ \langle \alpha\nabla_4+\nabla_5 \rangle_{\alpha\neq0}, \langle \nabla_5+\nabla_6 \rangle, \langle \nabla_6 \rangle, \langle \nabla_7 \rangle. \end{array} |
Now we have the following new algebras
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{168}^{\lambda \neq 1; 2; 4} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = (\lambda-4)e_5 \\ & & { e_2e_2 = \lambda e_4 + 4(1-\lambda)(\lambda-2)e_5 } & { e_2e_3 = - \lambda(\lambda+2)e_5 }\\ {\mathbf{N}}_{169}^{\alpha\neq0} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = \alpha e_5 & e_2e_3 = -2 e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{170}^{\lambda, \alpha \neq 0} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ & & e_1e_4 = \alpha e_5 & e_2e_2 = \lambda e_4 & { e_2e_3 = (1+\alpha(3\lambda-2)) e_5 } \\ {\mathbf{N}}_{171}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = \lambda e_4 & { e_2e_3 = (3\lambda-2) e_5 } & e_3e_3 = e_5 \\ {\mathbf{N}}_{172}^{\lambda \neq 0,\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \lambda e_4 + e_5 \\ && e_2e_3 = \alpha e_5 & e_2e_4 = \frac{\lambda} {4} e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{173}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_5 \\ & & e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{174}^{\lambda\neq-2, \alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4 + \alpha e_5 & e_2e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{175}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = -2 e_4+\alpha e_5 \\ && e_3e_3 = \beta e_5 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{176}^{\lambda,\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\& & e_2e_2 = \lambda e_4+\alpha e_5 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{177}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\& & e_2e_2 = \lambda e_4+ e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{178}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \lambda e_4 \\ && e_2e_3 = e_5 & e_2e_4 = e_5 \\ {\mathbf{N}}_{179}^{\lambda,\alpha\neq0} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \lambda e_4 \\ && e_2e_3 = e_5 & e_2e_4 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{180}^{\lambda,\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \lambda e_4 \\ && e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{181}^{\alpha \neq 0 } & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = -2 e_4 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = e_5 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{182} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\&& e_2e_2 = -2 e_4 & e_2e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{183}^{\lambda\neq 2} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\&& e_2e_2 = \lambda e_4 & e_2e_4 = e_5 \\ {\mathbf{N}}_{184}^{\lambda, \alpha\neq 0} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\& & e_2e_2 = \lambda e_4 & e_2e_4 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{185}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\&& e_2e_2 = \lambda e_4 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{186}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\& & e_2e_2 = \lambda e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{187}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\& & e_2e_2 = \lambda e_4 & e_4e_4 = e_5 \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline {\mathbf{N}}^{4*}_{14} & \begin{array}{l} e_1e_2 = e_3 \\ e_1e_3 = e_4 \end{array} & \begin{array}{lcl} \mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{14})& = &\\ {\langle [\Delta_{11}],[\Delta_{22}],[\Delta_{23}],[\Delta_{33}]\rangle}\\ \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4*}_{14})& = &\mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{14})\oplus\\ {\langle [\Delta_{14}], [\Delta_{24}], [\Delta_{34}], [\Delta_{44}]\rangle } \end{array} & \phi = \begin{pmatrix} x&0&0&0\\ 0&q&0&0\\ 0&r&xq&0\\ t&s&xr&x^2q \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{11}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{22}], & \nabla_4 = [\Delta_{23}], \\ \nabla_5 = [\Delta_{24}], & \nabla_6 = [\Delta_{33}], & \nabla_7 = [\Delta_{34}], & \nabla_8 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} \alpha_1&0&0&\alpha_2\\ 0&\alpha_3&\alpha_4&\alpha_5\\ 0&\alpha_4&\alpha_6&\alpha_7\\ \alpha_2&\alpha_5&\alpha_7&\alpha_8 \end{pmatrix}\phi = \begin{pmatrix} \alpha_1^*&\alpha^{*}&\alpha^{**}&\alpha_2^*\\ \alpha^{*}&\alpha_3^*&\alpha^*_4&\alpha^*_5\\ \alpha^{**}&\alpha^*_4&\alpha^*_6&\alpha^*_7\\ \alpha^*_2&\alpha^*_5&\alpha^*_7&\alpha^*_8 \end{pmatrix}, |
we have
\begin{array}{lcl} \alpha_1^* & = & \alpha_1x^2+2\alpha_2xt+\alpha_8t^2, \\ \alpha_2^* & = & (\alpha_2x+\alpha_8t)x^2q, \\ \alpha_3^* & = & (\alpha_3q+\alpha_4r+\alpha_5s)q+(\alpha_4q+\alpha_6r+\alpha_7s)r+(\alpha_5q+\alpha_7r+\alpha_8s)s, \\ \alpha_4^* & = & (\alpha_4q+\alpha_6r+\alpha_7s)xq+(\alpha_5q+\alpha_7r+\alpha_8s)xr, \\ \alpha_5^* & = & (\alpha_5q+\alpha_7r+\alpha_8s)x^2q, \\ \alpha_6^* & = & (\alpha_6q^2+2\alpha_7qr+\alpha_8r^2)x^2, \\ \alpha_7^* & = & (\alpha_7q+\alpha_8r)x^3q, \\ \alpha_8^* & = & \alpha_8x^4q^2. \end{array} |
We are interested in
\begin{array}{c} x = \frac{\sqrt{\alpha_3\alpha_6-\alpha_4^2}}{\alpha_6},q = \frac{\alpha_2\sqrt{\alpha_3\alpha_6-\alpha_4^2}}{\alpha^2_6},r = -\frac{\alpha_2\alpha_4\sqrt{\alpha_3\alpha_6-\alpha_4^2}}{\alpha^3_6},\\ s = 0, t = -\frac{\alpha_1\sqrt{\alpha_3\alpha_6-\alpha_4^2}}{2\alpha_2\alpha_6}, \end{array} |
we have the representative
2.
x = 1, r = -\frac{\alpha_4}{\alpha_5}q, s = \frac{2\alpha_4^2-\alpha_3\alpha_5}{2\alpha_5^2}q, t = 0, |
we have the representatives
x = \alpha_5, q = \alpha_2, r = -\frac{\alpha_2\alpha_4}{\alpha_5}, s = \frac{\alpha_2(2\alpha_4^2-\alpha_3\alpha_5)}{2\alpha_5^2}, t = -\frac{\alpha_1\alpha_5}{2\alpha_2}, |
we have the representatives
x = 1, q = \sqrt{\frac{\alpha_1}{\alpha_5}}, r = 0, s = -\frac{\alpha_3\sqrt{\alpha_1}}{2\alpha_5\sqrt{\alpha_5}}, t = 0, |
we have the representative
x = {\frac{\alpha_4}{\alpha_5}}, q = 1, r = 0, s = -\frac{\alpha_3}{2\alpha_5}, t = 0, |
we have the representative
x = \frac{\alpha_4}{\alpha_5}, q = \sqrt{\frac{\alpha_1}{\alpha_5}}, r = 0, s = -\frac{\alpha_3\sqrt{\alpha_1}}{2\alpha_5\sqrt{\alpha_5}}, t = 0, |
we have the representative
x = \alpha_5, q = \alpha_2, r = 0, s = -\frac{\alpha_2\alpha_3}{2\alpha_5}, t = -\frac{\alpha_1\alpha_5}{2\alpha_2}, |
we have the representative
x = \frac{\alpha_4}{\alpha_5}, q = {\frac{\alpha_2\alpha_4}{\alpha^2_5}}, r = 0, s = -\frac{\alpha_2\alpha_3\alpha_4}{2\alpha_5^3}, t = -\frac{\alpha_1\alpha_4}{2\alpha_2\alpha_5}, |
we have the representative
(d) if
x = 1, q = 1, s = \frac{ \alpha_4^2 (2 \alpha_5+\alpha_6)-\alpha_3 (\alpha_5+\alpha_6)^2}{2 \alpha_5 (\alpha_5+\alpha_6)^2}, r = -\frac{\alpha_4}{\alpha_5+\alpha_6}, t = 0, |
we have the family of representatives
\begin{array}{c} x = 1, q = \sqrt{\frac{\alpha_1}{\alpha_5}}, r = -\frac{\alpha_4\sqrt{\alpha_1}}{(\alpha_5+\alpha_6)\sqrt{\alpha_5}}, \\s = \frac{(\alpha_4^2(2\alpha_5+\alpha_6)-\alpha_3(\alpha_5+\alpha_6)^2)\sqrt{\alpha_1}}{2\alpha_5(\alpha_5+\alpha_6)^2\sqrt{\alpha_5}}, t = 0, \end{array} |
we have the family of representatives
x = \alpha_5, q = \alpha_2, r = -\frac{\alpha_2\alpha_4}{\alpha_5+\alpha_6}, s = \frac{\alpha_2(\alpha_4^2(2\alpha_5+\alpha_6)-\alpha_3(\alpha_5+\alpha_6)^2)}{2\alpha_5(\alpha_5+\alpha_6)^2}, t = -\frac{\alpha_1\alpha_5}{2\alpha_2}, |
we have the family of representatives
3.
x = \sqrt[3]{\frac{\alpha_3}{\alpha_7}}, q = \sqrt[6]{\frac{\alpha^3_1}{\alpha_3\alpha^2_7}}, r = 0, s = 0, t = 0, |
we have the family of representatives
4.
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+ \nabla_3+\alpha\nabla_4+\beta\nabla_6+\nabla_8 \rangle^{O(\alpha,\beta) = O(i\alpha,-\beta) = O(-i\alpha,-\beta) = O(-\alpha,\beta)}, \\ \langle \nabla_1+\nabla_3+\alpha\nabla_6 +\nabla_7 \rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \langle \nabla_1+ \nabla_4+\nabla_5-\nabla_6 \rangle, \\ \langle \nabla_1+ \nabla_4+\alpha\nabla_6+\nabla_8 \rangle^{O(\alpha) = O(-\eta_3 \alpha) = O(\eta_3^2 \alpha)}, \langle \nabla_1+\nabla_5+\alpha\nabla_6 \rangle, \langle \nabla_1+\nabla_6 +\nabla_7 \rangle, \\ \langle \nabla_1+\nabla_6+\nabla_8 \rangle, \langle \nabla_1+\nabla_7 \rangle, \langle \nabla_1+\nabla_8 \rangle, \langle \nabla_2 \rangle, \langle \nabla_2+\nabla_3 \rangle, \langle \nabla_2+ \nabla_3+\nabla_6 \rangle, \\ \langle \nabla_2+\nabla_3+\alpha\nabla_6+\nabla_7 \rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \langle \nabla_2+\nabla_4 \rangle, \langle \nabla_2+\nabla_4+\nabla_5-\nabla_6 \rangle, \\ \langle \nabla_2+\nabla_5+\alpha\nabla_6 \rangle, \langle \nabla_2+\nabla_6 \rangle, \langle \nabla_2+ \nabla_6+\nabla_7 \rangle, \langle \nabla_2+\nabla_7 \rangle, \\ \langle \nabla_3+\alpha\nabla_4+\beta\nabla_6+\nabla_8 \rangle^{O(\alpha,\beta) = O(i\alpha,-\beta) = O(-i\alpha,-\beta) = O(-\alpha,\beta)}, \\ \langle \nabla_3+\alpha\nabla_6+\nabla_7 \rangle^{O(\alpha) = O(-\eta_3 \alpha) = O(\eta_3^2 \alpha)}, \langle \nabla_4+\nabla_5-\nabla_6 \rangle, \\ \langle \nabla_4+\alpha\nabla_6+\nabla_8 \rangle^{O(\alpha) = O(-\eta_3 \alpha) = O(\eta_3^2 \alpha)}, \langle \nabla_5+\alpha\nabla_6 \rangle, \langle \nabla_6+\nabla_7 \rangle, \langle \nabla_6+\nabla_8 \rangle, \\ \langle \nabla_7 \rangle, \langle \nabla_8 \rangle, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{188}^{\alpha, \beta} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_5 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{189}^{\alpha} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\&& e_2e_2 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{190} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\&& e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{191}^{\alpha} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\&& e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{191}^{\alpha} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{192} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{193} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{194} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{195} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{196} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ {\mathbf{N}}_{197} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = e_5 \\ {\mathbf{N}}_{198} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{199}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\&& e_2e_2 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{200} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_3 = e_5 \\ {\mathbf{N}}_{201} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\&& e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{202}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{203} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{204} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{205} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{206}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_5 \\&& e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{207}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{208} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{209}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{210}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{211} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{212} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{213} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{214} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline {\mathbf{N}}^{4*}_{15} & \begin{array}{l} e_1e_2 = e_3 \\ e_1e_3 = e_4 \\ e_2e_2 = e_4 \end{array} & \begin{array}{lcl} \mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{15})& = &\\ {\langle [\Delta_{11}],[\Delta_{22}],[\Delta_{23}],[\Delta_{33}]\rangle}\\ \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4*}_{15}) = \mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{15})\oplus\\ {\langle [\Delta_{14}], [\Delta_{24}], [\Delta_{34}], [\Delta_{44}] \rangle } \end{array} & \phi = \begin{pmatrix} x&0&0&0\\ 0&x^2&0&0\\ 0&r&x^3&0\\ t&s&xr&x^4 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{11}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{22}], & \nabla_4 = [\Delta_{23}], \\ \nabla_5 = [\Delta_{24}], & \nabla_6 = [\Delta_{33}], & \nabla_7 = [\Delta_{34}], & \nabla_8 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} \alpha_1&0&0&\alpha_2\\ 0&\alpha_3&\alpha_4&\alpha_5\\ 0&\alpha_4&\alpha_6&\alpha_7\\ \alpha_2&\alpha_5&\alpha_7&\alpha_8 \end{pmatrix}\phi = \begin{pmatrix} \alpha_1^*&\alpha^{*}&\alpha^{**}&\alpha_2^*\\ \alpha^{*}&\alpha_3^*+\alpha^{**}&\alpha^*_4&\alpha^*_5\\ \alpha^{**}&\alpha^*_4&\alpha^*_6&\alpha^*_7\\ \alpha^*_2&\alpha^*_5&\alpha^*_7&\alpha^*_8 \end{pmatrix}, |
we have
\begin{array}{lcl} \alpha_1^* & = & \alpha_1x^2+2\alpha_2xt+\alpha_8t^2, \\ \alpha_2^* & = & (\alpha_2x+\alpha_8t)x^4, \\ \alpha_3^* & = & x^4 \alpha_3+2 r x^2 \alpha_4+2 s x^2 \alpha_5+r^2 \alpha_6+2 r s \alpha_7+ \\ &&{ s^2 \alpha_8-x (r x \alpha_2+t x^2 \alpha_7+r t \alpha_8), }\\ \alpha_4^* & = & (\alpha_4x^2+\alpha_6r+\alpha_7s)x^3+(\alpha_5x^2+\alpha_7r+\alpha_8s)xr, \\ \alpha_5^* & = & (\alpha_5x^2+\alpha_7r+\alpha_8s)x^4, \\ \alpha_6^* & = & (\alpha_6x^4+2\alpha_7x^2r+\alpha_8r^2)x^2, \\ \alpha_7^* & = & (\alpha_7x^2+\alpha_8r)x^5, \\ \alpha_8^* & = & \alpha_8x^8. \end{array} |
We are interested in
2.
\begin{array}{c} x = 2 \alpha_5 (\alpha_5+\alpha_6), s = 2 \alpha_5 (\alpha_4^2 (2 \alpha_5+\alpha_6)-\alpha_3 (\alpha_5+\alpha_6)^2),\\ r = -4 \alpha_4 \alpha_5^2 (\alpha_5+\alpha_6),\end{array} |
we have the family of representatives
x = \sqrt[4]{\frac{\alpha_1}{\alpha_5}}, r = -\frac{\alpha_4\sqrt{\alpha_1}}{(\alpha_5+\alpha_6)\sqrt{\alpha_5}}, s = \frac{((\alpha_5+\alpha_6)(2\alpha_4^2-\alpha_2\alpha_4)-\alpha_3(\alpha_5+\alpha_6)^2-\alpha_4^2\alpha_6)\sqrt{\alpha_1}}{2\alpha_5(\alpha_5+\alpha_6)^2\sqrt{\alpha_5}}, t = 0, |
we have the family of representatives
\begin{array}{c} x = \frac{\alpha_2}{\alpha_5}, r = -\frac{\alpha_2^2\alpha_4}{\alpha_5^2(\alpha_5+\alpha_6)}, \\s = \frac{\alpha_2^2((\alpha_5+\alpha_6)(2\alpha_4^2-\alpha_2\alpha_4)-\alpha_3(\alpha_5+\alpha_6)^2-\alpha_4^2\alpha_6)}{2\alpha^3_5(\alpha_5+\alpha_6)^2}, t = -\frac{\alpha_1}{2\alpha_5}, \end{array} |
we have the family of representatives
(b) if
\langle \alpha\nabla_1+\nabla_4+\nabla_5-\nabla_6 \rangle {\text{ and }} \langle \alpha\nabla_2+\nabla_4+\nabla_5-\nabla_6 \rangle_{\alpha\neq0} |
depending on
3.
r = -\frac{\alpha_5}{\alpha_7}x^2, s = \frac{\alpha_5\alpha_6-\alpha_4\alpha_7}{\alpha_7^2}x^2, t = \frac{\alpha_3\alpha_7^2-2\alpha_4\alpha_5\alpha_7+\alpha_5^2\alpha_6+\alpha_2\alpha_5\alpha_7}{\alpha_7^3}x, |
we have
4.
Summarizing all cases we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+\alpha\nabla_2+\beta\nabla_6+\nabla_7 \rangle ^{O(\alpha,\beta) = O(\eta_5^2\alpha,-\eta_5\beta) = O(\eta_5^4\alpha,\eta_5^2\beta) = O(-\eta_5\alpha,-\eta_5^3\beta) = O(-\eta_5^3\alpha,\eta_5^4\beta)}, \\ \langle \nabla_1+\alpha\nabla_3+\beta\nabla_4 +\gamma\nabla_6+\nabla_8 \rangle^{ { \begin{array}{l}O(\alpha,\beta,\gamma) = O(-\eta_3\alpha,\beta,\eta_3^2\gamma) = O(-\eta_3\alpha,-\beta,\eta_3^2\gamma) = \\ O(\eta_3^2\alpha,-\beta,-\eta_3\gamma) = O(\eta_3^2\alpha,\beta,-\eta_3\gamma) = O(\alpha,-\beta,\gamma) \end{array}}}, \\ \langle \alpha\nabla_1+ \nabla_4+\nabla_5-\nabla_6 \rangle, \langle \nabla_1+\nabla_5+\alpha\nabla_6 \rangle, \langle 2\nabla_2+\nabla_3 +\nabla_4 \rangle, \langle \nabla_2+\alpha\nabla_3+\nabla_6 \rangle, \\ \langle \nabla_2+\alpha\nabla_4 \rangle, \langle \alpha\nabla_2+\nabla_4+\nabla_5-\nabla_6 \rangle_{\alpha\neq0}, \langle \nabla_2+\nabla_5+\alpha\nabla_6 \rangle, \\ \langle \nabla_2+\alpha\nabla_6+\nabla_7 \rangle^{O(\alpha) = O(-\alpha)}, \\ \langle \nabla_3+\alpha\nabla_4+\beta\nabla_6+\nabla_8 \rangle ^{O(\alpha,\beta) = O(i\alpha,-\beta) = O(-i\alpha,-\beta) = O(-\alpha,\beta)}, \\ \langle \nabla_4+\alpha\nabla_6+\nabla_8 \rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \langle \nabla_5+\alpha\nabla_6 \rangle, \langle \nabla_6+ \nabla_7 \rangle, \langle \nabla_6+\nabla_8 \rangle, \\ \langle \nabla_7 \rangle, \langle \nabla_8 \rangle, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{215}^{\alpha, \beta} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ && e_2e_2 = e_4 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{216}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4+\alpha e_5 \\ && e_2e_3 = \beta e_5 & e_3e_3 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{217}^{\alpha} & : & e_1e_1 = \alpha e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{218}^\alpha & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\& & e_2e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{219} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = 2e_5 & e_2e_2 = e_4+e_5 & e_2e_3 = e_5 \\ {\mathbf{N}}_{220}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = e_4+\alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{221}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = e_4 & e_2e_3 = \alpha e_5 \\ {\mathbf{N}}_{222}^{\alpha\neq 0} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 & e_2e_2 = e_4 \\ & & e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{223}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\&& e_2e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{224}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\&& e_2e_2 = e_4 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{225}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & { e_2e_2 = e_4+e_5 } \\&& e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{226}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 \\&& e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{227}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{228} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{229} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{230} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{231} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{11}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{22}], & \nabla_4 = [\Delta_{23}], \\ \nabla_5 = [\Delta_{24}], & \nabla_6 = [\Delta_{33}], & \nabla_7 = [\Delta_{34}], & \nabla_8 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} \alpha_1&0&0&\alpha_2\\ 0&\alpha_3&\alpha_4&\alpha_5\\ 0&\alpha_4&\alpha_6&\alpha_7\\ \alpha_2&\alpha_5&\alpha_7&\alpha_8 \end{pmatrix}\phi = \begin{pmatrix} \alpha_1^*&\alpha^{*}&\alpha^{**}&\alpha_2^*\\ \alpha^{*}&\alpha^*_3&\alpha^*_4+\alpha^{**}&\alpha_5^*\\ \alpha^{**}&\alpha^*_4+\alpha^{**}&\alpha_6^*&\alpha^*_7\\ \alpha^*_2&\alpha^*_5&\alpha^*_7&\alpha^*_8 \end{pmatrix}, |
in the case
\begin{array}{ll} \alpha_1^* = \alpha_1x^2+2\alpha_2xt+\alpha_8t^2, & \alpha_2^* = (\alpha_2x+\alpha_8t)x^3, \\ \alpha_3^* = \alpha_3x^2+2\alpha_5xs+\alpha_8s^2, & \alpha_4^* = (\alpha_4x+\alpha_7s)x^2-\alpha_7x^2t, \\ \alpha_5^* = (\alpha_5x+\alpha_8s)x^3, & \alpha_6^* = \alpha_6x^4, \\ \alpha_7^* = \alpha_7x^5, & \alpha_8^* = \alpha_8x^6; \end{array} |
and on the opposite case, for
\begin{array}{ll} \alpha_1^* = \alpha_3y^2+2 \alpha_5 t y+ \alpha_8 t^2, & \alpha_2^* = (\alpha_5 y + \alpha_8t )y^3, \\ \alpha_3^* = \alpha_1y^2+2 \alpha_2s y + \alpha_8s^2, & \alpha_4^* = ((s-t) \alpha_7-y \alpha_4)y^2, \\ \alpha_5^* = (y \alpha_2+s \alpha_8)y^3, & \alpha_6^* = \alpha_6 y^4, \\ \alpha_7^* = \alpha_7y^5, & \alpha_8^* = \alpha_8 y^6. \end{array} |
We are interested in
2.
\phi = \phi_1, x = \frac{\alpha_4}{\alpha_5}, t = -\frac{\alpha_1 \alpha_4}{ 2 \alpha_2 \alpha_5}, s = -\frac{ \alpha_3 \alpha_4}{ 2 \alpha_5^2}, |
we have the following family of representatives
\langle \alpha \nabla_2+\nabla_4+\nabla_5+ \beta \nabla_6 \rangle_{\alpha\neq0}; |
\phi = \phi_1, x = 2 \alpha_2 \alpha_5, t = - \alpha_1 \alpha_5, s = - \alpha_2 \alpha_3, |
we have the following family of representatives
3.
\phi = \phi_1, x = \sqrt[3]{{\alpha_1}{\alpha_7^{-1}}}, s = 0, t = {\alpha_4\sqrt[3]{\alpha_1} \alpha_7^{-1}}, |
we have the family of representatives
\phi = \phi_1, x = {\alpha_2}{\alpha_7^{-1}}, s = -({\alpha_1\alpha_7+2\alpha_2\alpha_4}) /(2\alpha_7^2), t = -{\alpha_1}/ ({2\alpha_7}), |
we have the family of representatives
4.
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+\alpha\nabla_3+\beta\nabla_4+\gamma\nabla_6+\mu\nabla_7+\nabla_8\rangle ^{ { \begin{array}{l} O(\alpha,\beta,\gamma,\mu) = O(\alpha,i\beta,-\gamma,-i\mu) = \\ O(\alpha,-i\beta,-\gamma,i\mu) = O(\alpha,-\beta,\gamma,-\mu) = \\ O(\frac{1}{\alpha},-\frac{\beta}{\sqrt[4]{\alpha^{3}}}, \frac{\gamma}{\sqrt{\alpha}},\frac{\mu}{\sqrt[4]{\alpha}}) = \\ O(\frac{1}{\alpha},-\frac{i\beta}{ \sqrt[4]{\alpha^{3}}},-\frac{\gamma}{\sqrt{\alpha}},-\frac{i\mu}{\sqrt[4]{\alpha}}) = \\ O(\frac{1}{\alpha},\frac{\beta}{\sqrt[4]{\alpha^{3}}}, \frac{\gamma}{\sqrt{\alpha}},-\frac{\mu}{\sqrt[4]{\alpha}}) = O(\frac{1}{\alpha},-\frac{\beta}{\sqrt[4]{\alpha^{3}}}, \frac{\gamma}{\sqrt{\alpha}},\frac{\mu}{\sqrt[4]{\alpha}})\end{array}}}, \\ \langle \nabla_1+\alpha\nabla_3+\beta\nabla_6+\nabla_7\rangle ^{{ \begin{array}{l} O(\alpha,\beta) = O(\alpha,-\eta_3\beta) = O(\alpha,\eta_3^2\beta) = \\ O(\alpha^{-1},-\eta_3\beta\sqrt[3]{\alpha^{-1}}) = O(\alpha^{-1},\eta_3^2\beta\sqrt[3]{\alpha^{-1}}) = O(\alpha^{-1},\beta\sqrt[3]{\alpha^{-1}})\end{array}}}, \\ \langle \nabla_2+\alpha\nabla_3+\nabla_4 +\beta \nabla_6 \rangle, \langle \nabla_2+\alpha\nabla_3+\beta\nabla_5+\gamma\nabla_6+\nabla_7\rangle^{O(\alpha,\beta,\gamma) = O(-\frac{\alpha}{\beta^4},\frac{1}{\beta},\frac{\gamma}{\beta})}, \\ \langle \nabla_2+\nabla_3+\alpha \nabla_6 \rangle, \langle \alpha \nabla_2+\nabla_4+\nabla_5+ \beta \nabla_6 \rangle_{\alpha\neq0}^{O(\alpha,\beta) = O(\alpha^{-1},\beta\alpha^{-1})}, \\ \langle \alpha \nabla_2+ \nabla_5+ \beta \nabla_6 \rangle_{\alpha\neq0}^{O(\alpha,\beta) = O(\alpha^{-1},\beta\alpha^{-1})}, \langle \nabla_2+ \alpha \nabla_6 \rangle, \\ \langle \nabla_4+\alpha\nabla_6+\beta\nabla_7+\nabla_8\rangle ^{{ \begin{array}{l} O(\alpha,\beta) = O(\eta_3^2\alpha,-\eta_3\beta) = O(-\eta_3\alpha,\eta_3^2\beta) = \\ O(\eta_3^2\alpha,\eta_3\beta) = O(-\eta_3\alpha,-\eta_3^2\beta) = O(\alpha,-\beta)\end{array} }}, \langle \nabla_6+\nabla_7\rangle, \\ \langle \nabla_6+\alpha\nabla_7+\nabla_8\rangle^{O(\alpha) = O(-\alpha)}, \langle \nabla_7 \rangle, \langle \nabla_7+\nabla_8\rangle, \langle \nabla_8\rangle, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{232}^{\alpha, \beta, \gamma, \mu} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = e_4+\beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{233}^{\alpha, \beta} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{234}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_3 = e_4+e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{235}^{\alpha, \beta, \gamma} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{236}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{237}^{\alpha\neq0, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ && e_2e_3 = e_4+e_5 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{238}^{\alpha\neq0, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{239}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{240}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4+e_5 \\ && e_3e_3 = \alpha e_5 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{241} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{242}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{243} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{244} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 \\ & & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{245} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{11}], & \nabla_2 = [\Delta_{13}], & \nabla_3 = [\Delta_{14}], & \nabla_4 = [\Delta_{22}], \\ \nabla_5 = [\Delta_{23}], & \nabla_6 = [\Delta_{24}], & \nabla_7 = [\Delta_{34}], & \nabla_8 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} \alpha_1&0&\alpha_2&\alpha_3\\ 0&\alpha_4&\alpha_5&\alpha_6\\ \alpha_2&\alpha_5&0&\alpha_7\\ \alpha_3&\alpha_6&\alpha_7&\alpha_8 \end{pmatrix}\phi = \begin{pmatrix} \alpha_1^*&\alpha^{*}&\alpha^{*}_2&\alpha_3^*\\ \alpha^{*}&\alpha^*_4&\alpha^*_5&\alpha_6^*\\ \alpha^{*}_2&\alpha^*_5& 0 &\alpha^*_7\\ \alpha^*_3&\alpha^*_6&\alpha^*_7&\alpha^*_8 \end{pmatrix}, |
then in the case
\begin{array}{ll} \alpha_1^* = \alpha_1x^2+2\alpha_3xt+\alpha_8t^2, & \alpha_2^* = (\alpha_2x+\alpha_7t)xq, \\ \alpha_3^* = (\alpha_3x+\alpha_8t)x^2q^2, & \alpha_4^* = \alpha_4q^2+2\alpha_6qs+\alpha_8s^2, \\ \alpha_5^* = (\alpha_5q+\alpha_7s)xq, & \alpha_6^* = (\alpha_6q+\alpha_8s)x^2q^2, \\ \alpha_7^* = \alpha_7x^3q^3, & \alpha_8^* = \alpha_8x^4q^4; \end{array} |
and in the opposite case
\begin{array}{ll} \alpha_1^* = \alpha_4p^2+2 \alpha_6p t+ \alpha_8t^2, & \alpha_2^* = ( \alpha_5p + \alpha_7t)p y, \\ \alpha_3^* = ( \alpha_6p+ \alpha_8t)p^2 y^2 , & \alpha_4^* = \alpha_1y^2+2 \alpha_3s y+ \alpha_8s^2, \\ \alpha_5^* = ( \alpha_2y+ \alpha_7s)p y, & \alpha_6^* = ( \alpha_3y+ \alpha_8s)p^2 y^2 , \\ \alpha_7^* = \alpha_7p^3 y^3, & \alpha_8^* = \alpha_8p^4 y^4. \end{array} |
We are interested in
2.
3.
\phi = \phi_1, x = \sqrt[3]{{\alpha_4}{\alpha_3^{-1}}}, q = {\alpha_3}{\alpha_7^{-1}}, s = 0, t = 0, |
we have the family of representatives
\phi = \phi_1, x = \sqrt[8]{{\alpha^3_4}{\alpha_1^{-1}\alpha_7^{-2}}}, q = \sqrt[8]{{\alpha_1^3}{\alpha_4^{-1}\alpha^{-2}_7}}, s = 0, t = 0, |
we have the family of representatives
4.
\phi = \phi_1, x = \sqrt[5]{{\alpha^3_5}{\alpha_2^{-2}\alpha_8^{-1}}}, q = \sqrt[5]{{\alpha^3_2}{\alpha_5^{-2}\alpha_8^{-1}}}, s = 0, t = 0, |
we have the family of representatives
\phi = \phi_1, x = {\alpha_4}{\alpha_5^{-1}}, q = {\alpha^2_5}{\alpha_4^{-1}\sqrt{\alpha_4^{-1}\alpha_8^{-1}}}, s = 0, t = 0, |
we have the family of representatives
\phi = \phi_1, x = \sqrt[8]{{\alpha_4^3}{\alpha_2^{-2}\alpha_8^{-1}}}, q = \sqrt[4]{{\alpha^2_2}{\alpha_4^{-1}\alpha_8^{-1}}}, s = 0, t = 0, |
we have the family of representatives
\phi = \phi_1, x = \sqrt[6]{{\alpha^2_4}{\alpha_1^{-1}\alpha_8^{-1}}}, q = \sqrt[6]{{\alpha_1^2}{\alpha_4^{-1}\alpha_8^{-1}}}, s = 0, t = 0, |
we have the family of representatives
\langle \nabla_1+\alpha\nabla_2+\nabla_4+\beta\nabla_5+\gamma\nabla_7+\nabla_8 \rangle. |
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+\alpha\nabla_2+\nabla_4+\beta\nabla_5+\gamma\nabla_7+\nabla_8 \rangle^{ { \begin{array}{l} O(\alpha,\beta,\gamma) = O(\eta_3^2\alpha, \eta_3^2\beta, \eta_3^2\gamma) = O(-\eta_3^2\alpha, \eta_3^2\beta, -\eta_3^2\gamma) = \\ O(\eta_3^2\alpha, -\eta_3^2\beta, -\eta_3^2\gamma) = O(-\eta_3^2\alpha, \eta_3^2\beta, \eta_3^2\gamma) = \\ O(\eta_3\alpha, \eta_3\beta, -\eta_3\gamma) = O(-\eta_3\alpha, \eta_3\beta, \eta_3\gamma) = \\ O(\eta_3\alpha, -\eta_3\beta, \eta_3\gamma) = O(-\eta_3\alpha, -\eta_3\beta, -\eta_3\gamma) = \\ O(-\alpha, \beta, - \gamma) = O(\alpha, -\beta, - \gamma) = \\ O(-\alpha, -\beta, \gamma) = O(\beta,\alpha,\gamma) = \\ O(\eta_3^2\beta, \eta_3^2\alpha, \eta_3^2\gamma) = O(-\eta_3^2\beta, \eta_3^2\alpha, -\eta_3^2\gamma) = \\ O(\eta_3^2\beta, -\eta_3^2\alpha, -\eta_3^2\gamma) = O(-\eta_3^2\beta, \eta_3^2\alpha, \eta_3^2\gamma) = \\ O(\eta_3\beta, \eta_3\alpha, -\eta_3\gamma) = O(-\eta_3\beta, \eta_3\alpha, \eta_3\gamma) = \\ O(\eta_3\beta, -\eta_3\alpha, \eta_3\gamma) = O(-\eta_3\beta, -\eta_3\alpha, -\eta_3\gamma) = \\ O(-\beta, \alpha, - \gamma) = O(\beta, -\alpha, - \gamma) = O(-\beta, -\alpha, \gamma) \end{array}}}, \\ \langle \nabla_1+\alpha\nabla_3+\nabla_4+\beta\nabla_6 +\nabla_7 \rangle^{ {\begin{array}{l} O(\alpha,\beta) = O(\eta_4\alpha,-\eta_4\beta) = O(-\eta_4\alpha,\eta_4\beta) = O(\eta_4^3\alpha,-\eta_4^3\beta) = \\ O(-\eta_4^3\alpha,\eta_4^3\beta) = O(-i\alpha,-i\beta) = O(i\alpha,i\beta) = O(-\alpha,-\beta) = \\ O(\beta,\alpha) = O(\eta_4\beta,-\eta_4\alpha) = O(-\eta_4\beta,\eta_4\alpha) = O(\eta_4^3\beta,-\eta_4^3\alpha) = \\ O(-\eta_4^3\beta,\eta_4^3\alpha) = O(-i\beta,-i\alpha) = O(i\beta,i\alpha) = O(-\beta,-\alpha) \end{array}}}, \\ \langle \nabla_2+\nabla_3 \rangle, \langle \nabla_2+\nabla_3+\nabla_4+\alpha\nabla_5 \rangle^{O(\alpha) = O(-\eta_3 \alpha) = O(\eta_3^2 \alpha)}, \\ \langle \nabla_2+\nabla_3+\nabla_5 \rangle, \langle \nabla_2+\nabla_3 +\alpha\nabla_5+\nabla_6 \rangle^{O(\alpha) = O(\alpha^{-1})}, \\ \langle \nabla_2+\nabla_4+\alpha\nabla_5+\beta\nabla_7+\nabla_8 \rangle ^{{ \begin{array}{l} O(\alpha,\beta) = O(\eta_4^3\alpha,-\eta_4^3\beta) = O(-\eta_4^3\alpha,\eta_4^3\beta) = O(\eta_4\alpha,-\eta_4\beta) = \\ O(-\eta_4\alpha,\eta_4\beta) = O(i\alpha,i\beta) = O(-i\alpha,-i\beta) = O(-\alpha,-\beta) \end{array}}}, \\ \langle \nabla_2+\nabla_5+\alpha\nabla_7+\nabla_8 \rangle ^{ { \begin{array}{l} O(\alpha) = O(\eta_5^2\alpha) = O(\eta_5^4\alpha) = \\ O(-\eta_5\alpha) = O(-\eta_5^3\alpha) \end{array}}}, \langle \nabla_3 \rangle, \\ \langle \nabla_3+\nabla_4+\alpha\nabla_5 \rangle ^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \\ \langle \nabla_3+\nabla_4+\alpha\nabla_6+\nabla_7 \rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \langle \nabla_3+\nabla_5 \rangle, \langle \nabla_3+\nabla_6 \rangle, \\ \langle \nabla_3+\nabla_6+\nabla_7 \rangle, \langle \nabla_4+\nabla_5+\alpha\nabla_7+\nabla_8 \rangle^{O(\alpha) = O(-\alpha)}, \langle \nabla_4+\nabla_6+\nabla_7 \rangle, \\ \langle \nabla_4+\nabla_7 \rangle, \langle \nabla_4+\nabla_7+\nabla_8 \rangle, \langle \nabla_4+\nabla_8 \rangle, \langle \nabla_5+\nabla_7+\nabla_8 \rangle, \langle \nabla_5+\nabla_8 \rangle, \\ \langle \nabla_6+\nabla_7 \rangle, \langle \nabla_7 \rangle, \langle \nabla_7+\nabla_8 \rangle, \langle \nabla_8 \rangle, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{246}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_2e_2 = e_5 \\ && e_2e_3 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{247}^{\alpha, \beta} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = e_5 \\ & & e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{248} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{249}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{250} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 & e_2e_3 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{251}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_3 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{252}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{253}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_3 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{254} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{255}^{\alpha} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{256}^{\alpha} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = e_5 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{257} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_3 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{258} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{259} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{260}^{\alpha} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{261} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{262} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{263} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{264} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{265} & : & e_1e_2 = e_3 & e_2e_3 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{266} & : & e_1e_2 = e_3 & e_2e_3 = e_5 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{267} & : & e_1e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{268} & : & e_1e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{269} & : & e_1e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{270} & : & e_1e_2 = e_3 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline {\mathbf{N}}^{4*}_{18} & \begin{array}{l} e_1e_1 = e_4 \\ e_1e_2 = e_3 \\ e_3e_3 = e_4 \end{array} & \begin{array}{lcl} \mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{18})& = &\\ {\langle [\Delta_{11}],[\Delta_{13}],[\Delta_{22}],[\Delta_{23}]\rangle}\\ \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4*}_{18})& = &\mathrm{H}^2_{\mathfrak{D}}(\mathbf{N}^{4*}_{18})\oplus\\ {\langle [\Delta_{14}], [\Delta_{24}], [\Delta_{34}], [\Delta_{44}] \rangle} \end{array} & \phi_{\pm} = \begin{pmatrix} x&0&0&0\\ 0&\pm 1&0&0\\ 0&0&\pm x &0\\ t&s&0&x^2 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{11}], & \nabla_2 = [\Delta_{13}], & \nabla_3 = [\Delta_{14}], & \nabla_4 = [\Delta_{22}], \\ \nabla_5 = [\Delta_{23}], & \nabla_6 = [\Delta_{24}], & \nabla_7 = [\Delta_{34}], & \nabla_8 = [\Delta_{44}]. \end{array} |
Take
\phi_{\pm}^T\begin{pmatrix} \alpha_1&0&\alpha_2&\alpha_3\\ 0&\alpha_4&\alpha_5&\alpha_6\\ \alpha_2&\alpha_5&0&\alpha_7\\ \alpha_3&\alpha_6&\alpha_7&\alpha_8 \end{pmatrix}\phi_{\pm} = \begin{pmatrix} \alpha_1^*&\alpha{*}&\alpha^{*}_2&\alpha_3^*\\ \alpha{*}&\alpha^*_4&\alpha^*_5&\alpha_6^*\\ \alpha^{*}_2&\alpha^*_5&0&\alpha^*_7\\ \alpha^*_3&\alpha^*_6&\alpha^*_7&\alpha^*_8 \end{pmatrix}, |
we have
\begin{array}{ll} \alpha_1^* = \alpha_1x^2+2\alpha_3xt+\alpha_8t^2, & \alpha_2^* = \pm (\alpha_2x+\alpha_7t) x, \\ \alpha_3^* = (\alpha_3x+\alpha_8t)x^2, & \alpha_4^* = \alpha_4\pm2\alpha_6s+\alpha_8s^2, \\ \alpha_5^* = (\alpha_5\pm\alpha_7s)x, & \alpha_6^* = (\pm\alpha_6+\alpha_8s)x^2, \\ \alpha_7^* = \pm\alpha_7x^3, & \alpha_8^* = \alpha_8x^4. \end{array} |
We are interested in
2.
3.
4.
Summarizing all cases, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+\alpha\nabla_2+\beta\nabla_4+\gamma\nabla_5+\mu\nabla_7+\nabla_8 \rangle ^{ { \begin{array}{l}O(\alpha,\beta,\gamma,\mu) = O(-\alpha,-\beta,-\gamma,\mu) = \\ O(-\alpha,\beta,\gamma,-\mu) = O(\alpha,-\beta,-\gamma,-\mu) \end{array}}}, \\ \langle \alpha\nabla_1+\beta\nabla_2+\nabla_5+\nabla_6 \rangle^{O(\alpha,\beta) = O(-\alpha,\beta)}, \langle \alpha\nabla_1+\beta\nabla_2+\nabla_6 \rangle^{O(\alpha,\beta) = O(-\alpha,\beta)}, \\ \langle \nabla_1+\alpha\nabla_3+\beta\nabla_4+\gamma\nabla_6+\nabla_7 \rangle^{O(\alpha,\beta,\gamma) = O(-\alpha,\beta,-\gamma)}, \langle \nabla_2+\nabla_3+\alpha\nabla_4+\beta\nabla_5 \rangle^{O(\alpha,\beta) = O(-\alpha,\beta)}, \langle \alpha\nabla_2+\nabla_3 +\beta\nabla_5+\nabla_6 \rangle, \\ \langle \nabla_2+\alpha\nabla_4+\beta\nabla_5+\gamma\nabla_7+\nabla_8 \rangle^{O(\alpha,\beta,\gamma) = O(\alpha,i\beta, i\gamma) = O(\alpha,-i\beta, -i\gamma)}, \langle \nabla_3 \rangle, \\ \langle \nabla_3+\nabla_4+\alpha\nabla_5 \rangle ^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \\ \langle \alpha\nabla_3+\nabla_4+\beta\nabla_6+\nabla_7 \rangle^{{ \begin{array}{l} O(\alpha,\beta) = O(-\alpha,-\beta) = O(-\alpha,\eta_3\beta) = \\O(-\alpha,-\eta_3^2\beta) = O(\alpha,-\eta_3\beta) = O(\alpha,\eta_3^2\beta)\end{array}}}, \langle \nabla_3+\nabla_5 \rangle, \\ \langle \alpha\nabla_3+\nabla_6+\nabla_7 \rangle ^{O(\alpha,\beta) = O(-\alpha,\beta)}, \langle \alpha\nabla_3+\nabla_7 \rangle^{O(\alpha) = O(-\alpha)}, \\ \langle \nabla_4+\alpha\nabla_5+\beta\nabla_7+\nabla_8 \rangle ^{ { \begin{array}{l}O(\alpha,\beta) = O(i\alpha,-i\beta) = O(-i\alpha,i\beta) = O(-\alpha,-\beta) = \\ O(\alpha,-\beta) = O(i\alpha,i\beta) = O(-i\alpha,-i\beta) = O(-\alpha,\beta) \end{array}}}, \\ \langle \nabla_5+\alpha\nabla_7+\nabla_8 \rangle^{ O(\alpha) = O(\eta_3\alpha) = O(-\eta_3^2\alpha) = O(-\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \langle \nabla_7+\nabla_8 \rangle, \langle \nabla_8\rangle, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{271}^{\alpha, \beta, \gamma,\mu} & : & e_1e_1 = e_4+e_5 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_2e_2 = \beta e_5 \\ && e_2e_3 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{272}^{\alpha, \beta} & : & e_1e_1 = e_4+\alpha e_5 & e_1e_2 = e_3 & e_1e_3 = \beta e_5 \\ & & e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{273}^{\alpha, \beta} & : & e_1e_1 = e_4+\alpha e_5 & e_1e_2 = e_3 & e_1e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{274}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_4+e_5 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = \beta e_5 \\ & & e_2e_4 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{275}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_3 = \beta e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{276}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ && e_2e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{277}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{278} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{279}^{\alpha} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{280}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{281} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_3 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{282}^{\alpha} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 \\ && e_2e_4 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{283}^{\alpha} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{284}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{285}^{\alpha} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_2e_3 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{286} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{287} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{11}], & \nabla_2 = [\Delta_{13}], & \nabla_3 = [\Delta_{14}], & \nabla_4 = [\Delta_{22}], \\ \nabla_5 = [\Delta_{23}], & \nabla_6 = [\Delta_{24}], & \nabla_7 = [\Delta_{34}], & \nabla_8 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} \alpha_1&0&\alpha_2&\alpha_3\\ 0&\alpha_4&\alpha_5&\alpha_6\\ \alpha_2&\alpha_5&0&\alpha_7\\ \alpha_3&\alpha_6&\alpha_7&\alpha_8 \end{pmatrix}\phi = \begin{pmatrix} \alpha_1^*&\alpha^{*}&\alpha^{*}_2&\alpha_3^*\\ \alpha^{*}&\alpha^*_4&\alpha^*_5&\alpha_6^*\\ \alpha^{*}_2&\alpha^*_5&0&\alpha^*_7\\ \alpha^*_3&\alpha^*_6&\alpha^*_7&\alpha^*_8 \end{pmatrix}, |
then, in the case
\begin{array}{llll} \alpha_1^* = \alpha_1+2\alpha_3t+\alpha_8t^2, & \alpha_2^* = \alpha_2+\alpha_7t, & \alpha_3^* = \alpha_3+\alpha_8t, & \alpha_4^* = \alpha_4+2\alpha_6s+\alpha_8s^2, \\ \alpha_5^* = \alpha_5+\alpha_7s, & \alpha_6^* = \alpha_6+\alpha_8s, & \alpha_7^* = \alpha_7, & \alpha_8^* = \alpha_8. \end{array} |
For define the main families of representatives, we will use
(\alpha_3,\alpha_6,\alpha_7,\alpha_8)\neq(0,0,0,0) . |
Let us consider the following cases:
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_7+\nabla_8 \rangle ^{{ \begin{array}{l} O(\alpha,\beta,\gamma,\mu,\nu) = O(\alpha,-\beta,\gamma,\mu,-\nu) = \\ O(\alpha,\beta,\gamma,-\mu,-\nu) = O(\alpha,-\beta,\gamma,-\mu,\nu) = \\ O(\gamma,\mu,\alpha,\beta,\nu) = O(\gamma,-\mu,\alpha,\beta,-\nu) = \\ O(\gamma,\mu,\alpha,-\beta,-\nu) = O(\gamma,-\mu,\alpha,-\beta,\nu) \end{array}}}, \\ \langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_6+\nabla_7 \rangle ^{{ \begin{array}{l} O(\alpha,\beta,\gamma,\mu) = O(-\alpha,-\beta,-\gamma,\mu) = \\ O(-\alpha,\beta,-\gamma,-\mu) = O(\alpha,-\beta,\gamma,-\mu) = \\ O(\gamma,\mu,\alpha,\beta) = O(-\gamma,-\mu,-\alpha,\beta) = \\ O(-\gamma,\mu,-\alpha,-\beta) = O(\gamma,-\mu,\alpha,-\beta) \end{array}}}, \\ \langle \alpha\nabla_2+\nabla_3+\beta\nabla_4+\gamma\nabla_5 \rangle^{{ \begin{array}{l} O(\alpha,\beta,\gamma) = O(-\alpha,\beta,\gamma) = O(-\alpha,-\beta,\gamma) = O(\alpha,-\beta,\gamma) = \end{array}}}, \\ \langle \alpha\nabla_2+\beta\nabla_3+\gamma\nabla_5+\nabla_6 \rangle_{\beta \neq0}^{{ \begin{array}{l} O(\alpha,\beta,\gamma) = O(\alpha,-\beta,-\gamma) = O(\frac{\gamma}{\beta},\frac{1}{\beta},\frac{\alpha}{\beta}) = O(\frac{\gamma}{\beta},-\frac{1}{\beta},-\frac{\alpha}{\beta}) \end{array}}},\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{288}^{\alpha, \beta, \gamma,\mu,\nu} & : & e_1e_1 = e_4+\alpha e_5 & e_1e_2 = e_3 & e_1e_3 = \beta e_5 & e_2e_2 = e_4+\gamma e_5 \\ & & e_2e_3 = \mu e_5 & e_3e_3 = e_4 & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{289}^{\alpha, \beta, \gamma,\mu} & : & e_1e_1 = e_4+\alpha e_5 & e_1e_2 = e_3 & e_1e_4 = \beta e_5 & e_2e_2 = e_4+\gamma e_5 \\ & & e_2e_4 = \mu e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{290}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_4+\beta e_5 & e_2e_3 = \gamma e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{291}^{\alpha, \beta\neq0 ,\gamma} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = \beta e_5 \\ & & e_2e_3 = \gamma e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{01} & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_2 = e_3 \\ e_2e_3 = e_4 \end{array} &\begin{array}{l}\mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{01}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ (i,j) \notin \{ (1,1),(1,2),(2,3)\} \end{array} & \phi = \begin{pmatrix} x&0&0&0\\ 0 & x^2&0&0\\ z&0 & x^3&0\\ t&0 & x^2z & x^5 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{13}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{22}], & \nabla_4 = [\Delta_{24}], \\ \nabla_5 = [\Delta_{33}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&0&\alpha_1&\alpha_2\\ 0&\alpha_3&0&\alpha_4\\ \alpha_1&0&\alpha_5&\alpha_6\\ \alpha_2&\alpha_4&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha^{**}&\alpha^{*}_1&\alpha^*_2\\ \alpha^{**}&\alpha^*_3&\alpha^{***}&\alpha^*_4\\ \alpha^{*}_1&\alpha^{***}&\alpha^*_5&\alpha^*_6\\ \alpha^*_2&\alpha^*_4&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{lll} { \alpha_1^* = \big((\alpha_1x+\alpha_5z+\alpha_6t)x+(\alpha_2x+\alpha_6z+\alpha_7t)z\big)x^2, }\\ \alpha_2^* = (\alpha_2x+\alpha_6z+\alpha_7t)x^5, & \alpha_3^* = \alpha_3x^4, & \alpha_4^* = \alpha_4x^7, \\ \alpha_5^* = (\alpha_5x^{2}+2\alpha_6xz+\alpha_7z^2)x^4, & \alpha_6^* = (\alpha_6x+\alpha_7z)x^{7}, & \alpha_7^* = \alpha_7x^{10}. \end{array} |
We are interested in
(b) if
2.
(b) if
(c) if
3.
4.
Summarizing all cases, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+ \alpha \nabla_2 + \beta \nabla_3 + \nabla_4 -\alpha \nabla_5 \rangle^ {O(\alpha, \beta) = O(-\eta_3\alpha, \eta_3 \beta) = O(\eta_3^2\alpha,-\eta_3^2\beta)}, \\ \langle \nabla_1+ \nabla_2 + \alpha \nabla_3 - \nabla_5 \rangle, \\ \langle \nabla_1+ \alpha \nabla_3 + \beta \nabla_4 + \gamma \nabla_5 + \nabla_7 \rangle^ {{ \begin{array}{l} O(\alpha, \beta, \gamma) = O(\alpha, \beta, -\eta_3\gamma) = O(\alpha, -\beta, -\eta_3\gamma) = \\ O(\alpha, -\beta, \eta_3^2 \gamma) = O(\alpha, \beta, \eta_3^2\gamma) = O(\alpha, -\beta, \gamma) \end{array} }}, \\ \langle \alpha \nabla_2 + \nabla_3 + \nabla_4 +\beta \nabla_5 \rangle ^{O(\alpha, \beta) = O(-\eta_3\alpha, -\eta_3 \beta) = O(\eta_3^2\alpha, \eta_3^2\beta)}, \langle \nabla_2+ \nabla_3 + \alpha \nabla_5 \rangle, \\ \langle \nabla_2+ \nabla_4 + \alpha \nabla_5 \rangle, \langle \nabla_2 + \alpha \nabla_5 \rangle, \langle \nabla_3+\alpha\nabla_4+\beta\nabla_5+\nabla_6 \rangle ^{{ \begin{array}{l} O(\alpha, \beta) = O(-i\alpha, -\beta) = \\ O(i\alpha, -\beta) = O(-\alpha, \beta) \end{array}}}, \\ \langle \nabla_3 + \alpha\nabla_4 + \beta \nabla_5 + \nabla_7 \rangle^ {{ \begin{array}{l} O(\alpha, \beta) = O(\alpha, -\eta_3 \beta) = O(-\alpha, -\eta_3\beta) = \\ O(-\alpha, \eta_3^2 \beta) = O(\alpha, \eta_3^2 \beta) = O(-\alpha, \beta) \end{array}}}, \langle \nabla_4 \rangle, \langle \nabla_4 + \nabla_5 \rangle, \\ \langle \nabla_4+\alpha\nabla_5+\nabla_6 \rangle, \langle \nabla_4 + \alpha \nabla_5 + \nabla_7 \rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \langle \nabla_5+\nabla_6 \rangle, \langle \nabla_5 + \nabla_7 \rangle, \\ \langle \nabla_6 \rangle, \langle \nabla_7 \rangle. \end{array} |
Hence, we have the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{292}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 \\ && e_2e_2 = \beta e_5 & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = -\alpha e_5 \\ {\mathbf{N}}_{293}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_3 = e_4 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{294}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{295}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = e_5 \\ && e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{296}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{297}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{298}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{299}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = \alpha e_4 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{300}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = \alpha e_4 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{301} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ {\mathbf{N}}_{302} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{303}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{304}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{305} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{306} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{307} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{308} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{02} & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_2 = e_3 \\ e_1e_3 = e_4 \\ e_2e_3 = e_4 \end{array} & \begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{02}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ (i,j) \notin \{ (1,1),(1,2),(1,3)\} \end{array} & \phi = \begin{pmatrix} 1&0&0&0\\ 0&1&0&0\\ z&0&1&0\\ t&2z&z&1 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{14}], & \nabla_2 = [\Delta_{22}], & \nabla_3 = [\Delta_{23}], & \nabla_4 = [\Delta_{24}], \\ \nabla_5 = [\Delta_{33}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&0&0&\alpha_1\\ 0&\alpha_2&\alpha_3&\alpha_4\\ 0&\alpha_3&\alpha_5&\alpha_6\\ \alpha_1&\alpha_4&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha^{**}&\alpha^{***}&\alpha^*_1\\ \alpha^{**}&\alpha^*_2&\alpha^*_3+\alpha^{***}&\alpha^*_4\\ \alpha^{***}&\alpha^*_3+\alpha^{***}&\alpha^*_5&\alpha^*_6\\ \alpha^*_1&\alpha^*_4&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{lcl} \alpha_1^* & = & \alpha_1+\alpha_6z+\alpha_7t, \\ \alpha_2^* & = & \alpha_2+4\alpha_4z+4\alpha_7z^2, \\ \alpha_3^* & = & \alpha_3+2\alpha_6z+(\alpha_4+2\alpha_7z)z-(\alpha_5z+\alpha_6t)-(\alpha_1+\alpha_6z+\alpha_7t)z, \\ \alpha_4^* & = & \alpha_4+2\alpha_7z, \\ \alpha_5^* & = & \alpha_5+2\alpha_6z+\alpha_7z^2, \\ \alpha_6^* & = & \alpha_6+\alpha_7z, \\ \alpha_7^* & = & \alpha_7. \end{array} |
We are interested in
\langle \nabla_1+\alpha\nabla_2+\beta\nabla_3-\nabla_5 \rangle; |
2. if
3. if
z = -{\alpha_1}{\alpha_6}^{-1}, t = ({\alpha_3\alpha_6-\alpha_1(2\alpha_6+\alpha_4-\alpha_5)}){\alpha_6^{-1}}, |
we have the family of representatives
4. if
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+ \alpha \nabla_2 + \beta \nabla_3 - \nabla_5 \rangle, \langle \nabla_1+ \alpha \nabla_2 + \beta \nabla_5 \rangle_{\beta\neq -1}, \langle \alpha \nabla_1+ \beta \nabla_3 + \nabla_4 + \gamma\nabla_5 \rangle, \\ \langle \alpha \nabla_2 + \beta \nabla_3 + \gamma\nabla_4 + \mu \nabla_5 + \nabla_7\rangle, \langle \alpha \nabla_2 + \beta \nabla_4 +\gamma\nabla_5+ \nabla_6\rangle, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{309}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = \alpha e_5 & e_2e_3 = e_4+\beta e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{310}^{\alpha, \beta\neq-1} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_3 = e_4 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{311}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ & & e_2e_3 = e_4+\beta e_5 & e_2e_4 = e_5 & e_3e_3 = \gamma e_5 \\ {\mathbf{N}}_{312}^{\alpha, \beta,\gamma, \mu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = e_4+\beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{313}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{03} & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_2 = e_3 \\ e_3e_3 = e_4 \end{array} &\begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{03}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ {(i,j) \notin \{ (1,1),(1,2),(3,3)}\} \end{array} & \phi = \begin{pmatrix} x&0&0&0\\ 0&x^2&0&0\\ 0&0&x^3&0\\ t&0&0&x^6 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{13}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{22}], & \nabla_4 = [\Delta_{23}], \\ \nabla_5 = [\Delta_{24}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&0&\alpha_1&\alpha_2\\ 0&\alpha_3&\alpha_4&\alpha_5\\ \alpha_1&\alpha_4&0&\alpha_6\\ \alpha_2&\alpha_5&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha^{**}&\alpha^{*}_1&\alpha^*_2\\ \alpha^{**}&\alpha^*_3&\alpha^{*}_4&\alpha^*_5\\ \alpha^{*}_1&\alpha^{*}_4&0&\alpha^*_6\\ \alpha^*_2&\alpha^*_5&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{llll} \alpha_1^* = (\alpha_1x+\alpha_6t)x^3, & \alpha_2^* = (\alpha_2x+\alpha_7t)x^6, & \alpha_3^* = \alpha_3x^4, & \alpha_4^* = \alpha_4x^5, \\ \alpha_5^* = \alpha_5x^8, & \alpha_6^* = \alpha_6x^{9}, & \alpha_7^* = \alpha_7x^{12}. \end{array} |
We are interested in
2.
3.
4.
x = \sqrt[8]{{(\alpha_1\alpha_7-\alpha_2\alpha_6)}{\alpha^{-2}_7}}, t = -{\alpha_2\sqrt[8]{(\alpha_1\alpha_7-\alpha_2\alpha_6)\alpha_7^{-10}}}, |
we have the family of representatives
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+\nabla_2 + \alpha \nabla_3 + \beta \nabla_4 \rangle ^{O(\alpha, \beta) = O(\alpha, -\eta_3 \beta) = O(\alpha, \eta_3^2\beta)}, \\ \langle \nabla_1+ \alpha \nabla_2 + \beta \nabla_3 + \gamma \nabla_4 + \nabla_5\rangle ^{O(\alpha, \beta, \gamma) = O(-i\alpha, \beta, i\gamma) = O(i\alpha, \beta,-i \gamma) = O(-\alpha, \beta, -\gamma)}, \\ \langle \nabla_1+\alpha \nabla_3+ \beta \nabla_4 + \gamma\nabla_5 + \mu\nabla_6 + \nabla_7\rangle^{ {\begin{array}{l} O(\alpha,\beta,\gamma, \mu) = O(\alpha,\eta_4^3\beta,-\gamma, -\eta_4^3\mu) = \\ O(\alpha,-\eta_4^3\beta,-\gamma, \eta_4^3\mu) = O(\alpha,\eta_4 \beta,-\gamma, -\eta_4\mu) = \\ O(\alpha,-\eta_4\beta,-\gamma, \eta_4\mu) = O(\alpha,i\beta,\gamma, i\mu) = \\ O(\alpha,-i\beta,\gamma, -i\mu) = O(\alpha,-\beta, \gamma, -\mu) \end{array}} }, \\ \langle \nabla_2\rangle, \langle \nabla_2+\nabla_3 +\alpha\nabla_4\rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta_3^2\alpha)}, \langle \nabla_2+\alpha\nabla_3 +\beta\nabla_4 + \nabla_5\rangle, \\ \langle \nabla_2+\alpha \nabla_3+ \beta \nabla_4 + \gamma\nabla_5 + \nabla_6\rangle^{O(\alpha,\beta,\gamma) = O(-\alpha,\beta,-\gamma)}, \langle \nabla_2+ \nabla_4\rangle, \\ \langle \nabla_3+\alpha \nabla_4+\nabla_5\rangle^{ { \begin{array}{l} O(\alpha) = O(-\alpha) = \\ O(i\alpha) = O(-i\alpha) \end{array}}}, \\ \langle \nabla_3+\alpha \nabla_4+ \beta \nabla_5+ \nabla_6\rangle ^{{ \begin{array}{l} O(\alpha, \beta) = O(\eta_5^4\alpha, -\eta_5\beta) = O(-\eta_5^3\alpha, \eta_5^2\beta) = \\ O(\eta_5^2\alpha, -\eta_5^3\beta) = O(-\eta_5\alpha, \eta_5^4\beta) \end{array}}}, \\ \langle \nabla_3+\alpha \nabla_4+ \beta \nabla_5 +\gamma\nabla_6 + \nabla_7\rangle^{ {\begin{array}{l} O(\alpha,\beta,\gamma) = O(\eta_4^3\alpha,-\beta,-\eta_4^3\gamma) = O(-\eta_4^3\alpha,-\beta,\eta_4^3\gamma) = \\ O(\eta_4\alpha,-\beta,-\eta_4\gamma) = O(-\eta_4\alpha,-\beta,\eta_4\gamma) = \\ O(i\alpha,\beta,i\gamma) = O(-i\alpha,\beta,-i\gamma) = O(-\alpha,\beta,-\gamma) \end{array}} }, \\ \langle \nabla_4+ \nabla_5\rangle, \langle \nabla_4+\alpha \nabla_5+ \nabla_6\rangle^{O(\alpha) = O(i\alpha) = O(-\alpha) = O(-i\alpha)}, \\ \langle \nabla_4+\alpha \nabla_5+ \beta\nabla_6 + \nabla_7\rangle^{ {\begin{array}{l} O(\alpha,\beta) = O(\eta^4_7\alpha,-\eta^3_7\beta) = O(-\eta_7\alpha,\eta_7^6\beta) = O(-\eta_7^5\alpha,\eta^2_7\beta) = \\ O(\eta^2_7\alpha,-\eta^5_7\beta) = O(\eta_7^6\alpha,-\eta_7\beta) = O(-\eta^3_7\alpha,\eta^4_7\beta) \end{array}}}, \langle \nabla_5\rangle, \\ \langle \nabla_5 + \nabla_6\rangle, \langle \nabla_5+\alpha \nabla_6+ \nabla_7\rangle^{O(\alpha) = O(i\alpha) = O(-\alpha) = O(-i\alpha)}, \langle \nabla_6\rangle, \langle \nabla_6 +\nabla_7\rangle, \langle \nabla_7\rangle, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{314}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = \alpha e_5 & e_2e_3 = \beta e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{315}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 \\ && e_2e_2 = \beta e_5 & e_2e_3 = \gamma e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{316}^{\alpha, \beta, \gamma, \mu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_2 = \alpha e_5 & e_2e_3 = \beta e_5 \\ & & e_2e_4 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{317} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{318}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{319}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{320}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{321} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_3 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{322}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 \\ && e_2e_3 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{323}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{324}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{325} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 \\ && e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{326}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{327}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 & e_2e_4 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{328} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{329} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}^\alpha_{330} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_4 = e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{331} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{332} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{333} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{04} & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_2 = e_3 \\ e_2e_2 = e_4 \\ e_3e_3 = e_4 \end{array} & \begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{04}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ (i,j) \notin \{(1,1),(1,2),(3,3)\} \end{array} & \phi_{\pm} = \begin{pmatrix} \pm1&0&0&0\\ 0&1&0&0\\ 0&0&\pm1&0\\ t&0&0&1 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{13}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{22}], & \nabla_4 = [\Delta_{23}], \\ \nabla_5 = [\Delta_{24}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&0&\alpha_1&\alpha_2\\ 0&\alpha_3&\alpha_4&\alpha_5\\ \alpha_1&\alpha_4&0&\alpha_6\\ \alpha_2&\alpha_5&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha^{**}&\alpha^{*}_1&\alpha^*_2\\ \alpha^{**}&\alpha^*_3&\alpha^{*}_4&\alpha^*_5\\ \alpha^{*}_1&\alpha^{*}_4&0&\alpha^*_6\\ \alpha^*_2&\alpha^*_5&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{llll} \alpha_1^* = \alpha_1\pm\alpha_6t, & \alpha_2^* = \pm\alpha_2+\alpha_7t, & \alpha_3^* = \alpha_3, & \alpha_4^* = \pm\alpha_4, \\ \alpha_5^* = \alpha_5, & \alpha_6^* = \pm \alpha_6, & \alpha_7^* = \alpha_7. \end{array} |
We are interested in
\langle \alpha\nabla_1+\nabla_2+\beta\nabla_3+\gamma\nabla_4 \rangle; |
\langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_3+\mu\nabla_4+\nabla_5 \rangle; |
\langle \alpha\nabla_2+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nabla_6 \rangle; |
\langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_6+\nabla_7 \rangle. |
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \alpha\nabla_1+\nabla_2+\beta\nabla_3+\gamma\nabla_4 \rangle^{O(\alpha, \beta, \gamma) = O(-\alpha, -\beta, \gamma)}, \\\langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_3+\mu\nabla_4+\nabla_5 \rangle ^{O(\alpha, \beta, \gamma,\mu) = O(\alpha, -\beta, \gamma, -\mu)} \\ \langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_6+\nabla_7 \rangle^{O(\alpha, \beta, \gamma,\mu,\nu) = O(\alpha, \beta, -\gamma,\mu,-\nu)}, \\ \langle \alpha\nabla_2+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nabla_6 \rangle ^{O(\alpha, \beta, \gamma, \mu) = O(\alpha, -\beta, \gamma, -\mu)}, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{334}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_4+\beta e_5 & e_2e_3 = \gamma e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{335}^{\alpha, \beta,\gamma, \mu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = \beta e_5 \\ && e_2e_2 = e_4+\gamma e_5 & e_2e_3 = \mu e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{336}^{\alpha, \beta,\gamma, \mu, \nu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 \\& & e_2e_2 = e_4+\beta e_5 & e_2e_3 = \gamma e_5 & e_2e_4 = \mu e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{337}^{\alpha, \beta,\gamma, \mu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = e_4+\beta e_5 \\ && e_2e_3 = \gamma e_5 & e_2e_4 = \mu e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms}\\ \hline {\mathbf{N}}^{4}_{05} & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_3 = e_4 \\ e_2e_2 = e_3 \end{array} & \begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{05}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ {(i,j) \notin \{ (1,1),(1,3),(2,2)} \} \end{array} & \phi = \begin{pmatrix} x&0&0&0\\ 0&x^2&0&0\\ z&0&x^4&0\\ t&2xz&0&x^5 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{12}] & \nabla_2 = [\Delta_{14}] & \nabla_3 = [\Delta_{23}] & \nabla_4 = [\Delta_{24}] \\ \nabla_5 = [\Delta_{33}] & \nabla_6 = [\Delta_{34}] & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&\alpha_1&0&\alpha_2\\ \alpha_1&0&\alpha_3&\alpha_4\\ 0&\alpha_3&\alpha_5&\alpha_6\\ \alpha_2&\alpha_4&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha^*_1&\alpha^{***}&\alpha^*_2\\ \alpha^*_1&\alpha^{**}&\alpha^*_3&\alpha^*_4\\ \alpha^{***}&\alpha^*_3&\alpha^*_5&\alpha^*_6\\ \alpha^*_2&\alpha^*_4&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{lll} { \alpha_1^* = (\alpha_1x+\alpha_3z+\alpha_4t)x^2+2(\alpha_2x+\alpha_6z+\alpha_7t)xz, }\\ \alpha_2^* = (\alpha_2x+\alpha_6z+\alpha_7t)x^5, & \alpha_3^* = (\alpha_3x+2\alpha_6z)x^5, & \alpha_4^* = (\alpha_4x+2\alpha_7z)x^6, \\ \alpha_5^* = \alpha_5x^8, & \alpha_6^* = \alpha_6x^9, & \alpha_7^* = \alpha_7x^{10}. \end{array} |
We are interested in
(b)
2.
3.
(b)
4.
x = \frac{\alpha_6}{\alpha_7}, z = -\frac{\alpha_4\alpha_6}{2\alpha_7^2}, t = \frac{\alpha_6(\alpha_4\alpha_6-2\alpha_2\alpha_7)}{2\alpha^3_7}, |
we have the family of representatives
x = \sqrt[4]{\frac{\alpha_3\alpha_7-\alpha_4\alpha_7}{\alpha^2_7}}, z = -\frac{\alpha_4\sqrt[4]{\alpha_3\alpha_7-\alpha_4\alpha_7}}{2\alpha_7\sqrt[4]{2\alpha_7^2}}, t = \frac{(\alpha_4\alpha_6-2\alpha_2\alpha_7)\sqrt[4]{\alpha_3\alpha_7-\alpha_4\alpha_6}}{2\alpha^2_7\sqrt[4]{2\alpha_7^2}}, |
we have the family of representatives
\begin{array}{c} x = \sqrt[7]{\frac{2\alpha_1\alpha_7^2-\alpha_3\alpha_4\alpha_7+\alpha_4^2\alpha_6-2\alpha_2\alpha_4\alpha_7}{2\alpha^3_7}}, \\ z = -\frac{\alpha_4\sqrt[7]{2\alpha_1\alpha_7^2-\alpha_3\alpha_4\alpha_7+\alpha_4^2\alpha_6-2\alpha_2\alpha_4\alpha_7}}{2\alpha_7\sqrt[7]{2\alpha_7^3}}, \\ t = \frac{(\alpha_4\alpha_6-2\alpha_2\alpha_7)\sqrt[7]{2\alpha_1\alpha_7^2-\alpha_3\alpha_4\alpha_7+\alpha_4^2\alpha_6-2\alpha_2\alpha_4\alpha_7}}{2\alpha^3_7\sqrt[7]{2\alpha_7^3}}, \end{array} |
we have the family of representatives
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+\nabla_2-2\nabla_3+\alpha\nabla_5 \rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta^2_3\alpha)}, \\ \langle \nabla_1+\alpha\nabla_3+\beta\nabla_5+\nabla_6 \rangle^{{\begin{array}{l} O(\alpha,\beta) = O(\alpha,-\eta_3\beta) = O(-\alpha,\eta_3\beta) = \\ O(-\alpha,-\eta_3^2\beta) = O(\alpha,\eta_3^2\beta) = O(-\alpha,-\beta) \end{array}}}, \\ \langle \nabla_1+\alpha\nabla_3+\beta\nabla_5+\gamma\nabla_6+\nabla_7 \rangle^{{\begin{array}{l} O(\alpha,\beta,\gamma) = O(\eta_7^4\alpha,\eta^2_7\beta,-\eta_7\gamma) = O(-\eta_7\alpha,\eta^4_7\beta,\eta^2_7\gamma) = \\ O(-\eta_7^5\alpha,\eta^6_{7}\beta,-\eta^3_7\gamma) = O(\eta^2_7\alpha,-\eta_7\beta,\eta^4_7\gamma) = \\ O(\eta_7^6\alpha,-\eta^3_7\beta,-\eta^5_7\gamma) = O(-\eta^3_7\alpha,-\eta^5_7\beta,\eta^6_7\gamma) \end{array}}}, \\ \langle \nabla_2+\alpha\nabla_3 \rangle, \langle \nabla_2+\alpha\nabla_3+ \nabla_4+\beta\nabla_5 \rangle, \langle\nabla_2+\alpha\nabla_3+\nabla_5 \rangle, \langle \nabla_3+ \nabla_4+\alpha\nabla_5 \rangle, \\ \langle \alpha\nabla_3+\nabla_4+\beta\nabla_5+\nabla_6 \rangle^{O(\alpha,\beta) = O(-\alpha,-\beta)}, \langle \nabla_3+\alpha\nabla_5+\nabla_6 \rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta^2_3\alpha)}, \\ \langle \nabla_3+\alpha\nabla_5+\beta\nabla_6+\nabla_7 \rangle^{O(\alpha,\beta) = O(-\alpha,-i\beta) = O(-\alpha,i \beta) = O(\alpha,-\beta)}, \langle \nabla_4 \rangle, \langle \nabla_4+\nabla_5 \rangle, \\ \langle \nabla_5+\nabla_6 \rangle, \langle \alpha\nabla_5+\nabla_6+\nabla_7 \rangle, \langle \nabla_5+\nabla_7 \rangle, \langle\nabla_6 \rangle, \langle\nabla_7 \rangle,\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{338}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = -2e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{339}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{340}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ & & e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{341}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ {\mathbf{N}}_{342}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{343}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{344}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{345}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{346}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{347}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_3 = e_5 \\ && e_3e_3 = \alpha e_5 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{348} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_4 = e_5 \\ {\mathbf{N}}_{349} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{350} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{351}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_3e_3 = \alpha e_5 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{352} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{353} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_3e_4 = e_5 \\ {\mathbf{N}}_{354} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{06} & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_2 = e_4 \\ e_1e_3 = e_4 \\ e_2e_2 = e_3 \end{array} &\begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{06}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ (i,j) \notin \{(1,1),(1,2),(2,2)\} \end{array} & \phi_{\pm} = \begin{pmatrix} \pm1&0&0&0\\ 0&1&0&0\\ z&0&1&0\\ t&\pm2z&0&\pm1 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{13}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{23}], & \nabla_4 = [\Delta_{24}], \\ \nabla_5 = [\Delta_{33}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi_{\pm}^T\begin{pmatrix} 0&0&\alpha_1&\alpha_2\\ 0&0&\alpha_3&\alpha_4\\ \alpha_1&\alpha_3&\alpha_5&\alpha_6\\ \alpha_2&\alpha_4&\alpha_6&\alpha_7 \end{pmatrix}\phi_{\pm} = \begin{pmatrix} \alpha^*&\alpha^{**}&\alpha^{*}_1+\alpha^{**}&\alpha^*_2\\ \alpha^{**}&\alpha^{***}&\alpha^*_3&\alpha^*_4\\ \alpha^{*}_1+\alpha^{**}&\alpha^*_3&\alpha^*_5&\alpha^*_6\\ \alpha^*_2&\alpha^*_4&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{lll} { \alpha_1^* = \pm \alpha_1- \alpha_3z- \alpha_4t+ \alpha_5z+ \alpha_6t-2 ( \alpha_2\pm \alpha_6z\pm \alpha_7t)z, }\\ \alpha_2^* = \alpha_2\pm\alpha_6z \pm\alpha_7t, & \alpha_3^* = \alpha_3 \pm 2\alpha_6z, & \alpha_4^* = 2\alpha_7z \pm \alpha_4, \\ \alpha_5^* = \alpha_5, & \alpha_6^* = \pm \alpha_6, & \alpha_7^* = \alpha_7. \end{array} |
Since
\langle \alpha\nabla_1+\nabla_2+\beta\nabla_3+(\beta+2)\nabla_5 \rangle; |
2. if
3. if
4. if
\langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_5+\mu\nabla_6+\nabla_7 \rangle. |
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \alpha\nabla_1+\nabla_2+\beta\nabla_3+(\beta+2)\nabla_5 \rangle_{\alpha \neq 0}^{O(\alpha, \beta) = O(-\alpha, \beta)}, \\ \langle \alpha\nabla_1+\beta\nabla_3+\nabla_4+\gamma\nabla_5+\nabla_6 \rangle^{O(\alpha, \beta, \gamma) = O(\alpha, -\beta,-\gamma)}_{\alpha\neq 0}, \\ \langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_5+\mu\nabla_6+\nabla_7 \rangle^{O(\alpha, \beta, \gamma, \mu) = O(-\alpha, \beta, \gamma, -\mu)}, \langle \nabla_2+\alpha\nabla_3+\beta\nabla_5 \rangle, \\ \langle \alpha\nabla_2+\beta\nabla_3+\nabla_4+\gamma\nabla_5 \rangle^{O(\alpha, \beta, \gamma) = O(-\alpha, -\beta,- \gamma)}, \\ \langle \alpha \nabla_3+\beta \nabla_4+\gamma\nabla_5+\nabla_6 \rangle^{O(\alpha, \beta, \gamma) = O(-\alpha, \beta, -\gamma)}, \end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{355}^{\alpha\neq0, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4+\alpha e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = \beta e_5 & { e_3e_3 = (\beta+2)e_5 } \\ {\mathbf{N}}_{356}^{\alpha\neq0, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_4+\alpha e_5 & e_2e_2 = e_3 & e_2e_3 = \beta e_5 \\ & & e_2e_4 = e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 & \\ {\mathbf{N}}_{357}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_3 = e_4+\alpha e_5 & e_2e_2 = e_3 & e_2e_3 = \beta e_5 \\ & & e_3e_3 = \gamma e_5 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 & \\ {\mathbf{N}}_{358}^{\alpha,\beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{359}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = \gamma e_5 & \\ {\mathbf{N}}_{360}^{\alpha,\beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ & & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 & \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{07} & \begin{array}{l} e_1e_1 = e_2 \\ e_2e_2 = e_3 \\ e_2e_3 = e_4 \end{array} &\begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{07}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ (i,j) \notin \{ (1,1),(2,2),(2,3) \} \end{array} & \phi = \begin{pmatrix} x&0&0&0\\ 0&x^2&0&0\\ 0&0&x^4&0\\ t&0&0&x^6 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{12}], & \nabla_2 = [\Delta_{13}], & \nabla_3 = [\Delta_{14}], & \nabla_4 = [\Delta_{24}], \\ \nabla_5 = [\Delta_{33}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&\alpha_1&\alpha_2&\alpha_3\\ \alpha_1&0&0&\alpha_4\\ \alpha_2&0&\alpha_5&\alpha_6\\ \alpha_3&\alpha_4&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha^*_1&\alpha^{*}_2&\alpha^*_3\\ \alpha^*_1&0&0&\alpha^*_4\\ \alpha^{*}_2&0&\alpha^*_5&\alpha^*_6\\ \alpha^*_3&\alpha^*_4&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{llll} \alpha_1^* = (\alpha_1x+\alpha_4t)x^2, & \alpha_2^* = (\alpha_2x+\alpha_6t)x^4, & \alpha_3^* = (\alpha_3x+\alpha_7t)x^6, & \alpha_4^* = \alpha_4x^8, \\ \alpha_5^* = \alpha_5x^8, & \alpha_6^* = \alpha_6x^{10}, & \alpha_7^* = \alpha_7x^{12}. \end{array} |
We are interested in
2.
3.
4.
\langle \nabla_2+\alpha\nabla_4+\beta\nabla_5+\gamma\nabla_6+\nabla_7 \rangle; |
x = \sqrt[9]{(\alpha_1\alpha_7-\alpha_3\alpha_4)\alpha^{-2}_7}, t = -\alpha_3\sqrt[9]{(\alpha_1\alpha_7-\alpha_3\alpha_4)\alpha_7^{-11} }, |
we have family of representatives
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+\alpha\nabla_2+\nabla_3+\beta\nabla_5 \rangle ^{O(\alpha,\beta) = O(-\alpha,i\beta) = O(-\alpha,-i\beta) = O(\alpha,-\beta)}, \\ \langle \nabla_1+\alpha\nabla_2+\beta\nabla_4+\gamma\nabla_5+\mu\nabla_6+\nabla_7 \rangle ^{{\begin{array}{l} O(\alpha,\beta,\gamma,\mu) = O(-\eta_9^7\alpha,\eta^4_9\beta,\eta^4_9\gamma,\eta^2_9\mu) = \\ O(-\eta^5_9\alpha,\eta_9^8\beta,\eta_9^8\gamma,\eta^4_9\mu) = O(-\eta_3\alpha,-\eta_3\beta,-\eta_3\gamma,\eta^2_3\mu) = \\ O(-\eta_9\alpha,-\eta^7_9\beta,-\eta^7_9\gamma,\eta^8_9\mu) = O(\eta_9^8\alpha,\eta^2_9\beta,\eta^2_9\gamma,-\eta_9\mu) = \\ O(\eta^2_3\alpha,\eta^2_3\beta,\eta^2_3\gamma,-\eta_3\mu) = O(\eta^4_9\alpha,-\eta_9\beta,-\eta_9\gamma,-\eta^5_9\mu) = \\ O(\eta^2_9\alpha,-\eta^5_9\beta,-\eta^5_9\gamma,-\eta^7_9\mu) \end{array}}}, \\ \langle \nabla_1+\alpha\nabla_3+\beta\nabla_4+\gamma\nabla_5+\nabla_6 \rangle ^{{\begin{array}{l} O(\alpha,\beta,\gamma) = O(-\eta_7^3\alpha,\eta^2_7\beta,\eta^2_7\gamma) = \\ O(\eta_7^6\alpha,\eta^4_7\beta,\eta^4_7\gamma) = O(\eta^2_7\alpha,\eta^6_{7}\beta,\eta^6_7\gamma) = \\ O(-\eta^5_7\alpha,-\eta_7\beta,-\eta_7\gamma) = O(-\eta_7\alpha,-\eta^3_7\beta,-\eta^3_7\gamma) = \\ O(\eta^4_7\alpha,-\eta^5_7\beta,-\eta^5_7\gamma) \end{array}}}, \\ \langle \nabla_2+\alpha\nabla_3+ \nabla_4+\beta\nabla_5 \rangle^{O(\alpha,\beta) = O(-\eta_3\alpha,\beta) = O(\eta^2_3\alpha,\beta)}, \langle \nabla_2+\nabla_3+\alpha\nabla_5 \rangle^{O(\alpha) = O(-\alpha)}, \\ \langle \nabla_2+\alpha\nabla_4+\beta\nabla_5+\gamma\nabla_6+\nabla_7 \rangle^{{\begin{array}{l} O(\alpha,\beta,\gamma) = O(\eta_7^4\alpha,\eta^4_7\beta,\eta^2_7\gamma) = O(-\eta_7\alpha,-\eta_7\beta,\eta^4_7\gamma) = \\ O(-\eta^5_7\alpha,-\eta^5_{7}\beta,\eta^6_7\gamma) = O(\eta^2_7\alpha,\eta^2_7\beta,-\eta_7\gamma) = \\ O(\eta_7^6\alpha,\eta_7^6\beta,-\eta^3_7\gamma) = O(-\eta^3_7\alpha,-\eta^3_7\beta,-\eta^5_7\gamma) \end{array}}}, \langle \nabla_3 \rangle, \\ \langle \nabla_3+ \nabla_4+\alpha\nabla_5 \rangle, \langle \nabla_3+\alpha\nabla_4+\beta\nabla_5+\nabla_6 \rangle^{O(\alpha,\beta) = O(-\eta_3\alpha,-\eta_3\beta) = O(\eta^2_3\alpha,\eta^2_3\beta)}, \\ \langle \nabla_3+\nabla_5 \rangle, \langle \nabla_4+\alpha\nabla_5 \rangle, \langle \nabla_4+\alpha\nabla_5+\nabla_6 \rangle, \langle \nabla_4+\alpha\nabla_5+\beta\nabla_6+\nabla_7 \rangle^{O(\alpha,\beta) = O(\alpha,-\beta)}, \\ \langle \nabla_5+\nabla_6 \rangle, \langle \nabla_5+\alpha\nabla_6+\nabla_7 \rangle^{O(\alpha) = O(-\alpha) }, \langle \nabla_6 \rangle, \langle \nabla_6 +\nabla_7 \rangle, \langle \nabla_7 \rangle,\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{361}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{362}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{363}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{364}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{365}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{366}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_1e_4 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{367} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ {\mathbf{N}}_{368}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{369}^{\alpha,\beta} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 & \\ {\mathbf{N}}_{370} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{371}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{372}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{373}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ & & e_3e_3 = \alpha e_5 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{374} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{375}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_3e_3 = e_5 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{376} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{377} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{378} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms}\\ \hline {\mathbf{N}}^{4}_{08} & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_3 = e_4 \\ e_2e_2 = e_3 \\ e_2e_3 = e_4 \end{array} & \begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{08}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ {(i,j) \notin \{(1,1),(1,3),(2,2)}\} \end{array} & \phi = \begin{pmatrix} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ t&0&0&1 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{12}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{23}], & \nabla_4 = [\Delta_{24}], \\ \nabla_5 = [\Delta_{33}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&\alpha_1&0&\alpha_2\\ \alpha_1&0&\alpha_3&\alpha_4\\ 0&\alpha_3&\alpha_5&\alpha_6\\ \alpha_2&\alpha_4&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha^{*}_1&\alpha^{**}&\alpha^*_2\\ \alpha^{*}_1&0&\alpha^*_3+\alpha^{**}&\alpha^*_4\\ \alpha^{**}&\alpha^*_3+\alpha^{**}&\alpha^*_5&\alpha^*_6\\ \alpha^*_2&\alpha^*_4&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{llll} \alpha_1^* = \alpha_1+\alpha_4t, & \alpha_2^* = \alpha_2+\alpha_7t, & \alpha_3^* = \alpha_3-\alpha_6t, & \alpha_4^* = \alpha_4, \\ \alpha_5^* = \alpha_5, & \alpha_6^* = \alpha_6, & \alpha_7^* = \alpha_7. \end{array} |
Since
\langle \alpha\nabla_1+\nabla_2+\beta\nabla_3+\gamma\nabla_5 \rangle; |
\langle \alpha\nabla_2+\beta\nabla_3+\nabla_4+\gamma\nabla_5 \rangle; |
\langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_4+\mu\nabla_5+\nabla_6 \rangle; |
\langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_6+\nabla_7 \rangle. |
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \alpha\nabla_1+\nabla_2+\beta\nabla_3+\gamma\nabla_5 \rangle,\langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_4+\mu\nabla_5+\nabla_6 \rangle, \\ \langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_6+\nabla_7 \rangle,\langle \alpha\nabla_2+\beta\nabla_3+\nabla_4+\gamma\nabla_5 \rangle,\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{379}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = e_4+\beta e_5 & e_3e_3 = \gamma e_5 \\ {\mathbf{N}}_{380}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_1e_3 = e_4 \\ & & e_1e_4 = \beta e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = \gamma e_5 & e_3e_3 = \mu e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{381}^{\alpha, \beta,\gamma,\mu, \nu} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_1e_3 = e_4 \\ && e_2e_2 = e_3 & e_2e_3 = e_4+\beta e_5 & e_2e_4 = \gamma e_5 \\ && e_3e_3 = \mu e_5 & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{382}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4+\beta e_5 & e_2e_4 = e_5 & e_3e_3 = \gamma e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{09} & \begin{array}{l} e_1e_1 = e_2 \\ e_2e_2 = e_3 \\ e_3e_3 = e_4 \end{array} &\begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{09}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ (i,j) \notin\{ (1,1),(2,2),(3,3)\} \end{array} & \phi = \begin{pmatrix} x&0&0&0\\ 0&x^2&0&0\\ 0&0&x^4&0\\ t&0&0&x^8 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{12}], & \nabla_2 = [\Delta_{13}], & \nabla_3 = [\Delta_{14}], & \nabla_4 = [\Delta_{23}], \\ \nabla_5 = [\Delta_{24}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&\alpha_1&\alpha_2&\alpha_3\\ \alpha_1&0&\alpha_4&\alpha_5\\ \alpha_2&\alpha_4&0&\alpha_6\\ \alpha_3&\alpha_5&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha^*_1&\alpha^{*}_2&\alpha^*_3\\ \alpha^*_1&0&\alpha^*_4&\alpha^*_5\\ \alpha^{*}_2&\alpha^*_4&0&\alpha^*_6\\ \alpha^*_3&\alpha^*_5&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{llll} \alpha_1^* = (\alpha_1x+\alpha_5t)x^2, & \alpha_2^* = (\alpha_2x+\alpha_6t)x^4, & \alpha_3^* = (\alpha_3x+\alpha_7t)x^8, & \alpha_4^* = \alpha_4x^6, \\ \alpha_5^* = \alpha_5x^{10}, & \alpha_6^* = \alpha_6x^{12}, & \alpha_7^* = \alpha_7x^{16}. \end{array} |
Since
2.
3.
x = \sqrt[9]{(\alpha_1\alpha_6-\alpha_2\alpha_5)\alpha^{-2}_6}, t = -{\alpha_2\sqrt[9]{(\alpha_1\alpha_6-\alpha_2\alpha_5)\alpha_6^{-11}}}, |
we have the family of representatives
\langle \nabla_1+\alpha\nabla_3+\beta\nabla_4+\gamma\nabla_5+\nabla_6 \rangle. |
4.
x = \sqrt[10]{{\alpha_4}{\alpha_7^{-1}}}, t = -{\alpha_3\sqrt[10]{\alpha_4 \alpha_7^{-11}}}, |
we have the family of representatives
x = \sqrt[11]{(\alpha_2\alpha_7-\alpha_3\alpha_6)\alpha^{-2}_7 }, t = -{\alpha_3\sqrt[11]{(\alpha_2\alpha_7-\alpha_3\alpha_6) \alpha_7^{-13} }}, |
we have the family of representatives
\langle \nabla_2+\alpha\nabla_4+\beta\nabla_5+\gamma\nabla_6+\nabla_7 \rangle; |
x = \sqrt[13]{({\alpha_1\alpha_7-\alpha_3\alpha_5}){\alpha^{-2}_7}}, t = -{\alpha_3\sqrt[13]{(\alpha_1\alpha_7-\alpha_3\alpha_5)\alpha_7^{-15} }}, |
we have the family of representatives
\langle \nabla_1+\alpha\nabla_2+\beta\nabla_4+\gamma\nabla_5+\mu\nabla_6+\nabla_7 \rangle. |
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \nabla_1+\alpha\nabla_2+\nabla_3+\beta\nabla_4 \rangle ^{O(\alpha,\beta) = O(-\eta_3\alpha,\beta) = O(-\eta_3\alpha,-\beta) = O(\eta_3^2\alpha,-\beta) = O(\eta^2_3\alpha,\beta) = O(\alpha,-\beta)}, \\ \langle \nabla_1+\alpha\nabla_2+\beta\nabla_4+\gamma\nabla_5+\mu\nabla_6+ \\ \nabla_7 \rangle^{{\begin{array}{l} O(\alpha,\beta,\gamma,\mu) = O(-\eta_{13}^{11}\alpha,\eta^{10}_{13}\beta,\eta^6_{13}\gamma,\eta^4_{13}\mu) = \\ O(-\eta^9_{13}\alpha,-\eta^7_{13}\beta,\eta^{12}_{13}\gamma,\eta^8_{13}\mu) = O(-\eta^7_{13}\alpha,\eta^4_{13}\beta,-\eta^5_{13}\gamma,\eta^{12}_{13}\mu) = \\ O(-\eta^5_{13}\alpha,-\eta^{1}_{13}\beta,-\eta^{11}_{13}\gamma,-\eta^{3}_{13}\mu) = O(-\eta^{3}_{13}\alpha,-\eta^{11}_{13}\beta,\eta^4_{13}\gamma,-\eta^7_{13}\mu) = \\ O(-\eta^{1}_{13}\alpha,\eta^8_{13}\beta,\eta^{10}_{13}\gamma,-\eta^{11}_{13}\mu) = O(\eta^{12}_{13}\alpha,-\eta^5_{13}\beta,-\eta^{3}_{13}\gamma,\eta^{2}_{13}\mu) = \\ O(\eta^{10}_{13}\alpha,\eta^{2}_{13}\beta,-\eta^{9}_{13}\gamma,\eta^6_{13}\mu) = O(\eta^8_{13}\alpha,\eta^{12}_{13}\beta,\eta^{2}_{13}\gamma,\eta^{10}_{13}\mu) = \\ O(\eta^6_{13}\alpha,-\eta^{9}_{13}\beta,\eta^{8}_{13}\gamma,-\eta^{1}_{13}\mu) = O(\eta^4_{13}\alpha,\eta^{6}_{13}\beta,-\eta^{1}_{13}\gamma,-\eta^5_{13}\mu) = \\ O(\eta^{2}_{13}\alpha,-\eta^{3}_{13}\beta,-\eta^{7}_{13}\gamma,-\eta^9_{13}\mu) \end{array}}}, \\ \langle \nabla_1+\alpha\nabla_3+\beta\nabla_4+\gamma\nabla_5+\nabla_6 \rangle^{{\begin{array}{l} O(\alpha,\beta,\gamma,\mu) = O(-\eta_3\alpha,\eta^2_3\beta,\eta^2_9\gamma) = O(\eta^2_3\alpha,-\eta_3\beta,\eta^4_9\gamma) = \\ O(\alpha,\beta,\eta^2_3\gamma) = O(-\eta_3\alpha,\eta^2_3\beta,\eta^8_9\gamma) = O(\eta^2_3\alpha,-\eta_3\beta,-\eta_9\gamma) = \\ O(\alpha,\beta,-\eta_3\gamma) = O(-\eta_3\alpha,\eta^2_3\beta,-\eta^5_9\gamma) = O(\eta^2_3\alpha,-\eta_3\beta,-\eta^7_9\gamma) \end{array}}}, \\ \langle \nabla_2+\nabla_3+\alpha\nabla_4 \rangle^{O(\alpha) = O(i\alpha) = O(-\alpha) = (-i\alpha)}, \\ \langle \nabla_2+\alpha\nabla_3+ \beta\nabla_4+\nabla_5 \rangle^{ O(\alpha,\beta) = O(-\eta_5\alpha,\eta^4_5\beta) = O(\eta^2_5\alpha,-\eta^3_5\beta) = O(-\eta^3_5\alpha,\eta^2_5\beta) = O(\eta_5^4\alpha,-\eta_5\beta)},\\ \langle \nabla_2+\alpha\nabla_4+\beta\nabla_5+\gamma\nabla_6+\nabla_7 \rangle^{{\begin{array}{l} O(\alpha,\beta,\gamma) = O(\eta_{11}^{10}\alpha,\eta^6_{11}\beta,\eta^4_{11}\gamma = \\ O(-\eta^9_{11}\alpha,-\eta_{11}\beta,\eta^38_{11}\gamma) = O(\eta^8_{11}\alpha,-\eta^7_{11}\beta,-\eta_{11}\gamma) = \\ O(-\eta^7_{11}\alpha,\eta^2_{11}\beta,-\eta^5_{11}\gamma) = O(\eta^{6}_{11}\alpha,\eta^8_{11}\beta,-\eta^9_{11}\gamma) = \\ O(-\eta^{5}_{11}\alpha,-\eta^3_{11}\beta,\eta^2_{11}\gamma) = O(\eta^4_{11}\alpha,-\eta^9_{13}\beta,\eta^{6}_{11}\gamma) = \\ O(-\eta^3_{11}\alpha,\eta^{4}_{11}\beta,\eta^{10}_{11}\gamma) = O(\eta^2_{11}\alpha,\eta^{10}_{11}\beta,-\eta^{3}_{11}\gamma) = \\ O(-\eta_{11}\alpha,-\eta^{5}_{11}\beta,-\eta^{7}_{11}\gamma) \end{array}}}, \langle \nabla_3 \rangle, \\ \langle \nabla_3+\nabla_4 \rangle, \langle \nabla_3+ \alpha\nabla_4+\nabla_5 \rangle, \langle \nabla_3+\alpha\nabla_4+\beta\nabla_5+\nabla_6 \rangle^{O(\alpha,\beta) = O(\alpha,-\eta_3\beta) = O(\alpha,\eta^2_3\beta)}, \\ \langle \nabla_4+\nabla_5 \rangle \langle \nabla_4+\alpha\nabla_5+\nabla_6 \rangle^{{ \begin{array}{l}O(\alpha) = O(-\eta_3\alpha) = \\O(\eta^2_3\alpha) \end{array}}}, \\ \langle \nabla_4+\alpha\nabla_5+\beta\nabla_6+\nabla_7 \rangle^{ { \begin{array}{l} O(\alpha,\beta) = O(-\eta_5\alpha,\eta^4_5\beta) = O(\eta^2_5\alpha,-\eta^3_5\beta) = \\ O(-\eta^3_5\alpha,\eta^2_5\beta) = O(\eta^4_5\alpha,-\eta_5 \beta) \end{array}}}, \langle \nabla_5 \rangle, \langle \nabla_5+\nabla_6 \rangle, \\ \langle \nabla_5+\alpha\nabla_6+\nabla_7 \rangle^{O(\alpha) = O(-\eta_3\alpha) = O(\eta^2_3\alpha)}, \langle \nabla_6 \rangle, \langle \nabla_6+\nabla_7 \rangle, \langle \nabla_7 \rangle,\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{383}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{384}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 & e_2e_2 = e_3 & e_2e_3 = \beta e_5 \\ & & e_2e_4 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{385}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ && e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{386}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{387}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ && e_2e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{388}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{389} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_3e_3 = e_4 \\ {\mathbf{N}}_{390} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{391}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{392}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{393} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{394}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_5 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{395}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_5 & e_2e_4 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{396} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{397} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{398}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_4 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{399} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{400} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{401} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{10} & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_2 = e_4 \\ e_2e_2 = e_3 \\ e_3e_3 = e_4 \end{array} & \begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{10}) = \Big \langle [\Delta_{ij}] \Big\rangle\\ (i,j) \notin \{ (1,1),(1,2),(2,2)\} \end{array} & \begin{array}{l} \phi_k = \begin{pmatrix} \eta^k&0&0&0\\ 0& \eta^{2k}&0&0\\ 0&0& \eta^{4k}&0\\ t&0&0& \eta^{8k} \end{pmatrix} \\ {\eta = -\eta_5, \ k = 0,1,2,3,4} \end{array}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{llll} \nabla_1 = [\Delta_{13}], & \nabla_2 = [\Delta_{14}], & \nabla_3 = [\Delta_{23}], & \nabla_4 = [\Delta_{24}], \\ \nabla_5 = [\Delta_{33}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi_k^T\begin{pmatrix} 0&0&\alpha_1&\alpha_2\\ 0&0&\alpha_3&\alpha_4\\ \alpha_1&\alpha_3&\alpha_5&\alpha_6\\ \alpha_2&\alpha_4&\alpha_6&\alpha_7 \end{pmatrix}\phi_k = \begin{pmatrix} \alpha^*&\alpha^{**}&\alpha^{*}_1&\alpha^*_2\\ \alpha^{**}&0&\alpha^*_3&\alpha^*_4\\ \alpha^{*}_1&\alpha^*_3&\alpha^*_5+\alpha^{**}&\alpha^*_6\\ \alpha^*_2&\alpha^*_4&\alpha^*_6&\alpha^*_7 \end{pmatrix}, |
we have
\begin{array}{llll} \alpha_1^* = \eta^{4 k} (\eta^k \alpha_1+t \alpha_6), & \alpha_2^* = \eta^{8 k} (\eta^k \alpha_2+t \alpha_7), & \alpha_3^* = \eta^{6 k} \alpha_3, & \alpha_4^* = \eta^{10 k} \alpha_4, \\ \alpha_5^* = -t \eta^{2 k} \alpha_4+\eta^{8 k} \alpha_5, & \alpha_6^* = \eta^{12 k} \alpha_6, & \alpha_7^* = \eta^{16 k} \alpha_7. \end{array} |
Since
\langle \alpha\nabla_1+\nabla_2+\beta\nabla_3+\gamma\nabla_5\rangle; |
\langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_3+\nabla_4 \rangle; |
\langle \alpha\nabla_2+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nabla_6 \rangle; |
\langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_6+\nabla_7 \rangle. |
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_3+\nabla_4 \rangle^{ {\begin{array}{l} O(\alpha, \beta, \gamma) = O(\alpha, \eta^4_5\beta, -\eta_5 \gamma) = O(\alpha, -\eta^3_5\beta, \eta^2_5 \gamma) = \\ O(\alpha, \eta^2_5\beta, -\eta^3_5 \gamma) = O(\alpha, -\eta_5\beta, \eta^4_5 \gamma)\end{array}}}, \\ \langle \alpha\nabla_1+\nabla_2+\beta\nabla_3+\gamma\nabla_5 \rangle^{ {\begin{array}{l} O(\alpha, \beta, \gamma) = O(-\eta_5\alpha, \eta^2_5\beta, \eta^4_5 \gamma) = O(\eta^2_5\alpha, \eta^4_5\beta, -\eta^3_5 \gamma) = \\ O(-\eta^3_5\alpha, -\eta_5\beta, \eta^2_5 \gamma) = O(\eta^4_5\alpha, -\eta^3_5\beta, -\eta_5 \gamma) \end{array}}}, \\ \langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_6+ \\ \nabla_7 \rangle^{{\begin{array}{l} O(\alpha, \beta, \gamma, \mu, \nu) = O(\eta^4_5\alpha, \beta, \eta^4_5 \gamma, \eta^2_5\mu, -\eta_5\nu) = \\ O(-\eta^3_5\alpha, \beta, -\eta^3_5 \gamma, \eta^4_5\mu, \eta^2_5\nu) = O(\eta^2_5\alpha, \beta, \eta^2_5 \gamma,- \eta_5\mu, -\eta^3_5\nu) = \\ O(-\eta_5\alpha, \beta, -\eta_5 \gamma, -\eta^3_5\mu, \eta^4_5\nu) \end{array}}}, \\ \langle \alpha\nabla_2+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+ \\ \nabla_6 \rangle^{{\begin{array}{l} O(\alpha, \beta, \gamma, \mu) = O(\eta_5^2\alpha, \eta_5^4\beta, -\eta_5^3 \gamma, -\eta_5\mu) = O(\eta_5^4\alpha, -\eta_5^3\beta, -\eta_5\gamma, \eta^2_5\mu) = \\ O(-\eta_5\alpha, \eta_5^2\beta, \eta_5^4 \gamma, -\eta^3_5\mu) = O(-\eta_5^3\alpha, -\eta_5\beta, \eta_5^2 \gamma, \eta^4_5\mu) \end{array}}},\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{402}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_5 & e_1e_4 = \beta e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \gamma e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{403}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_3e_3 = e_4+\gamma e_5 \\ {\mathbf{N}}_{404}^{\alpha, \beta,\gamma,\mu,\nu} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_5 \\ && e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 \\ & & e_3e_3 = e_4+\mu e_5 & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{405}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = e_4+\mu e_5 & e_3e_4 = e_5 \\ \end{array} |
Here we will collect all information about
\begin{array}{|l|l|l|l|} \hline \rm{ } & \rm{ } & \rm{Cohomology} & \rm{Automorphisms} \\ \hline {\mathbf{N}}^{4}_{11}(\lambda) & \begin{array}{l} e_1e_1 = e_2 \\ e_1e_2 = \lambda e_4 \\ e_2e_2 = e_3\\ e_2e_3 = e_4 \\ e_3e_3 = e_4 \end{array} & \begin{array}{l} \mathrm{H}^2_{\mathfrak{C}}(\mathbf{N}^{4}_{11}(\lambda)) = \Big \langle [\Delta_{ij}] \Big\rangle\\ (i,j) \notin \{ (1,1),(2,2),(3,3) \} \end{array} & \phi = \begin{pmatrix} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ t&0&0&1 \end{pmatrix}\\ \hline \end{array} |
Let us use the following notations:
\begin{array}{lll l} \nabla_1 = [\Delta_{12}], & \nabla_2 = [\Delta_{13}], & \nabla_3 = [\Delta_{14}], & \nabla_4 = [\Delta_{23}], \\ \nabla_5 = [\Delta_{24}], & \nabla_6 = [\Delta_{34}], & \nabla_7 = [\Delta_{44}]. \end{array} |
Take
\phi^T\begin{pmatrix} 0&\alpha_1&\alpha_2&\alpha_3\\ \alpha_1&0&\alpha_4&\alpha_5\\ \alpha_2&\alpha_4&0&\alpha_6\\ \alpha_3&\alpha_5&\alpha_6&\alpha_7 \end{pmatrix}\phi = \begin{pmatrix} \alpha^*&\alpha_1^{*}&\alpha^{*}_2&\alpha^*_3\\ \alpha_1^{*}&0&\alpha^*_4&\alpha^*_5\\ \alpha^{*}_2&\alpha^*_4&0&\alpha^*_6\\ \alpha^*_3&\alpha^*_5&\alpha^*_6&\alpha^*_7 \end{pmatrix} |
we have
\begin{array}{llll} \alpha_1^* = \alpha_1+\alpha_5t, & \alpha_2^* = \alpha_2+\alpha_6t, & \alpha_3^* = \alpha_3+\alpha_7t, & \alpha_4^* = \alpha_4, \\ \alpha_5^* = \alpha_5, & \alpha_6^* = \alpha_6, & \alpha_7^* = \alpha_7. \end{array} |
Since
\langle \alpha\nabla_1+\beta\nabla_2+\nabla_3+\gamma\nabla_4 \rangle; |
\langle \alpha\nabla_2+\beta\nabla_3+\gamma\nabla_4+\nabla_5 \rangle; |
\langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nabla_6 \rangle; |
\langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_6+\nabla_7 \rangle. |
Summarizing, we have the following distinct orbits:
\begin{array}{c} \langle \alpha\nabla_1+\beta\nabla_2+\nabla_3+\gamma\nabla_4 \rangle,\langle \alpha\nabla_1+\beta\nabla_2+\gamma\nabla_4+\mu\nabla_5+\nu\nabla_6+\nabla_7 \rangle, \\\langle \alpha\nabla_1+\beta\nabla_3+\gamma\nabla_4+\mu\nabla_5+\nabla_6 \rangle,\langle \alpha\nabla_2+\beta\nabla_3+\gamma\nabla_4+\nabla_5 \rangle,\end{array} |
which gives the following new algebras:
\begin{array}{llllllllllllllllll} {\mathbf{N}}_{406}^{\lambda,\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = \lambda e_4+\alpha e_5 & e_1e_3 = \beta e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = e_4+\gamma e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{407}^{\lambda,\alpha, \beta,\gamma,\mu,\nu} & : & e_1e_1 = e_2 & e_1e_2 = \lambda e_4+\alpha e_5 & e_1e_3 = \beta e_5 \\ && e_2e_2 = e_3 & e_2e_3 = e_4+\gamma e_5 & e_2e_4 = \mu e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{408}^{\lambda,\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = \lambda e_4+\alpha e_5 & e_1e_4 = \beta e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4+\gamma e_5 & e_2e_4 = \mu e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{409}^{\lambda,\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = \lambda e_4 & e_1e_3 = \alpha e_5 & e_1e_4 = \beta e_5 \\ && e_2e_2 = e_3 & e_2e_3 = e_4+\gamma e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \end{array} |
Remark 2. Note that the algebras
Theorem 5.1. Let
\begin{array}{llllllll} {\mathbf N}_{01} & : & e_1 e_1 = e_2 & e_1 e_2 = e_3 & e_2e_3 = e_4 \\ {\mathbf N}_{02} & : & e_1 e_1 = e_2 & e_1 e_2 = e_3 & e_1e_3 = e_4 & e_2 e_3 = e_4 && \\ {\mathbf N}_{03} & : & e_1 e_1 = e_2 & e_1 e_2 = e_3 & e_3 e_3 = e_4 &&\\ {\mathbf N}_{04} & : & e_1 e_1 = e_2 & e_1 e_2 = e_3 & e_2e_2 = e_4 & e_3 e_3 = e_4 &&\\ {\mathbf N}_{05} & : & e_1 e_1 = e_2 & e_1 e_3 = e_4 & e_2 e_2 = e_3 && \\ {\mathbf N}_{06} & : & e_1 e_1 = e_2 & e_1e_2 = e_4 & e_1 e_3 = e_4 & e_2 e_2 = e_3 && \\ {\mathbf N}_{07} & : & e_1 e_1 = e_2 & e_2 e_2 = e_3 & e_2 e_3 = e_4 && \\ {\mathbf N}_{08} & : & e_1 e_1 = e_2 & e_1e_3 = e_4 & e_2 e_2 = e_3 & e_2 e_3 = e_4 && \\ {\mathbf N}_{09} & : & e_1 e_1 = e_2 & e_2 e_2 = e_3 & e_3 e_3 = e_4 && \\ {\mathbf N}_{10} & : & e_1 e_1 = e_2 & e_2e_2 = e_3 & e_1e_2 = e_4 & e_3 e_3 = e_4 &&\\ {\mathbf N}_{11}^{\lambda} & : & e_1 e_1 = e_2 & e_1e_2 = \lambda e_4 & e_2 e_2 = e_3 \\ && e_2e_3 = e_4 & e_3 e_3 = e_4 &\\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{12} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{13}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = \alpha e_4 \\ && e_2e_2 = e_5 & e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{14} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{15} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{16} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = e_5 \\ {\mathbf{N}}_{17} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_2e_2 = e_3 & e_2e_3 = e_5 \\ {\mathbf{N}}_{18} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_2e_2 = e_3 \\ & & e_2e_3 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{19} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_2e_2 = e_3 & e_3e_3 = e_5 \\ {\mathbf{N}}_{20}^{\alpha} & : & e_1e_1 = e_2 & { e_1e_2 = e_4+\alpha e_5 }& e_1e_3 = e_4 \\ && e_2e_2 = e_3 & e_2e_3 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{21} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = e_4 \\ && e_2e_2 = e_3 & e_2e_3 = e_5 \\ {\mathbf{N}}_{22}^{\alpha\neq 1} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = e_4 \\ && e_2e_2 = e_3 & e_2e_3 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{23}^{\alpha, \beta} & : & e_1e_1 = e_2 & { e_1e_2 = \beta e_4 +\alpha e_5 }& e_1e_3 = e_4 \\ && e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{24}^{\alpha} & : & e_1e_1 = e_2 & { e_1e_2 = \alpha e_4+e_5 }& e_2e_2 = e_3 \\ && e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{25} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{26} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = e_5 \\ && e_2e_2 = e_3 & e_3e_3 = e_4 \\ {\mathbf{N}}_{27} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_3 = e_5 \\ {\mathbf{N}}_{28} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ & & e_2e_3 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{29} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_3e_3 = e_5 \\ {\mathbf{N}}_{30} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{31} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = e_5 \\ {\mathbf{N}}_{32}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{33} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{34} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_3 = e_5 \\ {\mathbf{N}}_{35} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{36} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 \\ && e_2e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{37} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 \\ && e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{38}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = \alpha e_5 \\ && e_2e_4 = e_5 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{39} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{40} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{41} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 \\ && e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{42} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{43} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{44} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{45} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{46} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_3e_4 = e_5 \\ {\mathbf{N}}_{47} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_5 \\ && e_2e_2 = e_3 & e_4e_4 = e_5 \\ {\mathbf{N}}_{48} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_3e_3 = e_5 \\ {\mathbf{N}}_{49}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{50}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_2e_2 = e_3 & e_2e_3 = \beta e_5 \\ & & e_2e_4 = e_5 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{51}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{52} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{53}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{54} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_2 = e_3 \\ && e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{55} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_2 = e_3 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{56} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_2 = e_3 & e_3e_4 = e_5 \\ {\mathbf{N}}_{57} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = e_5 \\ {\mathbf{N}}_{58} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{59} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_3 & e_2e_4 = e_5 \\ {\mathbf{N}}_{60} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_3 \\ & & e_2e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{61} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_3 & e_4e_4 = e_5 \\ {\mathbf{N}}_{62} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_5 \\ {\mathbf{N}}_{63}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{64} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ & & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{65} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_3e_3 = e_5 \\ {\mathbf{N}}_{66} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{67} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{68} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{69} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{70} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{71} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_3e_4 = e_5 & \\ {\mathbf{N}}_{72} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 \\ && e_1e_4 = \frac{3}{4}e_5 & e_2e_2 = e_4 & e_2e_3 = -\frac{3}{4}e_5 \\ {\mathbf{N}}_{73}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_2e_3 = 3e_5 & e_2e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{74}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 \\ && e_1e_4 = \alpha e_5 & e_2e_2 = e_4 & e_2e_4 = e_5 \\ {\mathbf{N}}_{75}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 \\ && e_2e_2 = e_4 & e_2e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{76}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & { e_1e_4 = (1+\alpha) e_5 } \\ && e_2e_2 = e_4 & e_2e_3 = 3\alpha e_5 \\ {\mathbf{N}}_{77}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = e_4 \\ && e_2e_3 = 3e_5 & e_2e_4 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{78}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = e_4 \\ && e_2e_3 = 3\alpha e_5 & e_2e_4 = \beta e_5 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{79} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{80}^{\alpha \neq 1} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_4 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{81}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{82} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{83}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_5 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{84} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = e_5 & e_2e_3 = e_4 \\ {\mathbf{N}}_{85}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{86}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{87} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = e_5 \\ && e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{88}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ & & e_2e_4 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{89}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_2 = e_5 \\ && e_2e_3 = e_4 & e_2e_4 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{90}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{91} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{92} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{93} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{94} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{95}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_5 \\ && e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{96}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ & & e_2e_4 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{97} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ {\mathbf{N}}_{98} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{99}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{100} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{101} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{102} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_3 = e_4 \\ {\mathbf{N}}_{103} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ {\mathbf{N}}_{104}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_5 \\ && e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{105}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{106} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_5 \\ && e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{107} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ {\mathbf{N}}_{108} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{109} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{110} & : & e_1e_1 = e_2 & e_2e_2 = e_5 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{111} & : & e_1e_1 = e_2 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{112}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{113} & : & e_1e_1 = e_2 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{114} & : & e_1e_1 = e_2 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{115} & : & e_1e_1 = e_2 & e_2e_2 = e_5 & e_2e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{116} & : & e_1e_1 = e_2 & e_2e_2 = e_5 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{117} & : & e_1e_1 = e_2 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ {\mathbf{N}}_{118} & : & e_1e_1 = e_2 & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{119} & : & e_1e_1 = e_2 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{120} & : & e_1e_1 = e_2 & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{121} & : & e_1e_1 = e_2 & e_2e_3 = e_4 & e_2e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{122} & : & e_1e_1 = e_2 & e_2e_3 = e_4 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{123} & : & e_1e_1 = e_2 & e_2e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{124} & : & e_1e_1 = e_2 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}^{\alpha}_{125} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}^{\alpha,\beta}_{126} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_5 & e_2e_2 = e_5 \\ & & e_3e_3 = e_4 + \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}^{\alpha}_{127} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_5 \\ && e_2e_3 = e_5 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{128} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = e_5 \\ && e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{129} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_2e_2 = e_5 \\ && e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{130} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_2e_2 = e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{131} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{132} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_3e_3 = e_4+e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{133} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{134} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{135}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_4 & e_2e_3 = -2e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{136}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 \\ && e_2e_2 = e_4+\alpha e_5 & e_2e_3 = \beta e_5 \\ && e_3e_3 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{137}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_3 = \alpha e_5 & e_2e_4 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{138}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ && e_2e_2 = e_4+e_5 & e_2e_4 = e_5 & e_3e_3 = 4e_5 \\ {\mathbf{N}}_{139}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_2e_3 = \alpha e_5 \\ {\mathbf{N}}_{140}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_2e_3 = \alpha e_5 & e_3e_3 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{141}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{142}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4+e_5 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{143}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ && e_2e_3 = e_5 & e_2e_4 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{144}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ && e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{145}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{146} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ && e_2e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{147} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{148} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{149} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{150}^{\alpha, \beta, \gamma, \mu } & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 & e_2e_2 = e_4 \\ && e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = e_4+\mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{151}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4+\beta e_5 \\ {\mathbf{N}}_{152}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_4 \\ && e_2e_3 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{153}^{\alpha, \beta, \gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_4 \\ && e_2e_4 = e_5 & { e_3e_3 = e_4+\beta e_5 } & e_3e_4 = \gamma e_5 \\ {\mathbf{N}}_{154}^{\alpha, \beta, \gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_4 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & { e_3e_3 = e_4+\gamma e_5 } & e_4e_4 = e_5 \\ {\mathbf{N}}_{155} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 & e_3e_3 = e_4 \\ {\mathbf{N}}_{156}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 & e_2e_3 = e_5 \\ & & { e_3e_3 = e_4+\alpha e_5 } \\ {\mathbf{N}}_{157}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{158}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 & e_2e_4 = e_5 \\ & & e_3e_3 = e_4+\alpha e_5 & e_3e_4 = \beta e_5 \\ {\mathbf{N}}_{159} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_4 \\ & & e_3e_3 = e_4+e_5 \\ {\mathbf{N}}_{160}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_3 = e_5 & e_2e_4 = \alpha e_5 \\ & & e_3e_3 = e_4+\beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{161} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_3 = e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{162}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_4 = e_5 \\ && e_3e_3 = e_4+e_5 & e_3e_4 = \alpha e_5 \\ {\mathbf{N}}_{163}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_4 = e_5 \\ & & e_3e_3 = e_4+\alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{164}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_2e_4 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \alpha e_5 \\ {\mathbf{N}}_{165} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_3e_3 = e_4+e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{166} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{167} & : & e_1e_1 = e_2 & e_2e_2 = e_4 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{168}^{\lambda \neq 1; 2} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_1e_4 = (\lambda-4)e_5 & { e_2e_2 = \lambda e_4 + 4(1-\lambda)(\lambda-2)e_5 } \\ && { e_2e_3 = - \lambda(\lambda+2)e_5 }\\ {\mathbf{N}}_{169}^{\alpha\neq0} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = \alpha e_5 & e_2e_3 = -2 e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{170}^{\lambda, \alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ & & e_1e_4 = \alpha e_5 & e_2e_2 = \lambda e_4 & { e_2e_3 = (1+\alpha(3\lambda-2)) e_5 } \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{171}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_1e_4 = e_5 & e_2e_2 = \lambda e_4 \\ && e_2e_3 = (3\lambda-2) e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{172}^{\lambda \neq 0,\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4 + e_5 & e_2e_3 = \alpha e_5 & e_2e_4 = \frac{\lambda} {4} e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{173}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_5 \\ & & e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{174}^{\lambda\neq-2, \alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4 + \alpha e_5 & e_2e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{175}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ & & e_2e_2 = -2 e_4+\alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{176}^{\lambda,\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4+\alpha e_5 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{177}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4+ e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{178}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ & & e_2e_2 = \lambda e_4 & e_2e_3 = e_5 & e_2e_4 = e_5 \\ {\mathbf{N}}_{179}^{\lambda,\alpha\neq0} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \lambda e_4 \\ && e_2e_3 = e_5 & e_2e_4 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{180}^{\lambda,\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \lambda e_4 \\ && e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{181}^{\alpha \neq 0 } & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = -2 e_4 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = e_5 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{182} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = -2 e_4 & e_2e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{183}^{\lambda\neq 2} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4 & e_2e_4 = e_5 \\ {\mathbf{N}}_{184}^{\lambda, \alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4 & e_2e_4 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{185}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{186}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{187}^{\lambda} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = \lambda e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{188}^{\alpha, \beta} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_5 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{189}^{\alpha} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ & & e_2e_2 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{190} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\\end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{191}^{\alpha} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{191}^{\alpha} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{192} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{193} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{194} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{195} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{196} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ {\mathbf{N}}_{197} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = e_5 \\ {\mathbf{N}}_{198} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{199}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{200} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_3 = e_5 \\ {\mathbf{N}}_{201} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{202}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{203} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{204} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{205} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{206}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_5 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{207}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_5 \\ && e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{208} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_5 \\ && e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{209}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_5 \\ && e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{210}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{211} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{212} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{213} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{214} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{215}^{\alpha, \beta} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ && e_2e_2 = e_4 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{216}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = e_4+\alpha e_5 & e_2e_3 = \beta e_5 \\ & & e_3e_3 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{217}^{\alpha} & : & e_1e_1 = \alpha e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{218}^\alpha & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ && e_2e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{219} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = 2e_5 \\ && e_2e_2 = e_4+e_5 & e_2e_3 = e_5 \\ {\mathbf{N}}_{220}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_4+\alpha e_5 & e_3e_3 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{221}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_4 & e_2e_3 = \alpha e_5 \\ {\mathbf{N}}_{222}^{\alpha\neq 0} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 & e_2e_2 = e_4 \\ & & e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{223}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{224}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_4 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{225}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4+e_5 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{226}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ & & e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{227}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{228} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ && e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{229} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{230} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{231} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{232}^{\alpha, \beta, \gamma, \mu} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = e_4+\beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{233}^{\alpha, \beta} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{234}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4+e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{235}^{\alpha, \beta, \gamma} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{236}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{237}^{\alpha\neq0, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ & & e_2e_3 = e_4+e_5 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{238}^{\alpha\neq0, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{239}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{240}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4+e_5 \\ & & e_3e_3 = \alpha e_5 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{241} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{242}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 \\ & & e_3e_3 = e_5 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{243} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{244} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 \\ & & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{245} & : & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{246}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_2e_2 = e_5 \\ && e_2e_3 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{247}^{\alpha, \beta} & : & e_1e_1 = e_5 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = e_5 \\ & & e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{248} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{249}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{250} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_3 = e_5 & e_3e_3 = e_4 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{251}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ & & e_2e_3 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{252}^{\alpha, \beta} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{253}^{\alpha} & : & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_3 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{254} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{255}^{\alpha} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = e_5 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{256}^{\alpha} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = e_5 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{257} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_3 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{258} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{259} & : & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_4 = e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{260}^{\alpha} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{261} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_4 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{262} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{263} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_3e_3 = e_4 \\ & & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{264} & : & e_1e_2 = e_3 & e_2e_2 = e_5 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{265} & : & e_1e_2 = e_3 & e_2e_3 = e_5 & e_3e_3 = e_4 \\ & & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{266} & : & e_1e_2 = e_3 & e_2e_3 = e_5 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{267} & : & e_1e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{268} & : & e_1e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{269} & : & e_1e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{270} & : & e_1e_2 = e_3 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{271}^{\alpha, \beta, \gamma,\mu} & : & e_1e_1 = e_4+e_5 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_2e_2 = \beta e_5 \\ && e_2e_3 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{272}^{\alpha, \beta} & : & e_1e_1 = e_4+\alpha e_5 & e_1e_2 = e_3 & e_1e_3 = \beta e_5 \\ && e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{273}^{\alpha, \beta} & : & e_1e_1 = e_4+\alpha e_5 & e_1e_2 = e_3 & e_1e_3 = \beta e_5 \\ & & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{274}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_4+e_5 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = \beta e_5 \\ & & e_2e_4 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{275}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_3 = \beta e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{276}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ && e_2e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{277}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{278} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{279}^{\alpha} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{280}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{281} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_3 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{282}^{\alpha} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 \\ & & e_2e_4 = e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{283}^{\alpha} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{284}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{285}^{\alpha} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_2e_3 = e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{286} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_3e_3 = e_4 \\ & & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{287} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{288}^{\alpha, \beta, \gamma,\mu,\nu} & : & e_1e_1 = e_4+\alpha e_5 & e_1e_2 = e_3 & e_1e_3 = \beta e_5 \\ && e_2e_2 = e_4+\gamma e_5 & e_2e_3 = \mu e_5 & e_3e_3 = e_4 \\ & & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{289}^{\alpha, \beta, \gamma,\mu} & : & e_1e_1 = e_4+\alpha e_5 & e_1e_2 = e_3 & e_1e_4 = \beta e_5 \\ && e_2e_2 = e_4+\gamma e_5 & e_2e_4 = \mu e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{290}^{\alpha, \beta} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_4+\beta e_5 & e_2e_3 = \gamma e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{291}^{\alpha, \beta\neq0 ,\gamma} & : & e_1e_1 = e_4 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = \beta e_5 \\ & & e_2e_3 = \gamma e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{292}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 \\ & & e_1e_4 = \alpha e_5 & e_2e_2 = \beta e_5 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = -\alpha e_5 \\ {\mathbf{N}}_{293}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = \alpha e_5 & e_2e_3 = e_4 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{294}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{295}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 & e_2e_2 = e_5 \\ && e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{296}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ & & e_2e_2 = e_5 & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{297}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{298}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ & & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{299}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = \alpha e_4 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{300}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = e_4 \\ && e_2e_4 = \alpha e_4 & e_3e_3 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{301} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ {\mathbf{N}}_{302} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{303}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{304}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{305} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{306} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{307} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{308} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{309}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 \\ & & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4+\beta e_5 & e_3e_3 = -e_5 \\ {\mathbf{N}}_{310}^{\alpha, \beta\neq-1} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_3 = e_4 & e_3e_3 = \beta e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{311}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 \\ & & e_2e_3 = e_4+\beta e_5 & e_2e_4 = e_5 & e_3e_3 = \gamma e_5 \\ {\mathbf{N}}_{312}^{\alpha, \beta,\gamma, \mu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = e_4+\beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{313}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_4 & e_2e_2 = \alpha e_5 \\ & & e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{314}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = \alpha e_5 & e_2e_3 = \beta e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{315}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 \\ && e_2e_2 = \beta e_5 & e_2e_3 = \gamma e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{316}^{\alpha, \beta, \gamma, \mu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = e_5 \\ && e_2e_2 = \alpha e_5 & e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{317} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{318}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ && e_2e_2 = e_5 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{319}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{320}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 & e_2e_2 = \alpha e_5 \\ && e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{321} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = e_5 \\ & & e_2e_3 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{322}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 \\ && e_2e_3 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{323}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{324}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_2 = e_5 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{325} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 \\ & & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{326}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{327}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_3 = e_5 & e_2e_4 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{328} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{329} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_4 = e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}^\alpha_{330} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_2e_4 = e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{331} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{332} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_3e_3 = e_4 \\ & & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{333} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{334}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_4+\beta e_5 & e_2e_3 = \gamma e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{335}^{\alpha, \beta,\gamma, \mu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 & e_1e_4 = \beta e_5 \\ && e_2e_2 = e_4+\gamma e_5 & e_2e_3 = \mu e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{336}^{\alpha, \beta,\gamma, \mu, \nu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = \alpha e_5 \\ & & e_2e_2 = e_4+\beta e_5 & e_2e_3 = \gamma e_5 & e_2e_4 = \mu e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{337}^{\alpha, \beta,\gamma, \mu} & : & e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_4 = \alpha e_5 \\ && e_2e_2 = e_4+\beta e_5 & e_2e_3 = \gamma e_5 & e_2e_4 = \mu e_5 \\ && e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{338}^{\alpha} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = -2e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{339}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{340}^{\alpha, \beta ,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ & & e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{341}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ {\mathbf{N}}_{342}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{343}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{344}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{345}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{346}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{347}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_3 = e_5 \\ && e_3e_3 = \alpha e_5 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{348} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_4 = e_5 \\ {\mathbf{N}}_{349} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_2e_4 = e_5 & e_3e_3 = e_5 \\ {\mathbf{N}}_{350} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{351}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ & & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{352} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ && e_3e_3 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{353} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_3e_4 = e_5 \\ {\mathbf{N}}_{354} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_4e_4 = e_5 \\ {\mathbf{N}}_{355}^{\alpha\neq0, \beta} & : & e_1e_1 = e_2 & { e_1e_3 = e_4+\alpha e_5 } \\ && e_1e_4 = e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = \beta e_5 & { e_3e_3 = (\beta+2)e_5 } \\ {\mathbf{N}}_{356}^{\alpha\neq0, \beta,\gamma} & : & e_1e_1 = e_2 & { e_1e_3 = e_4+\alpha e_5 } \\ && e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_2e_4 = e_5 \\ & & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 & \\ {\mathbf{N}}_{357}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & { e_1e_3 = e_4+\alpha e_5 } \\ & & e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_3e_3 = \gamma e_5 \\ & & e_3e_4 = \mu e_5 & e_4e_4 = e_5 & \\ {\mathbf{N}}_{358}^{\alpha,\beta} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{359}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = \gamma e_5 & \\ {\mathbf{N}}_{360}^{\alpha,\beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ & & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 & \\ {\mathbf{N}}_{361}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = \beta e_5 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{362}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = e_4 & e_2e_4 = \beta e_5 \\ & & e_3e_3 = \gamma e_5 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{363}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4 & e_2e_4 = \beta e_5 & e_3e_3 = \gamma e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{364}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4 & e_2e_4 = e_5 \ & e_3e_3 = \beta e_5 \\ {\mathbf{N}}_{365}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{366}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_1e_4 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{367} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ {\mathbf{N}}_{368}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4 & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{369}^{\alpha,\beta} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ && e_2e_4 = \alpha e_5 & e_3e_3 = \beta e_5 & e_3e_4 = e_5 & \\ {\mathbf{N}}_{370} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_4 & e_3e_3 = e_5 \\ {\mathbf{N}}_{371}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ && e_2e_4 = e_5 & e_3e_3 = \alpha e_5 \\ {\mathbf{N}}_{372}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = e_5 & e_3e_3 = \alpha e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{373}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_2e_4 = e_5 \\ && e_3e_3 = \alpha e_5 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{374} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{375}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ && e_3e_3 = e_5 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{376} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{377} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{378} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{379}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_1e_3 = e_4 \\ && e_1e_4 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_4+\beta e_5 & e_3e_3 = \gamma e_5 \\ {\mathbf{N}}_{380}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_1e_3 = e_4 \\ & & e_1e_4 = \beta e_5 & e_2e_2 = e_3 & e_2e_3 = e_4 \\ & & e_2e_4 = \gamma e_5 & e_3e_3 = \mu e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{381}^{\alpha, \beta,\gamma,\mu, \nu} & : & e_1e_1 = e_2 & e_1e_2 = \alpha e_5 & e_1e_3 = e_4 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4+\beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = \mu e_5 \\ & & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{382}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_4 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = e_4+\beta e_5 & e_2e_4 = e_5 & e_3e_3 = \gamma e_5 \\ {\mathbf{N}}_{383}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{384}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_3 = \alpha e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \mu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{385}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ && e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{386}^{\alpha} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = e_5 \\ && e_2e_2 = e_3 & e_2e_3 = \alpha e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{387}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ && e_2e_3 = \beta e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{388}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_3 = e_5 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = \gamma e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{389} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_3e_3 = e_4 \\ {\mathbf{N}}_{390} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_5 & e_3e_3 = e_4 \\ \end{array} |
\begin{array}{llllllll} {\mathbf{N}}_{391}^{\alpha} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = \alpha e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{392}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_1e_4 = e_5 & e_2e_2 = e_3 & e_2e_3 = \alpha e_5 \\ && e_2e_4 = \beta e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{393} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_5 \\ && e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{394}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_5 \\ & & e_2e_4 = \alpha e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{395}^{\alpha, \beta} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_3 = e_5 & e_2e_4 = \alpha e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = \beta e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{396} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{397} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_4 = e_5 \\ & & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{398}^{\alpha} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_2e_4 = e_5 \\ && e_3e_3 = e_4 & e_3e_4 = \alpha e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{399} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{400} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_3e_3 = e_4 \\ && e_3e_4 = e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{401} & : & e_1e_1 = e_2 & e_2e_2 = e_3 & e_3e_3 = e_4 & e_4e_4 = e_5 \\ {\mathbf{N}}_{402}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_5 & e_1e_4 = \beta e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \gamma e_5 & e_2e_4 = e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{403}^{\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_5 & e_1e_4 = e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_3e_3 = e_4+\gamma e_5 \\ {\mathbf{N}}_{404}^{\alpha, \beta,\gamma,\mu,\nu} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_5 \\ & & e_2e_2 = e_3 & e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 \\ & & e_3e_3 = e_4+\mu e_5 & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{405}^{\alpha, \beta,\gamma,\mu} & : & e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_4 = \alpha e_5 & e_2e_2 = e_3 \\ & & e_2e_3 = \beta e_5 & e_2e_4 = \gamma e_5 & e_3e_3 = e_4+\mu e_5 & e_3e_4 = e_5 \\ {\mathbf{N}}_{406}^{\lambda,\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & { e_1e_2 = \lambda e_4+\alpha e_5 } \\ && e_1e_3 = \beta e_5 & e_1e_4 = e_5 & e_2e_2 = e_3 \\ && e_2e_3 = e_4+\gamma e_5 & e_3e_3 = e_4 \\ {\mathbf{N}}_{407}^{\lambda,\alpha, \beta,\gamma,\mu,\nu} & : & e_1e_1 = e_2 & { e_1e_2 = \lambda e_4+\alpha e_5 } \\ && e_1e_3 = \beta e_5 & e_2e_2 = e_3 & { e_2e_3 = e_4+\gamma e_5 } \\ & & e_2e_4 = \mu e_5 & e_3e_3 = e_4 & e_3e_4 = \nu e_5 & e_4e_4 = e_5 \\ {\mathbf{N}}_{408}^{\lambda,\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & { e_1e_2 = \lambda e_4+\alpha e_5 } \\ & & e_1e_4 = \beta e_5 & e_2e_2 = e_3 & e_2e_3 = e_4+\gamma e_5 \\ && e_2e_4 = \mu e_5 & e_3e_3 = e_4 & e_3e_4 = e_5 \\ {\mathbf{N}}_{409}^{\lambda,\alpha, \beta,\gamma} & : & e_1e_1 = e_2 & e_1e_2 = \lambda e_4 & e_1e_3 = \alpha e_5 \\ && e_1e_4 = \beta e_5 & e_2e_2 = e_3 & { e_2e_3 = e_4+\gamma e_5 } \\ & & e_2e_4 = e_5 & e_3e_3 = e_4 \end{array} |
[1] | Hamblin MR (2017) History of Low-Level Laser (Light) Therapy, In: Hamblin MR, de Sousa MVP, Agrawal T, Editors, Handbook of Low-Level Laser Therapy, Singapore: Pan Stanford Publishing. |
[2] |
Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33: 183–184. doi: 10.1089/pho.2015.9848
![]() |
[3] | Hamblin MR, de Sousa MVP, Agrawal T (2017) Handbook of Low-Level Laser Therapy, Singapore: Pan Stanford Publishing. |
[4] |
de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22: 348–364. doi: 10.1109/JSTQE.2016.2561201
![]() |
[5] |
Wang Y, Huang YY, Wang Y, et al. (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 6: 33719. doi: 10.1038/srep33719
![]() |
[6] |
Wang L, Jacques SL, Zheng L (1995) MCML-Monte Carlo modeling of light transport in multi-layered tissues. Comput Meth Prog Bio 47: 131–146. doi: 10.1016/0169-2607(95)01640-F
![]() |
[7] | Huang YY, Chen AC, Carroll JD, et al. (2009) Biphasic dose response in low level light therapy. Dose Response 7: 358–383. |
[8] |
Huang YY, Sharma SK, Carroll JD, et al. (2011) Biphasic dose response in low level light therapy-an update. Dose Response 9: 602–618. doi: 10.2203/dose-response.11-009.Hamblin
![]() |
[9] |
Mason MG, Nicholls P, Cooper CE (2014) Re-evaluation of the near infrared spectra of mitochondrial cytochrome c oxidase: Implications for non invasive in vivo monitoring of tissues. Biochim Biophys Acta 1837: 1882–1891. doi: 10.1016/j.bbabio.2014.08.005
![]() |
[10] |
Karu TI, Pyatibrat LV, Kolyakov SF, et al. (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B 81: 98–106. doi: 10.1016/j.jphotobiol.2005.07.002
![]() |
[11] |
Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62: 607–610. doi: 10.1002/iub.359
![]() |
[12] |
Wong-Riley MT, Liang HL, Eells JT, et al. (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280: 4761–4771. doi: 10.1074/jbc.M409650200
![]() |
[13] |
Lane N (2006) Cell biology: power games. Nature 443: 901–903. doi: 10.1038/443901a
![]() |
[14] |
Pannala VR, Camara AK, Dash RK (2016) Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition. J Appl Physiol 121: 1196–1207. doi: 10.1152/japplphysiol.00524.2016
![]() |
[15] |
Fernandes AM, Fero K, Driever W, et al. (2013) Enlightening the brain: linking deep brain photoreception with behavior and physiology. Bioessays 35: 775–779. doi: 10.1002/bies.201300034
![]() |
[16] |
Poletini MO, Moraes MN, Ramos BC, et al. (2015) TRP channels: a missing bond in the entrainment mechanism of peripheral clocks throughout evolution. Temperature 2: 522–534. doi: 10.1080/23328940.2015.1115803
![]() |
[17] |
Caterina MJ, Pang Z (2016) TRP channels in skin biology and pathophysiology. Pharmaceuticals 9: 77. doi: 10.3390/ph9040077
![]() |
[18] |
Montell C (2011) The history of TRP channels, a commentary and reflection. Pflugers Arch 461: 499–506. doi: 10.1007/s00424-010-0920-3
![]() |
[19] |
Smani T, Shapovalov G, Skryma R, et al. (2015) Functional and physiopathological implications of TRP channels. Biochim Biophys Acta 1853: 1772–1782. doi: 10.1016/j.bbamcr.2015.04.016
![]() |
[20] |
Cronin MA, Lieu MH, Tsunoda S (2006) Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors. J Cell Sci 119: 2935–2944. doi: 10.1242/jcs.03049
![]() |
[21] |
Sancar A (2000) Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu Rev Biochem 69: 31–67. doi: 10.1146/annurev.biochem.69.1.31
![]() |
[22] |
Weber S (2005) Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim Biophys Acta 1707: 1–23. doi: 10.1016/j.bbabio.2004.02.010
![]() |
[23] | Gillette MU, Tischkau SA (1999) Suprachiasmatic nucleus: the brain's circadian clock. Recent Prog Horm Res 54: 33–58. |
[24] |
Kofuji P, Mure LS, Massman LJ, et al. (2016) Intrinsically photosensitive petinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks. PLoS One 11: e0168651. doi: 10.1371/journal.pone.0168651
![]() |
[25] |
Sexton T, Buhr E, Van Gelder RN (2012) Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem 287: 1649–1656. doi: 10.1074/jbc.R111.301226
![]() |
[26] |
Ho MW (2015) Illuminating water and life: Emilio Del Giudice. Electromagn Biol Med 34: 113–122. doi: 10.3109/15368378.2015.1036079
![]() |
[27] |
Inoue S, Kabaya M (1989) Biological activities caused by far-infrared radiation. Int J Biometeorol 33: 145–150. doi: 10.1007/BF01084598
![]() |
[28] |
Damodaran S (2015) Water at biological phase boundaries: its role in interfacial activation of enzymes and metabolic pathways. Subcell Biochem 71: 233–261. doi: 10.1007/978-3-319-19060-0_10
![]() |
[29] | Chai B, Yoo H, Pollack GH (2009) Effect of radiant energy on near-surface water. J Phys Chem B 113: 13953–13958. |
[30] |
Pollack GH, Figueroa X, Zhao Q (2009) Molecules, water, and radiant energy: new clues for the origin of life. Int J Mol Sci 10: 1419–1429. doi: 10.3390/ijms10041419
![]() |
[31] |
Sommer AP, Haddad M, Fecht HJ (2015) Light effect on water viscosity: implication for ATP biosynthesis. Sci Rep 5: 12029. doi: 10.1038/srep12029
![]() |
[32] | FDA (2016) Code of Federal Regulations 21CFR890.5500, Title 21, Vol 8. |
[33] |
Chen ACH, Huang YY, Arany PR, et al. (2009) Role of reactive oxygen species in low level light therapy. Proc SPIE 7165: 716502–716511. doi: 10.1117/12.814890
![]() |
[34] |
Chen AC, Arany PR, Huang YY, et al. (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6: e22453. doi: 10.1371/journal.pone.0022453
![]() |
[35] |
Sharma SK, Kharkwal GB, Sajo M, et al. (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43: 851–859. doi: 10.1002/lsm.21100
![]() |
[36] |
Tatmatsu-Rocha JC, Ferraresi C, Hamblin MR, et al. (2016) Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. J Photochem Photobiol B 164: 96–102. doi: 10.1016/j.jphotobiol.2016.09.017
![]() |
[37] |
De Marchi T, Leal Junior EC, Bortoli C, et al. (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27: 231–236. doi: 10.1007/s10103-011-0955-5
![]() |
[38] |
Fillipin LI, Mauriz JL, Vedovelli K, et al. (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37: 293–300. doi: 10.1002/lsm.20225
![]() |
[39] | Huang YY, Nagata K, Tedford CE, et al. (2013) Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics 6: 829–838. |
[40] |
Hervouet E, Cizkova A, Demont J, et al. (2008) HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis 29: 1528–1537. doi: 10.1093/carcin/bgn125
![]() |
[41] | Madungwe NB, Zilberstein NF, Feng Y, et al. (2016) Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart. Am J Cardiovasc Dis 6: 93–108. |
[42] |
Martins DF, Turnes BL, Cidral-Filho FJ, et al. (2016) Light-emitting diode therapy reduces persistent inflammatory pain: Role of interleukin 10 and antioxidant enzymes. Neuroscience 324: 485–495. doi: 10.1016/j.neuroscience.2016.03.035
![]() |
[43] |
Macedo AB, Moraes LH, Mizobuti DS, et al. (2015) Low-level laser therapy (LLLT) in dystrophin-deficient muscle cells: effects on regeneration capacity, inflammation response and oxidative stress. PLoS One 10: e0128567. doi: 10.1371/journal.pone.0128567
![]() |
[44] |
Chen AC, Huang YY, Sharma SK, et al. (2011) Effects of 810-nm laser on murine bone-marrow-derived dendritic cells. Photomed Laser Surg 29: 383–389. doi: 10.1089/pho.2010.2837
![]() |
[45] |
Yamaura M, Yao M, Yaroslavsky I, et al. (2009) Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med 41: 282–290. doi: 10.1002/lsm.20766
![]() |
[46] |
Hwang MH, Shin JH, Kim KS, et al. (2015) Low level light therapy modulates inflammatory mediators secreted by human annulus fibrosus cells during intervertebral disc degeneration in vitro. Photochem Photobiol 91: 403–410. doi: 10.1111/php.12415
![]() |
[47] |
Imaoka A, Zhang L, Kuboyama N, et al. (2014) Reduction of IL-20 expression in rheumatoid arthritis by linear polarized infrared light irradiation. Laser Ther 23: 109–114. doi: 10.5978/islsm.14-OR-08
![]() |
[48] |
Lim W, Choi H, Kim J, et al. (2015) Anti-inflammatory effect of 635 nm irradiations on in vitro direct/indirect irradiation model. J Oral Pathol Med 44: 94–102. doi: 10.1111/jop.12204
![]() |
[49] | Choi H, Lim W, Kim I, et al. (2012) Inflammatory cytokines are suppressed by light-emitting diode irradiation of P. gingivalis LPS-treated human gingival fibroblasts: inflammatory cytokine changes by LED irradiation. Lasers Med Sci 27: 459–467. |
[50] |
Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108: 29–34. doi: 10.1034/j.1600-0722.2000.00783.x
![]() |
[51] |
Nomura K, Yamaguchi M, Abiko Y (2001) Inhibition of interleukin-1beta production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci 16: 218–223. doi: 10.1007/PL00011358
![]() |
[52] |
Briken V, Mosser DM (2011) Editorial: switching on arginase in M2 macrophages. J Leukoc Biol 90: 839–841. doi: 10.1189/jlb.0411203
![]() |
[53] |
Whyte CS, Bishop ET, Ruckerl D, et al. (2011) Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J Leukoc Biol 90: 845–854. doi: 10.1189/jlb.1110644
![]() |
[54] | Xu H, Wang Z, Li J, et al. (2017) The polarization states of microglia in TBI: A new paradigm for pharmacological intervention. Neural Plast 2017: 5405104. |
[55] | Lu J, Xie L, Liu C, et al. (2017) PTEN/PI3k/AKT regulates macrophage polarization in emphysematous mice. Scand J Immunol. |
[56] |
Saha B, Kodys K, Szabo G (2016) Hepatitis C virus-induced monocyte differentiation into polarized M2 macrophages promotes stellate cell activation via TGF-beta. Cell Mol Gastroenterol Hepatol 2: 302–316. doi: 10.1016/j.jcmgh.2015.12.005
![]() |
[57] | Fernandes KP, Souza NH, Mesquita-Ferrari RA, et al. (2015) Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers. J Photochem Photobiol B 153: 344–351. |
[58] |
Silva IH, de Andrade SC, de Faria AB, et al. (2016) Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers. Lasers Med Sci 31: 1855–1862. doi: 10.1007/s10103-016-2061-1
![]() |
[59] |
von Leden RE, Cooney SJ, Ferrara TM, et al. (2013) 808 nm wavelength light induces a dose-dependent alteration in microglial polarization and resultant microglial induced neurite growth. Lasers Surg Med 45: 253–263. doi: 10.1002/lsm.22133
![]() |
[60] | Sousa KB, de Santana Araujo L, Pedroso NM, et al. (2017) Photobiomodulation effects on gene and protein expression of proinflammatory chemokines and cytokines by J774 macrophages polarized to M1 phenotype. Lasers Surg Med 49: 36. |
[61] | de Lima FJ, de Oliveira Neto OB, Barbosa FT, et al. (2016) Is there a protocol in experimental skin wounds in rats using low-level diode laser therapy (LLDLT) combining or not red and infrared wavelengths? Systematic review. Lasers Med Sci 31: 779–787. |
[62] | Tchanque-Fossuo CN, Ho D, Dahle SE, et al. (2016) Low-level light therapy for treatment of diabetic foot ulcer: a review of clinical experiences. J Drugs Dermatol 15: 843–848. |
[63] |
Gupta A, Keshri GK, Yadav A, et al. (2015) Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics 8: 489–501. doi: 10.1002/jbio.201400058
![]() |
[64] |
Weylandt KH, Chiu CY, Gomolka B, et al. (2012) Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation. Prostag Oth Lipid M 97: 73–82. doi: 10.1016/j.prostaglandins.2012.01.005
![]() |
[65] |
Tang Y, Zhang MJ, Hellmann J, et al. (2013) Proresolution therapy for the treatment of delayed healing of diabetic wounds. Diabetes 62: 618–627. doi: 10.2337/db12-0684
![]() |
[66] |
Bohr S, Patel SJ, Sarin D, et al. (2013) Resolvin D2 prevents secondary thrombosis and necrosis in a mouse burn wound model. Wound Repair Regen 21: 35–43. doi: 10.1111/j.1524-475X.2012.00853.x
![]() |
[67] |
Castano AP, Dai T, Yaroslavsky I, et al. (2007) Low-level laser therapy for zymosan-induced arthritis in rats: Importance of illumination time. Lasers Surg Med 39: 543–550. doi: 10.1002/lsm.20516
![]() |
[68] |
Moriyama Y, Moriyama EH, Blackmore K, et al. (2005) In vivo study of the inflammatory modulating effects of low-level laser therapy on iNOS expression using bioluminescence imaging. Photochem Photobiol 81: 1351–1355. doi: 10.1562/2005-02-28-RA-450
![]() |
[69] |
Pallotta RC, Bjordal JM, Frigo L, et al. (2012) Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 27: 71–78. doi: 10.1007/s10103-011-0906-1
![]() |
[70] | Ferraresi C, Hamblin MR, Parizotto NA (2012) Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 1: 267–286. |
[71] | Ferraresi C, Huang YY, Hamblin MR (2016) Photobiomodulation in human muscle tissue: an advantage in sports performance? J Biophotonics. |
[72] |
Ferraresi C, de Sousa MV, Huang YY, et al. (2015) Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci 30: 1259–1267. doi: 10.1007/s10103-015-1723-8
![]() |
[73] |
Silveira PC, Scheffer Dda L, Glaser V, et al. (2016) Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res 50: 503–513. doi: 10.3109/10715762.2016.1147649
![]() |
[74] |
Pires de Sousa MV, Ferraresi C, Kawakubo M, et al. (2016) Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate. Neurophotonics 3: 015003. doi: 10.1117/1.NPh.3.1.015003
![]() |
[75] |
de Sousa MV, Ferraresi C, de Magalhaes AC, et al. (2014) Building, testing and validating a set of home-made von Frey filaments: A precise, accurate and cost effective alternative for nociception assessment. J Neurosci Methods 232: 1–5. doi: 10.1016/j.jneumeth.2014.04.017
![]() |
[76] | Kobiela Ketz A, Byrnes KR, Grunberg NE, et al. (2016) Characterization of Macrophage/Microglial activation and effect of photobiomodulation in the spared nerve injury model of neuropathic pain. Pain Med: pnw144. |
[77] |
Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87: 149–158. doi: 10.1016/S0304-3959(00)00276-1
![]() |
[78] |
de Lima FM, Vitoretti L, Coelho F, et al. (2013) Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci 28: 551–564. doi: 10.1007/s10103-012-1088-1
![]() |
[79] |
Silva VR, Marcondes P, Silva M, et al. (2014) Low-level laser therapy inhibits bronchoconstriction, Th2 inflammation and airway remodeling in allergic asthma. Respir Physiol Neurobiol 194: 37–48. doi: 10.1016/j.resp.2014.01.008
![]() |
[80] | Rigonato-Oliveira N, Brito A, Vitoretti L, et al. (2017) Effect of low-level laser therapy on chronic lung inflammation in experimental model of asthma: A comparative study of doses. Lasers Surg Med 49: 36. |
[81] |
Huang YY, Gupta A, Vecchio D, et al. (2012) Transcranial low level laser (light) therapy for traumatic brain injury. J Biophotonics 5: 827–837. doi: 10.1002/jbio.201200077
![]() |
[82] |
Thunshelle C, Hamblin MR (2016) Transcranial low-level laser (light) therapy for brain injury. Photomed Laser Surg 34: 587–598. doi: 10.1089/pho.2015.4051
![]() |
[83] |
Hamblin MR (2016) Shining light on the head: Photobiomodulation for brain disorders. BBA Clin 6: 113–124. doi: 10.1016/j.bbacli.2016.09.002
![]() |
[84] |
Khuman J, Zhang J, Park J, et al. (2012) Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma 29: 408–417. doi: 10.1089/neu.2010.1745
![]() |
[85] |
Veronez S, Assis L, Del Campo P, et al. (2017) Effects of different fluences of low-level laser therapy in an experimental model of spinal cord injury in rats. Lasers Med Sci 32: 343–349. doi: 10.1007/s10103-016-2120-7
![]() |
[86] |
Muili KA, Gopalakrishnan S, Eells JT, et al. (2013) Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress. PLoS One 8: e67358. doi: 10.1371/journal.pone.0067358
![]() |
[87] |
Yoshimura TM, Sabino CP, Ribeiro MS (2016) Photobiomodulation reduces abdominal adipose tissue inflammatory infiltrate of diet-induced obese and hyperglycemic mice. J Biophotonics 9: 1255–1262. doi: 10.1002/jbio.201600088
![]() |
[88] |
Bjordal JM, Lopes-Martins RA, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med 40: 76–80. doi: 10.1136/bjsm.2005.020842
![]() |
[89] |
Hofling DB, Chavantes MC, Juliano AG, et al. (2010) Low-level laser therapy in chronic autoimmune thyroiditis: a pilot study. Lasers Surg Med 42: 589–596. doi: 10.1002/lsm.20941
![]() |
[90] |
Hofling DB, Chavantes MC, Juliano AG, et al. (2013) Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial. Lasers Med Sci 28: 743–753. doi: 10.1007/s10103-012-1129-9
![]() |
[91] | Hofling DB, Chavantes MC, Juliano AG, et al. (2012) Assessment of the effects of low-level laser therapy on the thyroid vascularization of patients with autoimmune hypothyroidism by color Doppler ultrasound. ISRN Endocrinol 2012: 126720. |
[92] |
Hofling DB, Chavantes MC, Acencio MM, et al. (2014) Effects of low-level laser therapy on the serum TGF-beta1 concentrations in individuals with autoimmune thyroiditis. Photomed Laser Surg 32: 444–449. doi: 10.1089/pho.2014.3716
![]() |
[93] | Hofling D, Chavantes MC, Buchpiguel CA, et al. (2017) Long-term follow-up of patients with hypothyroidism induced by autoimmune thyroiditis submitted to low-level laser therapy. Lasers Surg Med 49: 36. |
[94] | Ferraresi C, Beltrame T, Fabrizzi F, et al. (2015) Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner. Physiother Theory Pract: 1–8. |
[95] |
Ferraresi C, Dos Santos RV, Marques G, et al. (2015) Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. Lasers Med Sci 30: 1281–1287. doi: 10.1007/s10103-015-1728-3
![]() |
[96] |
Pinto HD, Vanin AA, Miranda EF, et al. (2016) Photobiomodulation therapy improves performance and accelerates recovery of high-level rugby players in field test: A randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Cond Res 30: 3329–3338. doi: 10.1519/JSC.0000000000001439
![]() |
[97] |
Ferraresi C, Bertucci D, Schiavinato J, et al. (2016) Effects of light-emitting diode therapy on muscle hypertrophy, gene expression, performance, damage, and delayed-onset muscle soreness: case-control study with a pair of identical twins. Am J Phys Med Rehabil 95: 746–757. doi: 10.1097/PHM.0000000000000490
![]() |
[98] | Johnston A, Xing X, Wolterink L, et al. (2016) IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J Allergy Clin Immunol. |
[99] |
Ablon G (2010) Combination 830-nm and 633-nm light-emitting diode phototherapy shows promise in the treatment of recalcitrant psoriasis: preliminary findings. Photomed Laser Surg 28: 141–146. doi: 10.1089/pho.2009.2484
![]() |
[100] |
Choi M, Na SY, Cho S, et al. (2011) Low level light could work on skin inflammatory disease: a case report on refractory acrodermatitis continua. J Korean Med Sci 26: 454–456. doi: 10.3346/jkms.2011.26.3.454
![]() |
[101] |
Hamblin MR (2013) Can osteoarthritis be treated with light? Arthritis Res Ther 15: 120. doi: 10.1186/ar4354
![]() |
[102] |
Ip D (2015) Does addition of low-level laser therapy (LLLT) in conservative care of knee arthritis successfully postpone the need for joint replacement? Lasers Med Sci 30: 2335–2339. doi: 10.1007/s10103-015-1814-6
![]() |
[103] | Brosseau L, Robinson V, Wells G, et al. (2005) Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev 19: CD002049. |
[104] | Brosseau L, Welch V, Wells G, et al. (2004) Low level laser therapy (Classes I, II and III) for treating osteoarthritis. Cochrane Database Syst Rev: CD002046. |
[105] |
Barabas K, Bakos J, Zeitler Z, et al. (2014) Effects of laser treatment on the expression of cytosolic proteins in the synovium of patients with osteoarthritis. Lasers Surg Med 46: 644–649. doi: 10.1002/lsm.22268
![]() |
[106] | Gregoriou S, Papafragkaki D, Kontochristopoulos G, et al. (2010) Cytokines and other mediators in alopecia areata. Mediators Inflamm 2010: 928030. |
[107] |
Avci P, Gupta GK, Clark J, et al. (2014) Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med 46: 144-151. doi: 10.1002/lsm.22170
![]() |
[108] |
Gupta AK, Foley KA (2017) A critical assessment of the evidence for low-level laser therapy in the treatment of hair loss. Dermatol Surg 43: 188–197. doi: 10.1097/DSS.0000000000000904
![]() |
[109] |
Yamazaki M, Miura Y, Tsuboi R, et al. (2003) Linear polarized infrared irradiation using Super Lizer is an effective treatment for multiple-type alopecia areata. Int J Dermatol 42: 738–740. doi: 10.1046/j.1365-4362.2003.01968.x
![]() |
1. | Patrícia Damas Beites, Amir Fernández Ouaridi, Ivan Kaygorodov, The algebraic and geometric classification of transposed Poisson algebras, 2023, 117, 1578-7303, 10.1007/s13398-022-01385-4 |