Citation: Ingo Dreyer. Plant potassium channels are in general dual affinity uptake systems[J]. AIMS Biophysics, 2017, 4(1): 90-106. doi: 10.3934/biophy.2017.1.90
[1] | Pasquale Marcello Falcone . Editorial to the 'Special Issue—Energy transition in a circular economy perspective' of AIMS Energy. AIMS Energy, 2022, 10(4): 582-584. doi: 10.3934/energy.2022029 |
[2] | Mamdouh El Haj Assad, Siamak Hoseinzadeh . Editorial to the 'Special Issue-Analyzing energy storage systems for the applications of renewable energy sources' of AIMS Energy. AIMS Energy, 2022, 10(5): 1074-1076. doi: 10.3934/energy.2022050 |
[3] | Santi Agatino Rizzo . Editorial to the 'Special Issue—Distribution network reliability in Smart Grids and Microgrids' of AIMS Energy. AIMS Energy, 2022, 10(3): 533-534. doi: 10.3934/energy.2022026 |
[4] | Abshir Ashour, Taib Iskandar Mohamad, Kamaruzzaman Sopian, Norasikin Ahmad Ludin, Khaled Alzahrani, Adnan Ibrahim . Performance optimization of a photovoltaic-diesel hybrid power system for Yanbu, Saudi Arabia. AIMS Energy, 2021, 9(6): 1260-1273. doi: 10.3934/energy.2021058 |
[5] | Jin H. Jo, Kadi Ilves, Tyler Barth, Ellen Leszczynski . Correction: Implementation of a large-scale solar photovoltaic system at a higher education institution in Illinois, USA. AIMS Energy, 2017, 5(2): 313-315. doi: 10.3934/energy.2017.2.313 |
[6] | Jin H. Jo, Zachary Rose, Jamie Cross, Evan Daebel, Andrew Verderber, John C. Kostelnick . Application of Airborne LiDAR Data and Geographic Information Systems (GIS) to Develop a Distributed Generation System for the Town of Normal, IL. AIMS Energy, 2015, 3(2): 173-183. doi: 10.3934/energy.2015.2.173 |
[7] | Taihana Paula, Maria de Fatima Marques . Recent advances in polymer structures for organic solar cells: A review. AIMS Energy, 2022, 10(1): 149-176. doi: 10.3934/energy.2022009 |
[8] | Peter Majewski, Rong Deng, Pablo R Dias, Megan Jones . Product stewardship considerations for solar photovoltaic panels. AIMS Energy, 2023, 11(1): 140-155. doi: 10.3934/energy.2023008 |
[9] | Sabir Rustemli, Zeki İlcihan, Gökhan Sahin, Wilfried G. J. H. M. van Sark . A novel design and simulation of a mechanical coordinate based photovoltaic solar tracking system. AIMS Energy, 2023, 11(5): 753-773. doi: 10.3934/energy.2023037 |
[10] | Md. Mehadi Hasan Shamim, Sidratul Montaha Silmee, Md. Mamun Sikder . Optimization and cost-benefit analysis of a grid-connected solar photovoltaic system. AIMS Energy, 2022, 10(3): 434-457. doi: 10.3934/energy.2022022 |
In most of the countries, the solar photovoltaic systems have reached to the grid parity. The higher capacity of solar photovoltaic power plants are connecting within the higher and medium voltage networks, and lower capacity photovoltaic units within the low voltage network (i.e., distributed network). There are many technical challenges for integrating the solar PV plants at higher voltage levels as well as lower voltage levels. The key challenging issues, for increasing further penetration of solar photovoltaic systems in the electrical power network, are technology developments for intelligent power conditioning devices, integration of hybrid energy storage for making solar photovoltaic system as dispatchable power source, mitigation of power quality issues, demand side management, technology development of solar photovoltaic based micro-grid, techno-economic operational strategies, etc.
The solar photovoltaic system engineering depends on many factors (e.g., techno-economic sizing, energy management, energy dispatch strategies, resources allocations etc.). Different geographical locations as well as climatic conditions also influence the operation and performance of the solar photovoltaic-based system. The incident solar radiation has significant impact on the solar photovoltaic system energy production. The solar photovoltaic system energy output is influenced by the geometrical configuration of photovoltaic array and the view factor to sky effect. In the recent years, there are many technical innovations, developments have happened for deployments of solar photovoltaic system grid integration with energy storage for participating either as an active generator or operating as a solar photovoltaic based micro-grid. Within the distributed energy network, solar photovoltaic systems can also be used as ‘building integrated photovoltaic systems (BIPV)’ to provide electrical energy locally and make the buildings as ‘zero energy buildings (ZEBs)’. In future, ZEBs are going to play a significant role in the upcoming smart distributed energy network development due to their contribution of on-site electrical generation through solar photovoltaic systems, energy storage, demand side management etc. In order to increase further PV penetration within the distribution network and develop innovative mitigation techniques, there is critical need of further field-oriented research in the above-mentioned topics.
This Special Issue of AIMS Energy Journal comprises peer-review articles on advancement of power dispatching techniques for solar photovoltaic system with energy storage, shading and diffused solar radiation effects on the performance of solar photovoltaic system, intelligent controllers for distributed energy resources allocations, material characterization for heterojunction solar cells. In addition, some articles cover the typical case studies of solar photovoltaic systems in the tropical region.
As the Guest Editor of this Special Issue ‘Solar Photovoltaic System Engineering’ of the AIMS Energy Journal, I express my sincere appreciation to the journal editorial team, authors and reviewers of the manuscripts, journal editorial supporting team, and all those who have contributed and supported in successful fruition and publication.
Professor Mohan Lal Kolhe
Professor in Smart Grid and Renewable Energy
Faculty of Engineering and Science,
University of Agder,
PO Box 422, NO 4604, Kristiansand, Norway
E-mail: Mohan.L.Kolhe@uia.no
[1] |
G. Volkov A, B. Shtessel Y (2016) Propagation of electrotonic potentials in plants: Experimental study and mathematical modeling. AIMS Biophys 3: 358–379. doi: 10.3934/biophy.2016.3.358
![]() |
[2] |
Hedrich R, Salvador-Recatalà V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21: 376–387. doi: 10.1016/j.tplants.2016.01.016
![]() |
[3] | Jane Beilby M, Al Khazaaly S (2016) Re-modeling Chara action potential: I. from Thiel model of Ca2+ transient to action potential form. AIMS Biophys 3: 431–449. |
[4] |
Hills A, Chen ZH, Amtmann A, et al. (2012) OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159: 1026–1042. doi: 10.1104/pp.112.197244
![]() |
[5] |
Blatt MR, Wang Y, Leonhardt N, et al. (2014) Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells. J Plant Physiol 171: 770–778. doi: 10.1016/j.jplph.2013.09.014
![]() |
[6] |
Gajdanowicz P, Michard E, Sandmann M, et al. (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108: 864–869. doi: 10.1073/pnas.1009777108
![]() |
[7] |
Foster KJ, Miklavcic SJ (2015) Toward a biophysical understanding of the salt stress response of individual plant cells. J Theor Biol 385: 130–142. doi: 10.1016/j.jtbi.2015.08.024
![]() |
[8] | Schott S, Valdebenito B, Bustos D, et al. (2016) Cooperation through Competition-Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis. Front Plant Sci 7: 912. |
[9] |
Epstein E, Rains DW, Elzam OE (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49: 684–692. doi: 10.1073/pnas.49.5.684
![]() |
[10] | Hille B (2001) Ion channels of excitable membranes, 3rd Ed., Sunderland, MA: Sinauer. |
[11] |
Gajdanowicz P, Garcia-Mata C, Gonzalez W, et al. (2009) Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity. New Phytol 182: 380–391. doi: 10.1111/j.1469-8137.2008.02749.x
![]() |
[12] |
Riedelsberger J, Sharma T, Gonzalez W, et al. (2010) Distributed structures underlie gating differences between the K in channel KAT1 and the Kout channel SKOR. Mol Plant 3: 236–245. doi: 10.1093/mp/ssp096
![]() |
[13] |
Garcia-Mata C, Wang J, Gajdanowicz P, et al. (2010) A minimal cysteine motif required to activate the SKOR K+ channel of arabidopsis by the reactive oxygen species H2O2. J Biol Chem 285: 29286–29294. doi: 10.1074/jbc.M110.141176
![]() |
[14] |
González W, Riedelsberger J, Morales-Navarro SE, et al. (2012) The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids. Biochem J 442: 57–63. doi: 10.1042/BJ20111498
![]() |
[15] |
Lefoulon C, Karnik R, Honsbein A, et al. (2014) Voltage-sensor transitions of the inward-rectifying K+ channel kat1 indicate a latching mechanism biased by hydration within the voltage sensor. Plant Physiol 166: 960–975. doi: 10.1104/pp.114.244319
![]() |
[16] | Hedrich R, Bregante M, Dreyer I, et al. (1995) The voltage-dependent potassium-uptake channel of corn coleoptiles has permeation properties different from other K+ channels. Planta 197: 193–199. |
[17] | Hedrich R, Moran O, Conti F, et al. (1995) Inward rectifier potassium channels in plants differ from their animal counterparts in response to voltage and channel modulators. Eur Biophys J 24: 107–115. |
[18] |
Becker D, Dreyer I, Hoth S, et al. (1996) Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1. Proc Natl Acad Sci USA 93: 8123–8128. doi: 10.1073/pnas.93.15.8123
![]() |
[19] |
Dreyer I, Antunes S, Hoshi T, et al. (1997) Plant K+ channel α-subunits assemble indiscriminately. Biophys J 72: 2143–2150. doi: 10.1016/S0006-3495(97)78857-X
![]() |
[20] |
Dietrich P, Dreyer I, Wiesner P, et al. (1998) Cation sensitivity and kinetics of guard-cell potassium channels differ among species. Planta 205: 277–287. doi: 10.1007/s004250050322
![]() |
[21] |
Dreyer I, Becker D, Bregante M, et al. (1998) Single mutations strongly alter the K+-selective pore of the K(in) channel KAT1. FEBS Lett 430: 370–376. doi: 10.1016/S0014-5793(98)00694-2
![]() |
[22] |
Brüggemann L, Dietrich P, Dreyer I, et al. (1999) Pronounced differences between the native K+ channels and KAT1 and KST1 alpha-subunit homomers of guard cells. Planta 207: 370–376. doi: 10.1007/s004250050494
![]() |
[23] |
Dreyer I, Michard E, Lacombe B, et al. (2001) A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or "leak" current. FEBS Lett 505: 233–239. doi: 10.1016/S0014-5793(01)02832-0
![]() |
[24] |
Michard E, Lacombe B, Porée F, et al. (2005) A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation. J Gen Physiol 126: 605–617. doi: 10.1085/jgp.200509413
![]() |
[25] |
Michard E, Dreyer I, Lacombe B, et al. (2005) Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant J 44: 783–797. doi: 10.1111/j.1365-313X.2005.02566.x
![]() |
[26] |
Xicluna J, Lacombe B, Dreyer I, et al. (2007) Increased functional diversity of plant K+ channels by preferential heteromerization of the Shaker-like subunits AKT2 and KAT2. J Biol Chem 282: 486–494. doi: 10.1074/jbc.M607607200
![]() |
[27] | Geiger D, Becker D, Vosloh D, et al. (2009) Heteromeric AtKC1.AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem 284: 21288–21295. |
[28] |
Held K, Pascaud F, Eckert C, et al. (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21: 1116–1130. doi: 10.1038/cr.2011.50
![]() |
[29] | Garriga M, Raddatz N, Véry AA, et al. (2017) Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.-Relationship to plant response to salt stress. J Plant Physiol 210: 9–17. |
[30] | Dreyer I, Müller-Röber B, Köhler B (2004) Voltage gated ion channels, Blatt MR, Annual Plant Reviews, Membrane Transport in Plants, Oxford: Blackwell Publishing, 150–192. |
[31] |
Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3: 107. doi: 10.1063/1.1749604
![]() |
[32] | Dreyer I, Blatt MR (2009) What makes a gate? The ins and outs of Kv-like K+ channels in plants. Trends Plant Sci 14: 383–390. |
[33] | Sharma T, Dreyer I, Riedelsberger J (2013) The role of K(+) channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Front Plant Sci 4: 224. |
[34] | Sharma T, Dreyer I, Kochian L, et al. (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci 7: 1488. |
[35] |
Loew LM, Schaff JC (2001) The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol 19: 401–406. doi: 10.1016/S0167-7799(01)01740-1
![]() |
[36] |
Brüggemann L, Dietrich P, Becker D, et al. (1999) Channel-mediated high-affinity K+ uptake into guard cells from Arabidopsis. Proc Natl Acad Sci USA 96: 3298–3302. doi: 10.1073/pnas.96.6.3298
![]() |