Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Integral membrane pyrophosphatases: a novel drug target for human pathogens?

1 School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
2 Department of Biosciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland.
3 Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
† These authors equally contributed to this paper.

Topical Section: Membrane protein structural biology

Membrane-integral pyrophosphatases (mPPases) are found in several human pathogens, including Plasmodium species, the protozoan parasites that cause malaria. These enzymes hydrolyze pyrophosphate and couple this to the pumping of ions (H+ and/or Na+) across a membrane to generate an electrochemical gradient. mPPases play an important role in stress tolerance in plants, protozoan parasites, and bacteria. The solved structures of mPPases from Vigna radiata and Thermotoga maritima open the possibility of using structure-based drug design to generate novel molecules or repurpose known molecules against this enzyme. Here, we review the current state of knowledge regarding mPPases, focusing on their structure, the proposed mechanism of action, and their role in human pathogens. We also summarize different methodologies in structure-based drug design and propose an example region on the mPPase structure that can be exploited by these structure-based methods for drug targeting. Since mPPases are not found in animals and humans, this enzyme is a promising potential drug target against livestock and human pathogens.
  Figure/Table
  Supplementary
  Article Metrics

Keywords pyrophosphatase; structure-based drug design; membrane; human pathogens; malaria

Citation: Nita R. Shah, Keni Vidilaseris, Henri Xhaard, Adrian Goldman. Integral membrane pyrophosphatases: a novel drug target for human pathogens?. AIMS Biophysics, 2016, 3(1): 171-194. doi: 10.3934/biophy.2016.1.171

References

  • 1. Cooperman BS, Baykov AA, Lahti R (1992) Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci 17: 262–266.    
  • 2. Lahti R (1983) Microbial inorganic pyrophosphatases. Microbiol Rev 47: 169–178.
  • 3. Klemme JH (1976) Regulation of intracellular pyrophosphatase-activity and conservation of the phosphoanhydride-energy of inorganic pyrophosphate in microbial metabolism. Z Naturforsch C 31: 544–550.
  • 4. Heinonen JK (2001) Biological role of inorganic pyrophosphate: Springer Science & Business Media.
  • 5. Terkeltaub RA (2001) Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol 281: C1–C11.
  • 6. Kajander T, Kellosalo J, Goldman A (2013) Inorganic pyrophosphatases: one substrate, three mechanisms. FEBS Lett 587: 1863–1869.    
  • 7. Chen J, Brevet A, Fromant M, et al. (1990) Pyrophosphatase is essential for growth of Escherichia coli. J Bacteriol 172: 5686–5689.
  • 8. Lundin M, Baltscheffsky H, Ronne H (1991) Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem 266: 12168–12172.
  • 9. Kankare J, Salminen T, Lahti R, et al. (1996) Structure of Escherichia coli inorganic pyrophosphatase at 2.2 A resolution. Acta Crystallogr D 52: 551–563.    
  • 10. Arutiunian E, Terzian S, Voronova A, et al. (1981) X-Ray diffraction study of inorganic pyrophosphatase from baker's yeast at the 3 angstroms resolution (Russian). DoklAkadNauk Sssr 258: 1481.
  • 11. Kellosalo J, Kajander T, Kogan K, et al. (2012) The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 337: 473–476.    
  • 12. Lin SM, Tsai JY, Hsiao CD, et al. (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484: 399–403.    
  • 13. Luoto HH, Baykov AA, Lahti R, et al. (2013) Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+. P Natl Acad Sci U S A 110: 1255–1260.    
  • 14. Garcia-Contreras R, Celis H, Romero I (2004) Importance of Rhodospirillum rubrum H+-pyrophosphatase under low-energy conditions. J Bacteriol 186: 6651–6655.    
  • 15. Serrano A, Pérez-Castiñeira JR, Baltscheffsky M, et al. (2007) H+-PPases: yesterday, today and tomorrow. IUBMB Life 59: 76–83.    
  • 16. Baykov AA, Malinen AM, Luoto HH, et al. (2013) Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiol Mol Biol Rev 77: 267–276.    
  • 17. Taiz L (1992) The Plant Vacuole. J Exp Biol 172: 113–122.
  • 18. Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264: 20068–20073.
  • 19. Belogurov GA, Lahti R (2002) A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277: 49651–49654.
  • 20. Luoto HH, Belogurov GA, Baykov AA, et al. (2011) Na+-translocating Membrane Pyrophosphatases Are Widespread in the Microbial World and Evolutionarily Precede H+-translocating Pyrophosphatases. J Biol Chem 286: 21633–21642.    
  • 21. Luoto HH, Nordbo E, Malinen AM, et al. (2015) Evolutionarily divergent, Na+-regulated H+-transporting membrane-bound pyrophosphatases. Biochem J 467: 281–291.    
  • 22. Tsai JY, Kellosalo J, Sun YJ, et al. (2014) Proton/sodium pumping pyrophosphatases: the last of the primary ion pumps. Curr Opin Struct Biol 27: 38–47.    
  • 23. Drozdowicz YM, Rea PA (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6: 206–211.    
  • 24. Björn LO (2015) The evolution of photosynthesis and its environmental impact. Photobiology: Springer. pp. 207–230.
  • 25. Kriegel A, Andres Z, Medzihradszky A, et al. (2015) Job Sharing in the Endomembrane System: Vacuolar Acidification Requires the Combined Activity of V-ATPase and V-PPase. Plant Cell 27: 3383–3396    
  • 26. Nakayasu T, Kawauchi, K., Hirata, H., et al. (1999) Cycloprodigiosin hydrochloride inhibits acidification of the plant vacuole. Plant Cell Physiol 40: 143–148.    
  • 27. Bethmann B, Thaler M, Simonis W, et al. (1995) Electrochemical Potential Gradients of H+, K+, Ca2+, and Cl- across the Tonoplast of the Green Alga Eremosphaera Viridis. Plant Physiol 109: 1317–1326.
  • 28. Schumaker KS, Sze H (1990) Solubilization and reconstitution of the oat root vacuolar H+/Ca2+ exchanger. Plant Physiol 92: 340–345.    
  • 29. Jiang L, Phillips TE, Hamm CA, et al. (2001) The protein storage vacuole: a unique compound organelle. J Cell Biol 155: 991–1002.    
  • 30. Li J, Yang H, Peer WA, et al. (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310: 121–125.    
  • 31. Sabatini S, Beis D, Wolkenfelt H, et al. (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472.    
  • 32. Brini F, Hanin M, Mezghani I, et al. (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58: 301–308.
  • 33. Lv SL, Lian LJ, Tao PL, et al. (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229: 899–910.    
  • 34. Li X, Guo C, Gu J, et al. (2014) Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought. J Exp Bot 65: 683–696.
  • 35. Park S, Li J, Pittman JK, et al. (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. P Natl Acad Sci U S A 102: 18830–18835.    
  • 36. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323: 240–244.    
  • 37. Zhang H, Shen G, Kuppu S, et al. (2011) Creating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6: 861–863.    
  • 38. Yaeger R (1996) Protozoa: structure, classification, growth, and development.
  • 39. Kappe SH, Buscaglia CA, Bergman LW, et al. (2004) Apicomplexan gliding motility and host cell invasion: overhauling the motor model. Trends Parasitol 20: 13–16.    
  • 40. Murray CJL, Vos T, Lozano R, et al. (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2197–2223.    
  • 41. World Health Organization (2013) WHO Global malaria report 2013. Geneva, Switzerland: World Health Organization.
  • 42. Greenwood BM, Fidock DA, Kyle DE, et al. (2008) Malaria: progress, perils, and prospects for eradication. J Clin Invest 118: 1266–1276.    
  • 43. Crompton PD, Moebius J, Portugal S, et al. (2014) Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol 32: 157–187.    
  • 44. Smith T, Schellenberg JA, Hayes R (1994) Attributable fraction estimates and case definitions for malaria in endemic areas. Stat Med 13: 2345–2358.    
  • 45. World Health Organization (2014) WHO global malaria report 2014. Geneva, Switzerland: World Health Organization.
  • 46. Shortt HE, Fairley NH, Covell G, et al. (1951) The pre-erythrocytic stage of Plasmodium falciparum. Trans R Soc Trop Med Hyg 44: 405–419.    
  • 47. Mota MM, Pradel G, Vanderberg JP, et al. (2001) Migration of Plasmodium sporozoites through cells before infection. Science 291: 141–144.    
  • 48. Sturm A, Amino R, van de Sand C, et al. (2006) Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313: 1287–1290.    
  • 49. Kollien A, Meyer H, Großpietsch T, et al. (1998) Correlation of the development of Trypanosoma cruzi with the physiology in the rectum of the vector. Parasitol Int 47: 143.
  • 50. Kollien A, Schaub G (2000) The development of Trypanosoma cruzi in triatominae. Parasitol Today 16: 381–387.    
  • 51. Docampo R, Jimenez V, Lander N, et al. (2013) New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. Int Rev Cell Mol Biol 305: 69–113.    
  • 52. Docampo R, Scott DA, Vercesi AE, et al. (1995) Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310: 1005–1012.    
  • 53. Garcia CR, Ann SE, Tavares ES, et al. (1998) Acidic calcium pools in intraerythrocytic malaria parasites. Eur J Cell Biol 76: 133–138.    
  • 54. Scott DA, Moreno S, Docampo R (1995) Ca2+ storage in Trypanosoma brucei: the influence of cytoplasmic pH and importance of vacuolar acidity. Biochem J 310: 789–794.    
  • 55. Moreno S, Zhong L (1996) Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem J 313: 655–659.    
  • 56. Ruiz FA, Rodrigues CO, Docampo R (2001) Rapid Changes in Polyphosphate Content within Acidocalcisomes in Response to Cell Growth, Differentiation, and Environmental Stress in Trypanosoma cruzi. J Biol Chem 276: 26114–26121.    
  • 57. Ruiz FA, Marchesini N, Seufferheld M, et al. (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276: 46196–46203.    
  • 58. Lemercier G, Dutoya S, Luo S, et al. (2002) A vacuolar-type H+-pyrophosphatase governs maintenance of functional acidocalcisomes and growth of the insect and mammalian forms of Trypanosoma brucei. J Biol Chem 277: 37369–37376.    
  • 59. Vercesi AE, Moreno S, Docampo R (1994) Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J 304: 227–233.    
  • 60. Rohloff P, Montalvetti A, Docampo R (2004) Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J Biol Chem 279: 52270–52281.    
  • 61. Scott DA, de Souza W, Benchimol M, et al. (1998) Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J Biol Chem 273: 22151–22158.    
  • 62. Marchesini N, Luo S, Rodrigues C, et al. (2000) Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347: 243–253.    
  • 63. Lu H-G, Zhong L, de Souza W, et al. (1998) Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Mol Cell Biol 18: 2309–2323.    
  • 64. Liu J, Pace D, Dou Z, et al. (2014) A vacuolar H+ pyrophosphatase (TgVP1) is required for microneme secretion, host cell invasion, and extracellular survival of Toxoplasma gondii. Molecular microbiology 93: 698–712.    
  • 65. Rodrigues CO, Scott DA, Bailey BN, et al. (2000) Vacuolar proton pyrophosphatase activity and pyrophosphate (PPi) in Toxoplasma gondii as possible chemotherapeutic targets. Biochem J 349 Pt 3: 737–745.
  • 66. Martin MB, Grimley JS, Lewis JC, et al. (2001) Bisphosphonates Inhibit the Growth of Trypanosoma brucei. Trypanosoma cruzi. Leishmania donovani. Toxoplasma gondii, and Plasmodium falciparum: A Potential Route to Chemotherapy. J Med Chem 44: 909–916.
  • 67. Martin MB, Sanders JM, Kendrick H, et al. (2002) Activity of bisphosphonates against Trypanosoma brucei rhodesiense. J Med Chem 45: 2904–2914.    
  • 68. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289: 1508–1514.    
  • 69. Baykov AA, Dubnova EB, Bakuleva NP, et al. (1993) Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Lett 327: 199–202.    
  • 70. Smirnova IN, Kudryavtseva NA, Komissarenko SV, et al. (1988) Diphosphonates are potent inhibitors of mammalian inorganic pyrophosphatase. Arch Biochem Biophys 267: 280–284.    
  • 71. Holdeman L, Good I, Moore W (1976) Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31: 359–375.
  • 72. Salyers A (1984) Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 38: 293–313.    
  • 73. Xu J, Gordon JI (2003) Honor thy symbionts. P Natl Acad Sci USA 100: 10452–10459.    
  • 74. Bäckhed F, Ley RE, Sonnenburg JL, et al. (2005) Host-bacterial mutualism in the human intestine. Science 307: 1915–1920.    
  • 75. Brook I, Johnson N, Overturf GD, et al. (1977) Mixed bacterial meningitis: A complication of ventriculo-and lumboperitoneal shunts: Report of two cases. J Neurosurg 47: 961–964.    
  • 76. Odugbemi T, Jatto S, Afolabi K (1985) Bacteroides fragilis meningitis. J Clin Microbiol 21: 282–283.
  • 77. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20: 593-621.    
  • 78. Goldstein EJ (1996) Anaerobic bacteremia. Clin Infect Dis 23: S97–S101.    
  • 79. Hecht DW (2004) Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin Infect Dis 39: 92–97.    
  • 80. Nguyen MH, Victor LY, Morris AJ, et al. (2000) Antimicrobial resistance and clinical outcome of Bacteroides bacteremia: findings of a multicenter prospective observational trial. Clin Infect Dis 30: 870–876.    
  • 81. Yoon H-S, Kim S-Y, Kim I-S (2013) Stress response of plant H+-PPase-expressing transgenic Escherichia coli and Saccharomyces cerevisiae: a potentially useful mechanism for the development of stress-tolerant organisms. J Appl Genet 54: 129–133.    
  • 82. Rafii F, Sutherland JB, Cerniglia CE (2008) Effects of treatment with antimicrobial agents on the human colonic microflora. Ther Clin Risk Manag 4: 1343.
  • 83. Owens RC, Donskey CJ, Gaynes RP, et al. (2008) Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis 46: S19–S31.    
  • 84. Hopkins M, Macfarlane G (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51: 448–454.    
  • 85. Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581: 2204–2214.    
  • 86. Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465: 37–51.    
  • 87. Asaoka M, Segami S, Maeshima M (2014) Identification of the critical residues for the function of vacuolar H+-pyrophosphatase by mutational analysis based on the 3D structure. J Biochem 156: 333–344.    
  • 88. Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22: 23–26.
  • 89. Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10: 579–590.    
  • 90. Wishart DS, Knox C, Guo AC, et al. (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34: D668–672.    
  • 91. Lipinski CA, Lombardo F, Dominy BW, et al. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliver Rev 23: 3–25.    
  • 92. Biologic E, Foa P, Zak B (1967) Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13: 326–332.
  • 93. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48: 2518–2525.    
  • 94. Hajduk PJ, Huth JR, Tse C (2005) Predicting protein druggability. Drug Discov Today 10: 1675–1682.    
  • 95. Shuker SB, Hajduk PJ, Meadows RP, et al. (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274: 1531–1534.    
  • 96. Andrews SP, Brown GA, Christopher JA (2014) Structure-Based and Fragment-Based GPCR Drug Discovery. ChemMedChem 9: 256–275.    
  • 97. Congreve M, Rich RL, Myszka DG, et al. (2011) 5 Fragment Screening of Stabilized G-Protein-Coupled Receptors Using Biophysical Methods. Methods Enzymol 493: 115.    
  • 98. Hawkins PCD (2006) A comparison of structure-based and shape-based tools for virtual screening. Abstr Pap Am Chem S 231.
  • 99. Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7: 1047–1055.    
  • 100. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49: 6789–6801.    
  • 101. Aqvist J, Luzhkov VB, Brandsdal BO (2002) Ligand binding affinities from MD simulations. Acc Chem Res 35: 358–365.    
  • 102. Bohm HJ (1998) Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aid Mol Des 12: 309–323.    
  • 103. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: A simplified potential approach. J Med Chem 42: 791–804.    
  • 104. Kuntz ID, Blaney JM, Oatley SJ, et al. (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161: 269–288.    
  • 105. Morris GM, Goodsell DS, Halliday RS, et al. (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19: 1639–1662.
  • 106. Verdonk ML, Cole JC, Hartshorn MJ, et al. (2003) Improved protein-ligand docking using GOLD. Proteins 52: 609–623.    
  • 107. Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aid Mol Des 6: 61–78.    
  • 108. Korb O, Stutzle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49: 84–96.    
  • 109. Ishchenko AV, Shakhnovich EI (2002) SMall molecule growth 2001 (SMoG2001): An improved knowledge-based scoring function for protein-ligand interactions. J Med Chem 45: 2770–2780.    
  • 110. Triballeau N, Acher F, Brabet I, et al. (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J of M Chem 48: 2534–2547.
  • 111. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4: 649–663.    
  • 112. Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11: 29–34.    
  • 113. Wang R, Gao Y, Lai L (2000) LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design. J Mol Model 6: 498–516.    
  • 114. Gillet V, Johnson AP, Mata P, et al. (1993) SPROUT: a program for structure generation. J Comput Aid Mol Des 7: 127–153.    
  • 115. Lolicato M, Bucchi A, Arrigoni C, et al. (2014) Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Nat Chemical Biol 10: 457–462.    
  • 116. Elliott TS, Slowey A, Ye Y, et al. (2012) The use of phosphate bioisosteres in medicinal chemistry and chemical biology. MedChemComm 3: 735–751.    
  • 117. Rye C, Baell J (2005) Phosphate isosteres in medicinal chemistry. Curr Med Chem 12: 3127–3141.    
  • 118. Manly CJ, Chandrasekhar J, Ochterski JW, et al. (2008) Strategies and tactics for optimizing the Hit-to-Lead process and beyond—A computational chemistry perspective. Drug Discov Today 13: 99–109.    
  • 119. Garbaccio RM, Parmee ER (2016) The Impact of Chemical Probes in Drug Discovery: A Pharmaceutical Industry Perspective. Chem Biol 23: 10–17.
  • 120. Zhang Y, Zhu W, Liu Y-L, et al. (2013) Chemo-immunotherapeutic antimalarials targeting isoprenoid biosynthesis. ACS Med Chem Lett 4: 423–427.    
  • 121. Jahnke W, Rondeau J-M, Cotesta S, et al. (2010) Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery. Nat Chem Biol 6: 660–666.    
  • 122. Liu Y-L, Lindert S, Zhu W, et al. (2014) Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site. P Nat Acad Sci U S A 111: E2530–E2539.    
  • 123. Lindert S, Zhu W, Liu Y-L, et al. (2013) Farnesyl diphosphate synthase inhibitors from in silico screening. Chem Biol Drug Des 81: 742–748.    
  • 124. Itaya K, Ui M (1966) A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta 14: 361–366.    
  • 125. Llona-Minguez S, Höglund A, Jacques S, et al. (2016) Discovery of the first potent and selective inhibitors of the human dCTP pyrophosphatase 1 (dCTPase). J Med Chem 59: 1140–1148.    
  • 126. Zhen RG, Baykov AA, Bakuleva NP, et al. (1994) Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases. Plant Physiol 104: 153–159.
  • 127. Heikinheimo P, Tuominen V, Ahonen AK, et al. (2001) Toward a quantum-mechanical description of metal-assisted phosphoryl transfer in pyrophosphatase. P Natl Acad Sci U S A 98: 3121–3126.    
  • 128. Falagas ME, Kasiakou SK (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 10: R27.    
  • 129. Avent M, Rogers B, Cheng A, et al. (2011) Current use of aminoglycosides: indications, pharmacokinetics and monitoring for toxicity. Intern Med J 41: 441–449.    
  • 130. Tseng YY, Dupree C, Chen ZJ, et al. (2009) SplitPocket: identification of protein functional surfaces and characterization of their spatial patterns. Nucleic Acids Res 37: W384–W389.    
  • 131. Tseng YY, Li WH (2009) Identification of protein functional surfaces by the concept of a split pocket. Proteins 76: 959–976.    

 

This article has been cited by

  • 1. Mitali Mishra, Vikash K. Mishra, Varsha Kashaw, Arun K. Iyer, Sushil Kumar Kashaw, Comprehensive review on various strategies for antimalarial drug discovery, European Journal of Medicinal Chemistry, 2016, 10.1016/j.ejmech.2016.11.025
  • 2. Nita R. Shah, Craig Wilkinson, Steven P. D. Harborne, Ainoleena Turku, Kun-Mou Li, Yuh-Ju Sun, Sarah Harris, Adrian Goldman, Insights into the mechanism of membrane pyrophosphatases by combining experiment and computer simulation, Structural Dynamics, 2017, 4, 3, 032105, 10.1063/1.4978038
  • 3. Pengfei Cai, Kosala G. Weerakoon, Yi Mu, David U. Olveda, Xianyu Piao, Shuai Liu, Remigio M. Olveda, Qijun Chen, Allen G. Ross, Donald P. McManus, A Parallel Comparison of Antigen Candidates for Development of an Optimized Serological Diagnosis of Schistosomiasis Japonica in the Philippines, EBioMedicine, 2017, 10.1016/j.ebiom.2017.09.011
  • 4. Keni Vidilaseris, Juho Kellosalo, Adrian Goldman, A high-throughput method for orthophosphate determination of thermostable membrane-bound pyrophosphatase activity, Analytical Methods, 2018, 10.1039/C7AY02558K
  • 5. Erika Artukka, Heidi H. Luoto, Alexander A. Baykov, Reijo Lahti, Anssi M. Malinen, Role of the potassium/lysine cationic center in catalysis and functional asymmetry in membrane-bound pyrophosphatases, Biochemical Journal, 2018, 475, 6, 1141, 10.1042/BCJ20180071
  • 6. Steven P.D. Harborne, Jannik Strauss, Ainoleena Turku, Matthew A. Watson, Roman Tuma, Sarah A. Harris, Adrian Goldman, , Phosphatases, 2018, 93, 10.1016/bs.mie.2018.04.017
  • 7. Keni Vidilaseris, Alexandros Kiriazis, Ainoleena Turku, Ayman Khattab, Niklas G. Johansson, Teppo O. Leino, Paula S. Kiuru, Gustav Boije af Gennäs, Seppo Meri, Jari Yli-Kauhaluoma, Henri Xhaard, Adrian Goldman, Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor, Science Advances, 2019, 5, 5, eaav7574, 10.1126/sciadv.aav7574

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Adrian Goldman, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved