Citation: Edward N Trifonov. Columnar structure of SV40 minichromosome[J]. AIMS Biophysics, 2015, 2(3): 274-283. doi: 10.3934/biophy.2015.3.274
[1] | Awatif Nadia, Abdul Hasib Chowdhury, Esheta Mahfuj, Md. Sanwar Hossain, Khondoker Ziaul Islam, Md. Istianatur Rahman . Determination of transmission reliability margin using AC load flow. AIMS Energy, 2020, 8(4): 701-720. doi: 10.3934/energy.2020.4.701 |
[2] | Malhar Padhee, Rajesh Karki . Bulk system reliability impacts of forced wind energy curtailment. AIMS Energy, 2018, 6(3): 505-520. doi: 10.3934/energy.2018.3.505 |
[3] | Awatif Nadia, Md. Sanwar Hossain, Md. Mehedi Hasan, Sinthia Afrin, Md Shafiullah, Md. Biplob Hossain, Khondoker Ziaul Islam . Determination of transmission reliability margin for brownout. AIMS Energy, 2021, 9(5): 1009-1026. doi: 10.3934/energy.2021046 |
[4] | Armando L. Figueroa-Acevedo, Michael S. Czahor, David E. Jahn . A comparison of the technological, economic, public policy, and environmental factors of HVDC and HVAC interregional transmission. AIMS Energy, 2015, 3(1): 144-161. doi: 10.3934/energy.2015.1.144 |
[5] | Li Bin, Muhammad Shahzad, Qi Bing, Muhammad Ahsan, Muhammad U Shoukat, Hafiz MA Khan, Nabeel AM Fahal . The probabilistic load flow analysis by considering uncertainty with correlated loads and photovoltaic generation using Copula theory. AIMS Energy, 2018, 6(3): 414-435. doi: 10.3934/energy.2018.3.414 |
[6] | Gul Ahmad Ludin, Mohammad Amin Amin, Ahmad Shah Irshad, Soichiro Ueda, Zakirhussain Farhad, M. H. Elkholy, Tomonobu Senjyu . Power transmission in Afghanistan: Challenges, opportunities and proposals. AIMS Energy, 2024, 12(4): 840-871. doi: 10.3934/energy.2024040 |
[7] | Baseem Khan, Hassan Haes Alhelou, Fsaha Mebrahtu . A holistic analysis of distribution system reliability assessment methods with conventional and renewable energy sources. AIMS Energy, 2019, 7(4): 413-429. doi: 10.3934/energy.2019.4.413 |
[8] | Albert K. Awopone, Ahmed F. Zobaa . Analyses of optimum generation scenarios for sustainable power generation in Ghana. AIMS Energy, 2017, 5(2): 193-208. doi: 10.3934/energy.2017.2.193 |
[9] | Arben Gjukaj, Rexhep Shaqiri, Qamil Kabashi, Vezir Rexhepi . Renewable energy integration and distributed generation in Kosovo: Challenges and solutions for enhanced energy quality. AIMS Energy, 2024, 12(3): 686-705. doi: 10.3934/energy.2024032 |
[10] | Gerardo Guerra, Juan A. Martinez-Velasco . A review of tools, models and techniques for long-term assessment of distribution systems using OpenDSS and parallel computing. AIMS Energy, 2018, 6(5): 764-800. doi: 10.3934/energy.2018.5.764 |
The classical beta function
$ B(δ1,δ2)=∞∫0tδ1−1(1−t)δ2−1dt,(ℜ(δ1)>0,ℜ(δ2)>0) $
|
(1.1) |
and its relation with well known gamma function is given by
$ B(δ1,δ2)=Γ(δ1)Γ(δ2)Γ(δ1+δ2),ℜ(δ1)>0,ℜ(δ2)>0. $
|
The Gauss hypergeometric, confluent hypergeometric and Appell's functions which are respectively defined by(see [27])
$ 2F1(δ1,δ2;δ3;z)=∞∑n=0(δ1)n(δ2)n(δ3)nznn!,(|z|<1), (δ1,δ2,δ3∈C and δ3≠0,−1,−2,−3,⋯), $
|
(1.2) |
and
$ 1Φ1(δ2;δ3;z)=∞∑n=0(δ2)n(δ3)nznn!,(|z|<1), (δ2,δ3∈C and δ3≠0,−1,−2,−3,⋯). $
|
(1.3) |
The Appell's series or bivariate hypergeometric series is defined by
$ F1(δ1,δ2,δ3;δ4;x,y)=∞∑m,n=0(δ1)m+n(δ2)m(δ3)nxmyn(δ4)m+nm!n!; $
|
(1.4) |
for all $ \delta_1, \delta_2, \delta_3, \delta_4\in \mathbb{C}, \delta_4\neq 0, -1, -2, -3, \cdots, \quad |x|, |y| < 1 < 1 $.
The integral representation of hypergeometric, confluent hypergeometric and Appell's functions are respectively defined by
$ 2F1(δ1,δ2;δ3;z)=Γ(δ3)Γ(δ2)Γ(δ3−δ2)∫10tδ2−1(1−t)δ3−δ2−1(1−zt)−δ1dt, $
|
(1.5) |
$ \Big(\Re(\delta_3) \gt \Re(\delta_2) \gt 0, |\arg(1-z)| \lt \pi\Big), $ |
and
$ 1Φ1(δ2;δ3;z)=Γ(δ3)Γ(δ2)Γ(δ3−δ2)∫10tδ2−1(1−t)δ3−δ2−1eztdt, $
|
(1.6) |
$ \Big(\Re(\delta_3) \gt \Re(\delta_2) \gt 0\Big). $ |
$ F1(δ1,δ2,δ3;δ4;x,y)=Γ(δ4)Γ(δ1)Γ(δ4−δ1)1∫0tδ1−1(1−t)δ4−δ1−1(1−xt)−δ2(1−yt)−δ3dt. $
|
(1.7) |
The $ \mathtt{k} $-gamma function, $ \mathtt{k} $-beta function and the $ \mathtt{k} $-Pochhammer symbol introduced and studied by Diaz and Pariguan [5]. The integral representation of $ \mathtt{k} $-gamma function and $ \mathtt{k} $-beta function respectively given by
$ Γk(z)=kzk−1Γ(zk)=∞∫0tz−1e−zkkdt,ℜ(z)>0,k>0 $
|
(1.8) |
$ Bk(x,y)=1k1∫0txk−1(1−t)yk−1dt,ℜ(x)>0,ℜ(y)>0. $
|
(1.9) |
Here, we recall the following relations (see [5]).
$ Bk(x,y)=Γk(x)Γk(y)Γk(x+y), $
|
(1.10) |
$ (z)n,k=Γk(z+nk)Γk(z), $
|
(1.11) |
where $ (z)_{n, \mathtt{k}} = (z)(z+\mathtt{k})(z+2\mathtt{k})\cdots(z+(n-1)\mathtt{k}); \quad (z)_{0, \mathtt{k}} = 1 $ and $ \mathtt{k} > 0 $
and
$ ∞∑n=0(α)n,kznn!=(1−kz)−αk. $
|
(1.12) |
These studies were followed by Mansour [16], Kokologiannaki [13], Krasniqi [14] and Merovci [17]. In 2012, Mubeen and Habibullah [18] defined the $ \mathtt{k} $-hypergeometric function as
$ 2F1,k(δ1,δ2;δ3;z)=∞∑n=0(δ1)n,k(δ2)n,k(δ3)n,kznn!, $
|
(1.13) |
where $ \delta_1, \delta_2, \delta_3\in\mathbb{C} $ and $ \delta_3\neq0, -1, -2, \cdots $ and its integral representation is given by
$ 2F1,k(δ1,δ2;δ3;z)=1kBk(δ2,δ3−δ2)×∫10tδ2k−1(1−t)δ3−δ2k−1(1−ktz)−δ1kdt. $
|
(1.14) |
The $ \mathtt{k} $-Riemann-Liouville (R-L) fractional integral using $ \mathtt{k} $-gamma function introduced in [19]:
$ (Iαkf(t))(x)=1kΓk(α)∫x0f(t)(x−t)αk−1dt,k,α∈R+. $
|
(1.15) |
Later on Mubeen and Iqbal [11] established the improved version of Gruss type inequalities by utilizing $ k $-fractional integrals. In [1], Agarwal et al. presented certain Hermite-Hadamard type inequalities for generalized $ k $-fractional integrals. Set et al. [29] presented an integral identity and generalized Hermite–Hadamard type inequalities for Riemann–Liouville fractional integral. Mubeen et al. [24] established integral inequalities of Ostrowski type for $ k $-fractional Riemann–Liouville integrals. Recently, many researchers have introduced generalized version of $ k $-fractional integrals and investigated a large bulk of various inequalities via the said fractional integrals. The interesting readers are referred to see the work of [9,10,26,30]. Farid et al. [7] introduced Hadamard $ k $-fractional integrals. In [8] introduced Hadamard-type inequalities for $ k $-fractional Riemann-Liouville integrals. In [12,31], the authors established certain inequalities by utilizing Hadamard-type inequalities for $ k $-fractional Riemann-Liouville integrals. In [25], Nisar et al. established certain Gronwall type inequalities associated with Riemann-Liouville $ k $- and Hadamard $ k $-fractional derivatives and their applications. In [25], they presented dependence solutions of certain $ k $-fractional differential equations of arbitrary real order with initial conditions. Recently, Samraiz et al. [28] defined an extension of Hadamard $ k $-fractional derivative and proved its various properties.
The solution of some integral equations involving confluent $ \mathtt{k} $-hypergeometric functions and $ \mathtt{k} $-analogue of Kummer's first formula are given in [22,23]. While the $ \mathtt{k} $-hypergeometric and confluent $ \mathtt{k} $-hypergeometric differential equations are introduced in [20]. In 2015, Mubeen et al. [21] introduced $ \mathtt{k} $-Appell hypergeometric function as
$ F1,k(δ1,δ2,δ3;δ4;z1,z2)=∞∑m,n=0(δ1)m+n,k(δ2)m,k(δ3)m,k(δ4)m+n,kzm1zn2m!n! $
|
(1.16) |
for all $ \delta_1, \delta_2, \delta_3, \delta_4\in \mathbb{C}, \delta_4\neq 0, -1, -2, -3, \cdots, \quad \max\{|z_{1}|, |z_{2}|\} < \frac{1}{\mathtt{k}} $ and $ \mathtt{k} > 0 $. Also, Mubeen et al. defined its integral representation as
$ F1,k(δ1,δ2,δ3;δ4;z1,z2)=1kBk(δ1,δ4−δ1)1∫0tδ1k−1(1−t)δ4−δ1k−1(1−kz1t)−δ2k(1−kz2t)−δ3kdt, $
|
(1.17) |
$ \left(\Re(\delta_4) \gt \Re(\delta_1) \gt 0\right) . $ |
In this section, we recall the following definition of fractional derivatives from and give a new extension called Riemann-Liouville $ \mathtt{k} $-fractional derivative.
Definition 2.1. The well-known R-L fractional derivative of order $ \mu $ is defined by
$ Dμx{f(x)}=1Γ(−μ)∫x0f(t)(x−t)−μ−1dt,ℜ(μ)<0. $
|
(2.1) |
For the case $ m-1 < \Re(\mu) < m $ where $ m = 1, 2, \cdots $, it follows
$ Dμx{f(x)}=dmdxmDμ−mx{f(x)}=dmdxm{1Γ(−μ+m)∫x0f(t)(x−t)−μ+m−1dt}. $
|
(2.2) |
For further study and applications, we refer the readers to the work of [2,3,4,15,32]. In the following, we define Riemann-Liouville $ \mathtt{k} $-fractional derivative of order $ \mu $ as
Definition 2.2.
$ kDμx{f(x)}=1kΓk(−μ)∫x0f(t)(x−t)−μk−1dt,ℜ(μ)<0,k∈R+. $
|
(2.3) |
For the case $ m-1 < \Re(\mu) < m $ where $ m = 1, 2, \cdots $, it follows
$ kDμx{f(x)}=dmdxmkDμ−mkx{f(x)}=dmdxm{1kΓk(−μ+mk)∫x0f(t)(x−t)−μk+m−1dt}. $
|
(2.4) |
Note that for $ \mathtt{k} = 1 $, definition 2.2 reduces to the classical R-L fractional derivative operator given in definition 2.1.
Now, we are ready to prove some theorems by using the new definition 2.2.
Theorem 1. The following formula holds true,
$ kDμz{zηk}=zη−μkΓk(−μ)Bk(η+k,−μ),ℜ(μ)<0. $
|
(2.5) |
Proof. From (2.3), we have
$ kDμz{zηk}=1kΓk(−μ)∫z0tηk(z−t)−μk−1dt. $
|
(2.6) |
Substituting $ t = uz $ in (2.6), we get
$ kDμz{zηk}=1kΓk(−μ)∫10(uz)ηk(z−uz)−μk−1zdu=zη−μkkΓk(−μ)∫10uηk(1−u)−μk−1du. $
|
Applying definition (1.9) to the above equation, we get the desired result.
Theorem 2. Let $ \Re(\mu) > 0 $ and suppose that the function $ f(z) $ is analytic at the origin with its Maclaurin expansion given by $ f(z) = \sum_{n = 0}^\infty a_n z^n $ where $ |z| < \rho $ for some $ \rho\in \mathbb{R^+} $. Then
$ kDμz{f(z)}=∞∑n=0ankDμz{zn}. $
|
(2.7) |
Proof. Using the series expansion of the function $ f(z) $ in (2.3) gives
$ kDμz{f(z)}=1kΓk(−μ)∫z0∞∑n=0antn(z−t)−μk−1dt. $
|
As the series is uniformly convergent on any closed disk centered at the origin with its radius smaller then $ \rho $, therefore the series so does on the line segment from $ 0 $ to a fixed $ z $ for $ |z| < \rho $. Thus it guarantee terms by terms integration as follows
$ kDμz{f(z)}=∞∑n=0an{1kΓk(−μ)∫z0tn(z−t)−μk−1dt=∞∑n=0ankDμz{zn}, $
|
which is the required proof.
Theorem 3. The following result holds true:
$ kDη−μz{zηk−1(1−kz)−βk}=Γk(η)Γk(μ)zμk−12F1,k(β,η;μ;z), $
|
(2.8) |
where $ \Re(\mu) > \Re(\eta) > 0 $ and $ |z| < 1 $.
Proof. By direct calculation, we have
$ kDη−μz{zηk−1(1−kz)−βk}=1kΓk(μ−η)∫z0tηk−1(1−kt)−βk(z−t)μ−ηk−1dt=zμ−ηk−1kΓk(μ−η)∫z0tηk−1(1−kt)−βk(1−tz)μ−ηk−1dt. $
|
Substituting $ t = zu $ in the above equation, we get
$ kDη−μz{zηk−1(1−kz)−βk}=zμk−1kΓk(μ−η)∫10uηk−1(1−kuz)−βk(1−u)μ−ηk−1zdu. $
|
Applying (1.14) and after simplification we get the required proof.
Theorem 4. The following result holds true:
$ kDη−μz{zηk−1(1−kaz)−αk(1−kbz)−βk}=Γk(η)Γk(μ)zμk−1F1,k(η,α,β;μ;az,bz), $
|
(2.9) |
where $ \Re(\mu) > \Re(\eta) > 0 $, $ \Re(\alpha) > 0 $, $ \Re(\beta) > 0 $, $ \max\{|az|, |bz|\} < \frac{1}{\mathtt{k}} $.
Proof. To prove (2.9), we use the power series expansion
$ (1−kaz)−αk(1−kbz)−βk=∞∑m=0∞∑n=0(α)m,k(β)n,k(az)mm!(bz)nn!. $
|
Now, applying Theorem 1, we obtain
$ kDη−μz{zηk−1(1−kaz)−αk(1−kbz)−βk}=∞∑m=0∞∑n=0(α)m,k(β)n,k(a)mm!(b)nn!kDη−μz{zηk+m+n−1}=∞∑m=0∞∑n=0(α)m,k(β)n,k(a)mm!(b)nn!βk(η+mk+nk,μ−η)Γk(μ−η)zμk+m+n−1=∞∑m=0∞∑n=0(α)m,k(β)n,k(a)mm!(b)nn!Γk(η+mk+nk)Γk(μ+mk+nk)zμk+m+n−1. $
|
In view of (1.16), we get
$ kDη−μz{zηk−1(1−kaz)−αk(1−kbz)−βk}=Γk(η)Γk(μ)zμk−1F1,k(η,α,β;μ;az,bz). $
|
Theorem 5. The following Mellin transform formula holds true:
$ M{e−xkDμz(zηk);s}=Γ(s)Γk(−μ)Bk(η+k,−μ)zη−μk, $
|
(2.10) |
where $ \Re(\eta) > -1 $, $ \Re(\mu) < 0 $, $ \Re(s) > 0 $.
Proof. Applying the Mellin transform on definition (2.3), we have
$ M{e−xkDμz(zηk);s}=∫∞0xs−1e−xkDμz(zη);s}dx=1kΓk(−μ)∫∞0xs−1e−x{∫z0tηk(z−t)−μk−1dt}dx=z−μk−1kΓk(−μ)∫∞0xs−1e−x{∫z0tηk(1−tz)−μk−1dt}dx=zη−μkkΓk(−μ)∫∞0xs−1e−x{∫10uηk(1−u)−μk−1du}dx $
|
Interchanging the order of integrations in above equation, we get
$ M{e−xkDμz(zηk);s}=zη−μkkΓk(−μ)∫10uηk(1−u)−μk−1(∫∞0xs−1e−xdx)du.=zη−μkkΓk(−μ)Γ(s)∫10uηk(1−u)−μk−1du=Γ(s)Γk(−μ)Bk(η+k,−μ)zη−μk, $
|
which completes the proof.
Theorem 6. The following Mellin transform formula holds true:
$ M{e−xkDμz((1−kz)−αk);s}=z−μkΓ(s)Γk(−μ)Bk(k,−μ)2F1,k(α,k;−μ+k;z), $
|
(2.11) |
where $ \Re(\alpha) > 0 $, $ \Re(\mu) < 0 $, $ \Re(s) > 0 $, and $ |z| < 1 $.
Proof. Using the power series for $ (1-\mathtt{k}z)^{-\frac{\alpha}{\mathtt{k}}} $ and applying Theorem 5 with $ \eta = n\mathtt{k} $, we can write
$ M{e−xkDμz((1−kz)−αk);s}=∞∑n=0(α)n,kn!M{e−xkDμz(zn);s}=Γ(s)kΓk(−μ)∞∑n=0(α)n,kn!Bk(nk+k,−μ)zn−μk=Γ(s)z−μkΓk(−μ)∞∑n=0Bk(nk+k,−μ)(α)n,kznn!=Γ(s)z−μk∞∑n=0Γk(k+nk)Γk(−μ+k+nk)(α)n,kznn!=Γ(s)Γk(−μ+k)z−μk∞∑n=0(k)n,k(−μ+k)n,k(α)n,kznn!=Γ(s)z−μkΓk(−μ)Bk(k,−μ)2F1,k(α,k;−μ+k;z), $
|
which is the required proof.
Theorem 7. The following result holds true:
$ kDη−μz[zηk−1Eμk,γ,δ(z)]=zμk−1kΓk(μ−η)∞∑n=0(μ)n,kΓk(γn+δ)Bk(η+nk,μ−η)znn!, $
|
(2.12) |
where $ \gamma, \delta, \mu\in\mathbb{C} $, $ \Re(p) > 0 $, $ \Re(q) > 0 $, $ \Re(\mu) > \Re(\eta) > 0 $ and $ E_{\mathtt{k}, \gamma, \delta}^{\mu}(z) $ is $ \mathtt{k} $-Mittag-Leffler function (see [6]) defined as:
$ Eμk,γ,δ(z)=∞∑n=0(μ)n,kΓk(γn+δ)znn!. $
|
(2.13) |
Proof. Using (2.13), the left-hand side of (2.12) can be written as
$ kDη−μz[zηk−1Eμk,γ,δ(z)]=kDη−μz[zηk−1{∞∑n=0(μ)n,kΓk(γn+δ)znn!}]. $
|
By Theorem 2, we have
$ kDη−μz[zηk−1Eμk,γ,δ(z)]=∞∑n=0(μ)n,kΓk(γn+δ){kDμz[zηk+n−1]}. $
|
In view of Theorem 1, we get the required proof.
Theorem 8. The following result holds true:
$ kDη−μz{zηk−1mΨn[(αi,Ai)1,m;|z(βj,Bj)1,n;]}=zμk−1kΓk(μ−η)×∞∑n=0∏mi=1Γ(αi+Ain)∏nj=1Γ(βj+BjnBk(η+nk,μ−η)znn!, $
|
(2.14) |
where $ \Re(p) > 0 $, $ \Re(q) > 0 $, $ \Re(\mu) > \Re(\eta) > 0 $ and $ _m\Psi_n(z) $ is the Fox-Wright function defined by (see [15], pages 56–58)
$ mΨn(z)=mΨn[(αi,Ai)1,m;|z(βj,Bj)1,n;]=∞∑n=0∏mi=1Γ(αi+Ain)∏nj=1Γ(βj+Bjnznn!. $
|
(2.15) |
Proof. Applying Theorem 1 and followed the same procedure used in Theorem 7, we get the desired result.
Recently, many researchers have introduced various generalizations of fractional integrals and derivatives. In this line, we have established a $ k $-fractional derivative and its various properties. If we letting $ \mathtt{k}\rightarrow1 $ then all the results established in this paper will reduce to the results related to the classical Reimann-Liouville fractional derivative operator.
The author K.S. Nisar thanks to Deanship of Scientific Research (DSR), Prince Sattam bin Abdulaziz University for providing facilities and support.
The authors declare no conflict of interest.
[1] |
Griffith JD (1975) Chromatin structure: deduced from a minichromosome. Science 187: 1202-1203. doi: 10.1126/science.187.4182.1202
![]() |
[2] |
Bellard M, Oudet P, Germond JE, et al. (1976) Subunit structure of simian-virus-40 minichromosome. Eur J Biochem 70: 543-553. doi: 10.1111/j.1432-1033.1976.tb11046.x
![]() |
[3] |
Mengeritsky G, Trifonov EN (1984) Nucleotide sequence-directed mapping of the nucleosomes of SV40 chromatin. Cell Bioph 6: 1-9. doi: 10.1007/BF02788576
![]() |
[4] |
Ambrose C, Lowman H, Rajadhyaksha A, et al. (1990) Location of nucleosomes in simian virus 40 chromatin. J Mol Biol 214: 875-884. doi: 10.1016/0022-2836(90)90342-J
![]() |
[5] | Tatchell K, van Holde KE (1978) Compact oligomers and nucleosome phasing. Proc Natl Acad Sci USA 75: 3583-3587. |
[6] |
Fajkus J, Trifonov EN (2001) Columnar packing of telomeric nucleosomes. Biochem Biophys Res Comm 280: 961-963. doi: 10.1006/bbrc.2000.4208
![]() |
[7] | Salih B, Trifonov EN (2015) Strong nucleosomes of A. thaliana concentrate in centromere regions. J Biomol Str Dyn 33: 10-13. |
[8] |
Salih B, Trifonov EN (2015). Strong nucleosomes reside in meiotic centromeres of C. elegans. J Biomol Str Dyn 33: 365-373. doi: 10.1080/07391102.2013.879263
![]() |
[9] |
Nibhani R, Trifonov EN (2015) Reading sequence-directed computational nucleosome maps. J Biomol Str Dyn 33:1558-1566. doi: 10.1080/07391102.2014.958877
![]() |
[10] |
Gu SG, Goszczynski B, McGhee JD, et al. (2013) Unusual DNA packaging characteristics in endoreduplicated Caenorhabditis elegans oocytes defined by in vivo accessibility to an endogenous nuclease activity. Epigenet Chromatin 6: 37. doi: 10.1186/1756-8935-6-37
![]() |
[11] |
Ponder BAJ, Crawford LV (1977) Arrangement of nucleosomes in nucleoprotein complexes from polyoma-virus and SV40. Cell 11: 35-49. doi: 10.1016/0092-8674(77)90315-4
![]() |
[12] | Zhang T, Talbert PB, Zhang W, et al. (2013) The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci U S A 110: E4875-4883. |
[13] | Rattner JB, Hamkalo BA (1978) Higher-order structure in metaphase chromosomes Chromosoma 69: 373-379. |
[14] | Dubochet J, Adrian M, Schultz P, et al. (1986) Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model. EMBO J 5: 519-528. |
[15] |
Wanner G, Formanek H (2000) A new chromosome model. J Struct Biol 132: 147-161. doi: 10.1006/jsbi.2000.4310
![]() |
[16] |
Karpov VL, Bavykin SG, Preobrazhenskaya OV, et al. (1982) Alignment of nucleosomes along DNA and organization of spacer DNA in drosophila chromatin. Nucl Acids Res 10: 4321-4337. doi: 10.1093/nar/10.14.4321
![]() |
[17] | Widom J (1992) A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc Natl Acad Sci U S A 89:1095-1099. |
[18] |
Rapoport AE, Frenkel ZM, Trifonov EN (2011) Nucleosome positioning pattern derived from oligonucleotide compositions of genomic sequences. J Biomol Str Dyn 28: 567-574. doi: 10.1080/07391102.2011.10531243
![]() |
[19] |
Frenkel ZM, Bettecken T, Trifonov EN (2011) Nucleosome DNA sequence structure of isochores. BMC Genomics 12: 203. doi: 10.1186/1471-2164-12-203
![]() |
[20] |
Tripathi V, Salih B, Trifonov EN (2015) Universal full-length nucleosome mapping sequence probe. J Biomol Str Dyn 33: 666-673. doi: 10.1080/07391102.2014.891262
![]() |
[21] |
Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence directed nucleosome positioning. J Mol Biol 276: 19-42. doi: 10.1006/jmbi.1997.1494
![]() |
[22] |
Trifonov EN, Nibhani R (2015) Review fifteen years of search for strong nucleosomes. Biopolymers, 103: 432-437. doi: 10.1002/bip.22604
![]() |
[23] | Nibhani R, Trifonov EN, TA-periodic (“601”-like) centromeric nucleosomes of A.thaliana. J Biomol Str Dyn [in press]. |
[24] |
Vasudevan D, Chua EYD, Davey CA (2010) Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J Mol Biol 403: 1-10. doi: 10.1016/j.jmb.2010.08.039
![]() |
[25] | Zhurkin VB (1982) Periodicity in DNA primary structure and specific alignment of nucleosomes. Stud Biophys 87: 151-152. |
[26] |
Zhurkin VB (1983) Specific alignment of nucleosomes on DNA correlates with periodic distribution of purine pyrimidine and pyrimidine purine dimers. FEBS Lett 158: 293-297. doi: 10.1016/0014-5793(83)80598-5
![]() |
[27] |
Zhurkin VB, Lysov YP, Ivanov VI (1979) Anisotropic flexibility of DNA and the nucleosomal structure. Nucl Acids Res 6: 1081-1096. doi: 10.1093/nar/6.3.1081
![]() |
[28] |
Wang D, Ulyanov NB, Zhurkin VB (2010) Sequence-dependent kink-and-slide deformations of nucleosomal DNA facilitated by histone arginines bound in the minor groove. J Biomol Str Dyn 27: 843-859. doi: 10.1080/07391102.2010.10508586
![]() |
[29] | McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5: 1395-1402. |
[30] | Trifonov EN Nucleosome repeat lengths and columnar chromatin structure. J Biomol Str Dyn [in press]. |
1. | Hamza Abunima, Jiashen Teh, Ching-Ming Lai, Hussein Jabir, A Systematic Review of Reliability Studies on Composite Power Systems: A Coherent Taxonomy Motivations, Open Challenges, Recommendations, and New Research Directions, 2018, 11, 1996-1073, 2417, 10.3390/en11092417 | |
2. | Wook-Won Kim, Jong-Keun Park, Yong-Tae Yoon, Mun-Kyeom Kim, Transmission Expansion Planning under Uncertainty for Investment Options with Various Lead-Times, 2018, 11, 1996-1073, 2429, 10.3390/en11092429 | |
3. | O Kuzmin, N Stanasiuk, S Maiti, Relationship between сonflict management strategies and economic growth of organisation, 2020, 7, 23123435, 1, 10.23939/eem2020.02.001 | |
4. | Panlong Jin, Zongchuan Zhou, Xue Feng, Zhiyuan Wang, Tengmu Li, Pierluigi Siano, Hazlie Mokhlis, 2024, Game study of power system reconstruction planning after extreme disaster, 9781510679795, 172, 10.1117/12.3024421 |