Citation: Angel Rivera-Calzada, Andrés López-Perrote, Roberto Melero, Jasminka Boskovic, Hugo Muñoz-Hernández, Fabrizio Martino, Oscar Llorca. Structure and Assembly of the PI3K-like Protein Kinases (PIKKs) Revealed by Electron Microscopy[J]. AIMS Biophysics, 2015, 2(2): 36-57. doi: 10.3934/biophy.2015.2.36
[1] | Sohrab Najafipour, Abdolreza karami, Manoochehr Rasouli, Mehdi Kalani, Seyed-Jalal-Aldin Ashraf-Mansoori, Ali Moravej . Association of interleukin-2 gene variants (positions +114 and −384) and susceptibility to brucellosis in Iranian population. AIMS Molecular Science, 2017, 4(1): 103-109. doi: 10.3934/molsci.2017.1.103 |
[2] | Viviana Imbua Levi Enoka, Gideon Mutie Kikuvi, Perpetual Wangui Ndung'u . Effect of garlic and onion extract chitosan nanoparticles on selected intestinal bacterial flora in indigenous rainbow rooster chicken in Kenya. AIMS Molecular Science, 2021, 8(2): 98-116. doi: 10.3934/molsci.2021008 |
[3] | Carlos Gutierrez-Merino, Dorinda Marques-da-Silva, Sofia Fortalezas, Alejandro K. Samhan-Arias . The critical role of lipid rafts nanodomains in the cross-talk between calcium and reactive oxygen and nitrogen species in cerebellar granule neurons apoptosis by extracellular potassium deprivation. AIMS Molecular Science, 2016, 3(1): 12-29. doi: 10.3934/molsci.2016.1.12 |
[4] | Francisco Les, Zsuzsa Iffiú-Soltész, Josep Mercarder, Christian Carpéné . Tyramine activates lipid accumulation in rat adipocytes: influences of in vitro and in vivo administration. AIMS Molecular Science, 2017, 4(3): 339-351. doi: 10.3934/molsci.2017.3.339 |
[5] | Charles A. Downs, Abdel A. Alli, Nicholle M. Johnson, My N. Helms . Cigarette smoke extract is a Nox agonist and regulates ENaC in alveolar type 2 cells. AIMS Molecular Science, 2016, 3(3): 439-453. doi: 10.3934/molsci.2016.3.439 |
[6] | Elisa Isopi, Giuseppe Legname . Pin1 and neurodegeneration: a new player for prion disorders?. AIMS Molecular Science, 2015, 2(3): 311-323. doi: 10.3934/molsci.2015.3.311 |
[7] | Jian Zou, Fulton T. Crews . Glutamate/NMDA excitotoxicity and HMGB1/TLR4 neuroimmune toxicity converge as components of neurodegeneration. AIMS Molecular Science, 2015, 2(2): 77-100. doi: 10.3934/molsci.2015.2.77 |
[8] | Genu George, Sumita K. Chellappan, Mandagini Geetha, Padinjaradath S. Appukuttan . Possible molecular basis for macromolecular antigen attachment to host cells: their immune complex with plasma antibodies have unoccupied binding sites enabling binding to smaller ligands. AIMS Molecular Science, 2017, 4(1): 91-102. doi: 10.3934/molsci.2017.1.91 |
[9] | David Trac, My N. Helms . Nadph oxidase and epithelial sodium channels regulate neonatal mouse lung development. AIMS Molecular Science, 2017, 4(1): 28-40. doi: 10.3934/molsci.2017.1.28 |
[10] | Noor Riyadh Thiab, Nicola King, Mary McMillan, Amer Almashhadany, Graham L Jones . Age-related protein and mRNA expression of glutathione peroxidases (GPx) and Hsp-70 in different regions of rat kidney with and without stressor. AIMS Molecular Science, 2016, 3(2): 125-137. doi: 10.3934/molsci.2016.2.125 |
Rheumatoid arthritis (RA) is a chronic inflammatory debilitating autoimmune disease [1]. Cell mediated and humoral immune reactions are involved in pathogenesis of rheumatoid arthritis [2]. The disease is characterized by severe joint inflammations of whole body along with damage to cartilage and bones [3]. Leukocyte infiltration and pannus formation are also responsible for the pathogenesis of RA. Although, the exact cause has not been elucidated still now. Several pro-inflammatory and anti-inflammatory cytokines secreted by immune cells are responsible for the cause of RA. In particular, it was reported that tumor necrosis factor (TNF), interleukin-1β (IL-1β), interleukin-15 (IL-15), transforming growth factor-β (TGF-β), interleukin-6 (IL-6) are important pro-inflammatory cytokines responsible for initiation and progression of RA [4,5]. In view of these findings, modulation of pro-inflammatory cytokines is a desired goal for the management of arthritis.
Most prescribed treatment for RA is a non-steroidal anti-inflammatory drugs (NSAID's). These drugs effectively reduce symptoms of RA, but at same time cause various side effects like gastrointestinal sickness and renal morbidity [6]. Disease modifying anti-rheumatic drugs (DMARD's) and biologics are also prescribed. Biologics are expensive and DMARD's are also associated with severe side effects. Reducing side effects and deleterious effect of antiarthritic drug should be taken into account while designing new therapeutics for RA. One of the possible strategies to suppress systemic inflammation is employment of natural compounds such as botanicals, bioactive food components or functional foods. Along with these, efficacies of various plants extracts and other natural compounds have been exploited for their antiarthritic activity.
Probiotics are ingestible microbial products which when administered in a particular number exert a beneficial effect on host body. These dietary feed supplements are used as probiotics because of their well-known immunomodulatory properties[7,8,9]. Probiotics modulate immune response at gut level. Probiotics are also in use for their antimicrobial, anti-inflammatory and immunomodulatory properties in urinary tract infections [10]. In our previous study we have discovered that L. casei and L. acidophilus has shown potent anti-inflammatory properties in the carrageenan model of acute inflammation [11]. In the present study, anti-inflammatory and anti-arthritic activities were investigated by using collagen induced arthritis (CIA) model. Anti-inflammatory activity of L. casei and L. acidophilus was checked by measuring the mRNA expression of TNF, IL-6 and IL-1β to validate our previous findings of anti-inflammatory activity. Standard anti-arthritic drug indomethacin was used for comparison.
Thirty healthy male Wistar rats, two months old (200 g) were included in this study. Animals were randomly divided into five groups (n = 6). These were purchased from Indian Institute of Toxicology Research (ⅡTR), Lucknow, India and maintained in animal house at Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh. Animals were acclimatized for fifteen days before the experiment started. Animals were housed in stainless steel cages and were fed with standard diet purchased from Amrut Feed Ltd, India, given water ad libitum (Principles of Laboratory Animal Care NIH publication no, 85-23, revised 1985) and maintained under laboratory conditions (Temperature 22 ± 2 ℃, Relative humidity 60–70%, and 12-12 hrs light-dark cycle). All procedures and techniques used in this study were in accordance to the ethical committee guidelines.
L. acidophilus (ATCC 314) and L. casei (ATCC 334) were purchased from Hi Media, Navi Mumbai, India. Lyophilized cultures were streaked over De Mann Rogosa Agar (MRS) at 37 ℃ in anaerobic condition.
All chemical used in this study were of molecular and analytical grade.
Collagen induced arthritis model was induced by the method given by Remmers [12] with some necessary modifications. Rats were injected intra peritoneally with collagen (Bovine tracheal cartilage type Ⅱ) and incomplete freund's adjuvant on day 1except group Ⅰ animals. Booster doses of the same were injected on the 8th day. Preventive oral treatments were given to all the groups. Oral administration 500 μL of distilled water, 2 × 108 CFU/mL of L. casei, L. acidophilus suspended in 500 μL of distilled water were started on day 1 and continued till the 28th day for group Ⅱ, Ⅳ and Ⅴ group animals respectively. Indomethacin suspended in 500 μL of distilled water was administered at 10 mg/g body weight from day 1 to 28 to group Ⅲ animals [13]. Paw thickness were measured for all the experimental animals at day 0 and at the end of each week with dial gauge caliper.
On the 29th day, all animals were sacrificed in aseptic conditions. Blood samples were collected to isolate serum for cytokines assay. Right hind paws knee joints were also collected from each animal for RT PCR analysis of mRNA expressions for cytokines.
IL-6, TNF, IL-1β (pro-inflammatory cytokines) and IL-4, IL-10 (anti-inflammatory cytokines) (pg/mL) were estimated in serum samples with the help of ELISA Reader (Lisa Plus, Germany). IL-6 and TNF, IL-1β (Ray Bio®) and IL-4 and IL-10 (DNA bio) ELISA kits were used. Assays were performed according to the manufacturer's recommendations.
Paws were harvested and homogenized followed by addition of sodium lauryl sarconisate and centrifuged to remove the cell debris. RNA was precipitated by the addition of potassium acetate and acetic acid. Cold absolute ethanol was added for the precipitation of RNA. Total RNA was isolated by RNAzol method (Tel-Test, Friendswood, TX) according to the manufacturer's instructions.
The quantity and purity of RNA were determined by using a spectrophotometer (Shimadzu) at 260 and 280 nm. Samples with ratios > 1.7 were accepted for further analysis. These samples were treated with DNAase (Genei, Banglore, India) to remove the contaminating DNA. One microgram of total RNA from rat knee joint were reverse-transcribed into cDNA using 200 units of M-MLV reverse transcriptase (Invitrogen Co.) in 20 µL of reaction volume. cDNA was amplified in 20 µL of reaction mixture including 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM dNTP, 0.4 µM each of the 3' and 5' primer and 0.5 U Taq polymerase (Takara Co.) using a PTC-100 Programmable Thermal Controller (MJ Research, Waltham, MA, USA). All primers were designed using the published cDNA sequences and the primer selection software, with the help of web site, Primer 3 (http://www.genome.wi.mit.edu). Primer sequences and operating conditions are given in Table 1. PCR products thus obtained were separated on 1% agarose gel, stained with ethidium bromide, and photographed. Intensities of bands were measured by using ImageMaster VDSTM (Amersham Biosciences, Uppsala, Sweden) with image analysis software, ImageMaster Total Lab TM (Amersham Biosceinces). The amounts of target PCR products were normalized against GAPDH PCR product in the corresponding samples.
Gene name | Oligonucleotide sequence (5'-3') | Denaturing, ℃ (time) |
Annealing, ℃ (time) |
Elongation, ℃ (time) |
Cycle No. | Product size | Gene bank No. |
mGAPDH | F-ATGGGAAGCTGGTCATCAAC R-GGATGCAGGGATGATGTTCT |
94 (30 s) | 58 (30 s) | 72 (60 s) | 30 | 440 | NM_017008 |
mTNF | F-GTCGTAAACCACCAAGC R-GACTCCAAAGTAGACCTGCCC |
94 (45 s) | 58 (45 s) | 72 (90 s) | 35 | 393 | AY 427675 |
mIL-1β | F-GGCATAACAGGCTCATCTGG R-CATCATCCCACGAGTCACAG |
94 (45 s) | 58 (45 s) | 72 (90 s) | 35 | 414 | NM_031512 |
mIL-6 | F-CCACTGCCTTCCCTACTTCA R-TGGTCCTTAGCCACTCCTTC |
94 (60 s) | 63 (60 s) | 72 (120 s) | 37 | 498 | NM_012589 |
mIL-4 | F-ATG CACCGAGATGTTTGTACC R-TTCAGTGTTCTGAGCGTGGA |
95 (60 s) | 60 (60 s) | 72 (90 s) | 40 | 275 | NM_201270.1 |
mIL-10 | F-GGAGTGAAGACCAAAGG R-TCTCCCAGGGAATTCAAATG |
94 (30 s) | 57 (1 s) | 72 (60 s) | 40 | 340 | NM_012854 |
mGAPDH: human glyceraldehyde-3-phosphate dehydrogenase; mTNF: murine tumor necrosis factor α; IL-1β: interleukin-1β; IL-6: interleukin-6; IL-4: Interleukin-4; IL-10: Interleukin-10 |
The results are expressed as a mean ± SEM of six rats per group. The result obtained from different groups was analyzed by one way ANOVA followed by Bonferroni's Multiple Comparison Test. Data were considered statistically significant if P < 0.0001.
A significant increase in paw thickness was observed in group Ⅱ animals from 3.46 ± 0.04 to 3.78 ± 0.10 mm from 7th to 28th day while there was no change in the paw thickness (3.16 ± 0.08 mm) observed in group Ⅰ animals from 0 to 28th day. Lactobacillus treatment significantly decreased paw thickness in group Ⅳ and Ⅴ animals when compared with group Ⅱ animals. Paw thicknesses were 3.7 ± 0.16 and 3.48 ± 0.06 mm for group Ⅳ and Ⅴ respectively. A significant decreased in thickness to 3.4 ± 0.04 and 3.08 ± 0.08 mm for Ⅳ and Ⅴ groups at P < 0.0001 was observed on 28th day when compared with group Ⅱ animals. However group Ⅲ animals were also showing a significant decreased in paw thickness of 3.62 ± 0.09 mm on 7th day and 3.2 ± 0.08 mm on 28th day (at P < 0.0001) (Figure 1).
Serum level of IL-6, IL-1β and TNF level were significantly increased in group Ⅱ animals while significantly lower levels of these pro-inflammatory mediators were observed in other counterparts. 63.34 ± 0.18, 178.6 ± 0.27 and 650.1 ± 0.44 pg/mL were found in case group Ⅱ animals for IL-6, IL-1β and TNF respectively (Figure 2). Abrupt decreased in IL-4 and IL-10 level at 63.33 ± 0.57 and 15.7 ± 0.20 pg/mL respectively in case of group Ⅱ animals. Lactobacillus treatment increased serum level of IL-4 and IL-10 in group Ⅳ and Ⅴ animals. Results of group Ⅲ were also found to be statistically significant at P < 0.0001 with group Ⅱ animals (Figure 2).
Effect of L. casei and L. acidophilus was investigated by RT-PCR analysis for various cytokines at the transcription level. On the 29th day, mRNA expression levels of pro and anti-inflammatory cytokine level was estimated by total RNA sample prepared from the right hind knee joints. mRNA expressions of IL-6, IL-1β and TNF were stimulated in group Ⅱ animals when compared with other groups and very less expression of IL-4 and IL-10 were observed. Whereas Lactobacillus treatment up-regulated the IL-4 and IL-10 expressions in group Ⅳ and Ⅴ animals. The group Ⅰ animals were showing normal expression for all the cytokines. In case of group Ⅲ animals, IL-1β and TNF were simulated and less expression of IL-6 was observed. Also, IL-4 was stimulated in comparison to IL-10 in group Ⅲ animals (Figures 3 and 4).
Based on anti-inflammatory properties of L. casei and L. acidophilus in serum [11], it was considered that they both might have shown anti-inflammatory properties at transcription level also. The aim of the present study was to evaluate effect of L. casei and L. acidophilus on expressions of IL-6, IL-1β, TNF, IL-4 and IL-10 mRNA in CIA model of arthritis. When compared with the other experimental models of arthritis, CIA model is a promising model for validation and efficacy of anti-arthritic drugs [14]. Results obtained in this study were similar with our previous findings. L. casei and L. acidophilus significantly decreased the paw thickness in experimental animals when compared with their other counter parts. These treatments significantly decreased the pro-inflammatory and increased the anti-inflammatory cytokines [11]. Collagen induced arthritis is an immune mediated inflammatory reaction. Initial symptoms include paw edema and soft tissue thickening. Lactobacillus is acting as an immunosuppressive agent. Decrease in paw thickness is one of the major factors which evaluate the efficacy of anti-arthritic drugs or therapy. Both L. casei and L. acidophilus decreased paw thickness when compared to other counterparts.
Rheumatoid arthritis is a chronic and devastating autoimmune disorder that leads to persistent, progressive symmetrical inflammation in joints and subsequent erosive destruction of cartilage and bone [15,16]. Anti-arthritic drugs used for treating chronic inflammatory conditions are usually prescribed for long term to properly control the disordered immune system. Thus, there is a strong need to develop safe and effective drugs for the long-term use. Many researchers have studied non-chemical compounds for nonsteroidal anti-inflammatory properties with the aim of developing new treatments for clinical use [17].
Cytokines play major role in the progression of rheumatoid arthritis. An imbalance between pro-inflammatory and anti-inflammatory cytokine activities, favors the induction of autoimmunity, chronic inflammation and thereby joint damage [18]. Mainly IL-1β, TNF, IL-8, IL-12, IL-15, IL-17 and IL-18 are responsible for the inflammatory reaction. Along with these mediators, leukotriene B4 are also implicated in the process and playing a key role in neutrophil recruitment during immune inflammation [19]. TNF responsible for inflammation, differentiation and proliferation of T and B cells and bone resorption [20], whereas IL-1β causes the destruction of cartilage and bones [21]. Blocking TNF suppresses inflammation and ameliorates cartilage destruction while IL-6 is responsible for the joint destruction. Lactobacillus significantly decreased pro-inflammatory cytokine levels in serum. Lactobacillus might suppress the signaling pathway that leads to TNF, IL-1β and IL-6 synthesis. TNF, IL-1β and IL-6 had been considered to have critical roles in RA and CIA in that they promote the production of most other pro-inflammatory mediators [22]. Oral administration of Lactobacillus significantly increased anti-inflammatory cytokines (IL-10 and IL-4) level from serum. IL-10 is a macrophage deactivator and also found to be associated with blocking the synthesis of TNF, IL-1, IL-6, IL-8, and GM-CSF in human monocytes [23] and cox-2 inhibitors [24,25]. IL-4 is pleiotropic T-cell derived cytokine that acts by inhibiting the synthesis of pro-inflammatory cytokines such as IL-1, TNF, IL-6, IL-8 and IL-12 by macrophages and monocytes [26]. Moreover, it also stimulates several cytokine inhibitors such as interleukin-1 receptor antagonist (IL-1Ra), soluble IL-1-receptor type Ⅱ and TNF receptors. In addition, it also suppresses metalloproteinase synthesis and stimulates tissue inhibitor of metalloproteinase-1 production in human mononuclear phagocytes [27,28]. Lactobacillus might offer a complementary therapy, which inhibited pro-inflammatory cytokines whereas up-regulated anti-inflammatory cytokines.
In addition, anti-inflammatory effect of L. casei and L. acidophilus was also validated from the mRNA expression of cytokines from knee joints. mRNA level of IL-6, TNF and IL-1β were highly stimulated in knee joints of arthritic rats, whereas Lactobacillus treatment decreased the level as that of normal rats. Studies have established that IL-6 has an important role in leukocyte recruitment, apoptosis and T cell activation [29]. Additionally, TNF stimulates neutrophils to transcribe and release cytokines and chemokines biosynthesis [30]. Inhibition of TNF, IL-1β and IL-6 release can reduce the severity of inflammation. On the other way, Lactobacillus treatment enhanced the expression of IL-4 and IL-10. L. casei showed similar results in randomized double-blind clinical trial [31]. Consumption of L. casei fermented milk prevented the Salmonella reactive arthritis [32]. Results presented in this study are first to demonstrate that L. casei and L. acidophilus had shown inhibitory effects on the expression of IL-6, IL-1β and TNF and thus possess a potent immunosuppressive and anti-inflammatory activity.
We have demonstrated that Lactobacillus possess immunomodulatory property as suggested by RT PCR analysis of various pro-inflammatory and anti-inflammatory cytokines in animal model of experimental arthritis. Lactobacillus has therapeutic anti-arthritic activity as tested in CIA model. Notably, oral administration of Lactobacillus caused suppression of pro-inflammatory cytokines IL-6, IL-1β and TNF along with up-regulation of anti-inflammatory cytokines IL-4 and IL-10 in serum as well as at the transcription level. Also, there was lowering of paw thickness. On the basis of our results in present study, we suggest that Lactobacillus is a promising therapeutic agent or dietary supplement for rheumatoid arthritis.
The author would like to thank Department of Microbiology, Barkatullah University, Bhopal for laboratory facility provided to conduct the study.
There are nonfinancial competing interests (political, personal, religious, ideological, academic, intellectual, commercial, or any other) to declare in relation to this manuscript.
[1] | Baretic D, Williams RL (2014) PIKKs - the solenoid nest where partners and kinases meet. Curr Opin Struct Biol 29C: 134-142. |
[2] |
Lovejoy CA, Cortez D (2009) Common mechanisms of PIKK regulation. DNA Repair (Amst) 8: 1004-1008. doi: 10.1016/j.dnarep.2009.04.006
![]() |
[3] |
Lempiainen H, Halazonetis TD (2009) Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J 28: 3067-3073. doi: 10.1038/emboj.2009.281
![]() |
[4] |
van der Burg M, van Dongen JJ, van Gent DC (2009) DNA-PKcs deficiency in human: long predicted, finally found. Curr Opin Allergy Clin Immunol 9: 503-509. doi: 10.1097/ACI.0b013e3283327e41
![]() |
[5] |
Savitsky K, Bar-Shira A, Gilad S, et al. (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749-1753. doi: 10.1126/science.7792600
![]() |
[6] | Weber AM, Ryan AJ (2014) ATM and ATR as therapeutic targets in cancer. Pharmacol Ther. |
[7] |
Roberts TL, Ho U, Luff J, et al. (2013) Smg1 haploinsufficiency predisposes to tumor formation and inflammation. Proc Natl Acad Sci U S A 110: E285-294. doi: 10.1073/pnas.1215696110
![]() |
[8] |
Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12: 21-35. doi: 10.1038/nrm3025
![]() |
[9] |
Kong X, Shen Y, Jiang N, et al. (2011) Emerging roles of DNA-PK besides DNA repair. Cell Signal 23: 1273-1280. doi: 10.1016/j.cellsig.2011.04.005
![]() |
[10] | Kruger A, Ralser M (2011) ATM is a redox sensor linking genome stability and carbon metabolism. Sci Signal 4: pe17. |
[11] |
Oliveira V, Romanow WJ, Geisen C, et al. (2008) A protective role for the human SMG-1 kinase against tumor necrosis factor-alpha-induced apoptosis. J Biol Chem 283: 13174-13184. doi: 10.1074/jbc.M708008200
![]() |
[12] |
Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25: 225-227. doi: 10.1016/S0968-0004(00)01563-2
![]() |
[13] |
Keith CT, Schreiber SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270: 50-51. doi: 10.1126/science.270.5233.50
![]() |
[14] |
Brewerton SC, Dore AS, Drake AC, et al. (2004) Structural analysis of DNA-PKcs: modelling of the repeat units and insights into the detailed molecular architecture. J Struct Biol 145: 295-306. doi: 10.1016/j.jsb.2003.11.024
![]() |
[15] |
Perry J, Kleckner N (2003) The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112: 151-155. doi: 10.1016/S0092-8674(03)00033-3
![]() |
[16] |
Sommer LA, Schaad M, Dames SA (2013) NMR- and circular dichroism-monitored lipid binding studies suggest a general role for the FATC domain as membrane anchor of phosphatidylinositol 3-kinase-related kinases (PIKK). J Biol Chem 288: 20046-20063. doi: 10.1074/jbc.M113.467233
![]() |
[17] |
Lucero H, Gae D, Taccioli GE (2003) Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J Biol Chem 278: 22136-22143. doi: 10.1074/jbc.M301579200
![]() |
[18] |
Dames SA (2010) Structural basis for the association of the redox-sensitive target of rapamycin FATC domain with membrane-mimetic micelles. J Biol Chem 285: 7766-7775. doi: 10.1074/jbc.M109.058404
![]() |
[19] |
Sancak Y, Bar-Peled L, Zoncu R, et al. (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290-303. doi: 10.1016/j.cell.2010.02.024
![]() |
[20] |
Morita T, Yamashita A, Kashima I, et al. (2007) Distant N- and C-terminal domains are required for intrinsic kinase activity of SMG-1, a critical component of nonsense-mediated mRNA decay. J Biol Chem 282: 7799-7808. doi: 10.1074/jbc.M610159200
![]() |
[21] |
Yang H, Rudge DG, Koos JD, et al. (2013) mTOR kinase structure, mechanism and regulation. Nature 497: 217-223. doi: 10.1038/nature12122
![]() |
[22] | Sirbu BM, Cortez D (2013) DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 5: a012724. |
[23] |
Ochi T, Wu Q, Blundell TL (2014) The spatial organization of non-homologous end joining: from bridging to end joining. DNA Repair (Amst) 17: 98-109. doi: 10.1016/j.dnarep.2014.02.010
![]() |
[24] |
Spagnolo L, Rivera-Calzada A, Pearl LH, et al. (2006) Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol Cell 22: 511-519. doi: 10.1016/j.molcel.2006.04.013
![]() |
[25] |
Hammel M, Yu Y, Mahaney BL, et al. (2010) Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 285: 1414-1423. doi: 10.1074/jbc.M109.065615
![]() |
[26] |
Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551-554. doi: 10.1126/science.1108297
![]() |
[27] |
Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300: 1542-1548. doi: 10.1126/science.1083430
![]() |
[28] |
Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905-909. doi: 10.1126/science.1715094
![]() |
[29] |
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149: 274-293. doi: 10.1016/j.cell.2012.03.017
![]() |
[30] |
Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15: 155-162. doi: 10.1038/nrm3757
![]() |
[31] |
Yamashita A (2013) Role of SMG-1-mediated Upf1 phosphorylation in mammalian nonsense-mediated mRNA decay. Genes Cells 18: 161-175. doi: 10.1111/gtc.12033
![]() |
[32] |
Yamashita A, Izumi N, Kashima I, et al. (2009) SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev 23: 1091-1105. doi: 10.1101/gad.1767209
![]() |
[33] |
Ivanov PV, Gehring NH, Kunz JB, et al. (2008) Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. Embo J 27: 736-747. doi: 10.1038/emboj.2008.17
![]() |
[34] |
Kashima I, Yamashita A, Izumi N, et al. (2006) Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev 20: 355-367. doi: 10.1101/gad.1389006
![]() |
[35] |
Murr R, Vaissiere T, Sawan C, et al. (2007) Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 26: 5358-5372. doi: 10.1038/sj.onc.1210605
![]() |
[36] |
McMahon SB, Wood MA, Cole MD (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20: 556-562. doi: 10.1128/MCB.20.2.556-562.2000
![]() |
[37] |
Sibanda BL, Chirgadze DY, Blundell TL (2010) Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463: 118-121. doi: 10.1038/nature08648
![]() |
[38] |
Stark H (2010) GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol 481: 109-126. doi: 10.1016/S0076-6879(10)81005-5
![]() |
[39] |
Boskovic J, Rivera-Calzada A, Maman JD, et al. (2003) Visualization of DNA-induced conformational changes in the DNA repair kinase DNA-PKcs. EMBO J 22: 5875-5882. doi: 10.1093/emboj/cdg555
![]() |
[40] |
Melero R, Uchiyama A, Castano R, et al. (2014) Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD. Structure 22: 1105-1119. doi: 10.1016/j.str.2014.05.015
![]() |
[41] |
Dames SA, Mulet JM, Rathgeb-Szabo K, et al. (2005) The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280: 20558-20564. doi: 10.1074/jbc.M501116200
![]() |
[42] | Leone M, Crowell KJ, Chen J, et al. (2006) The FRB domain of mTOR: NMR solution structure and inhibitor design. Biochemistry 45: 10294-10302. |
[43] |
Yip CK, Murata K, Walz T, et al. (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 38: 768-774. doi: 10.1016/j.molcel.2010.05.017
![]() |
[44] |
Williams DR, Lee KJ, Shi J, et al. (2008) Cryo-EM structure of the DNA-dependent protein kinase catalytic subunit at subnanometer resolution reveals alpha helices and insight into DNA binding. Structure 16: 468-477. doi: 10.1016/j.str.2007.12.014
![]() |
[45] |
Rivera-Calzada A, Maman JD, Spagnolo L, et al. (2005) Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Structure 13: 243-255. doi: 10.1016/j.str.2004.12.006
![]() |
[46] | Kuhlbrandt W (2014) Cryo-EM enters a new era. Elife 3: e03678. |
[47] |
Llorca O, Rivera-Calzada A, Grantham J, et al. (2003) Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA. Oncogene 22: 3867-3874. doi: 10.1038/sj.onc.1206649
![]() |
[48] |
Arias-Palomo E, Yamashita A, Fernandez IS, et al. (2011) The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev 25: 153-164. doi: 10.1101/gad.606911
![]() |
[49] |
Adami A, Garcia-Alvarez B, Arias-Palomo E, et al. (2007) Structure of TOR and its complex with KOG1. Mol Cell 27: 509-516. doi: 10.1016/j.molcel.2007.05.040
![]() |
[50] |
Chiu CY, Cary RB, Chen DJ, et al. (1998) Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J Mol Biol 284: 1075-1081. doi: 10.1006/jmbi.1998.2212
![]() |
[51] |
Leuther KK, Hammarsten O, Kornberg RD, et al. (1999) Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J 18: 1114-1123. doi: 10.1093/emboj/18.5.1114
![]() |
[52] |
Grinthal A, Adamovic I, Weiner B, et al. (2010) PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci USA 107: 2467-2472. doi: 10.1073/pnas.0914073107
![]() |
[53] |
Forwood JK, Lange A, Zachariae U, et al. (2010) Quantitative structural analysis of importin-beta flexibility: paradigm for solenoid protein structures. Structure 18: 1171-1183. doi: 10.1016/j.str.2010.06.015
![]() |
[54] |
Knutson BA (2010) Insights into the domain and repeat architecture of target of rapamycin. J Struct Biol 170: 354-363. doi: 10.1016/j.jsb.2010.01.002
![]() |
[55] |
Spagnolo L, Barbeau J, Curtin NJ, et al. (2012) Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res 40: 4168-4177. doi: 10.1093/nar/gkr1231
![]() |
[56] |
Morris EP, Rivera-Calzada A, da Fonseca PC, et al. (2011) Evidence for a remodelling of DNA-PK upon autophosphorylation from electron microscopy studies. Nucleic Acids Res 39: 5757-5767. doi: 10.1093/nar/gkr146
![]() |
[57] |
Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499-506. doi: 10.1038/nature01368
![]() |
[58] | Perry JJ, Tainer JA (2011) All stressed out without ATM kinase. Sci Signal 4: pe18. |
[59] |
Guo Z, Kozlov S, Lavin MF, et al. (2010) ATM activation by oxidative stress. Science 330: 517-521. doi: 10.1126/science.1192912
![]() |
[60] |
Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14: 197-210. doi: 10.1038/nrm3546
![]() |
[61] |
Dynan WS, Yoo S (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26: 1551-1559. doi: 10.1093/nar/26.7.1551
![]() |
[62] |
Neal JA, Sugiman-Marangos S, VanderVere-Carozza P, et al. (2014) Unraveling the complexities of DNA-dependent protein kinase autophosphorylation. Mol Cell Biol 34: 2162-2175. doi: 10.1128/MCB.01554-13
![]() |
[63] |
Meek K, Douglas P, Cui X, et al. (2007) trans Autophosphorylation at DNA-dependent protein kinase's two major autophosphorylation site clusters facilitates end processing but not end joining. Mol Cell Biol 27: 3881-3890. doi: 10.1128/MCB.02366-06
![]() |
[64] |
Dobbs TA, Tainer JA, Lees-Miller SP (2010) A structural model for regulation of NHEJ by DNA-PKcs autophosphorylation. DNA Repair (Amst) 9: 1307-1314. doi: 10.1016/j.dnarep.2010.09.019
![]() |
[65] |
Villarreal SA, Stewart PL (2014) CryoEM and image sorting for flexible protein/DNA complexes. J Struct Biol 187: 76-83. doi: 10.1016/j.jsb.2013.12.002
![]() |
[66] | Wu PY, Ruhlmann C, Winston F, et al. (2004) Molecular architecture of the S. cerevisiae SAGA complex. Mol Cell 15: 199-208. |
[67] |
Chittuluru JR, Chaban Y, Monnet-Saksouk J, et al. (2011) Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes. Nat Struct Mol Biol 18: 1196-1203. doi: 10.1038/nsmb.2128
![]() |
[68] |
Kozlov SV, Graham ME, Jakob B, et al. (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286: 9107-9119. doi: 10.1074/jbc.M110.204065
![]() |
[69] |
Zhao R, Davey M, Hsu YC, et al. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120: 715-727. doi: 10.1016/j.cell.2004.12.024
![]() |
[70] |
Boulon S, Bertrand E, Pradet-Balade B (2012) HSP90 and the R2TP co-chaperone complex: building multi-protein machineries essential for cell growth and gene expression. RNA Biol 9: 148-154. doi: 10.4161/rna.18494
![]() |
[71] |
Hurov KE, Cotta-Ramusino C, Elledge SJ (2010) A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev 24: 1939-1950. doi: 10.1101/gad.1934210
![]() |
[72] |
Takai H, Wang RC, Takai KK, et al. (2007) Tel2 regulates the stability of PI3K-related protein kinases. Cell 131: 1248-1259. doi: 10.1016/j.cell.2007.10.052
![]() |
[73] |
Horejsi Z, Takai H, Adelman CA, et al. (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39: 839-850. doi: 10.1016/j.molcel.2010.08.037
![]() |
[74] | Izumi N, Yamashita A, Iwamatsu A, et al. (2010) AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay. Sci Signal 3: ra27. |
[75] |
Pal M, Morgan M, Phelps SE, et al. (2014) Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22: 805-818. doi: 10.1016/j.str.2014.04.001
![]() |
[76] |
Torreira E, Jha S, Lopez-Blanco JR, et al. (2008) Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure 16: 1511-1520. doi: 10.1016/j.str.2008.08.009
![]() |
[77] |
Lopez-Perrote A, Munoz-Hernandez H, Gil D, et al. (2012) Conformational transitions regulate the exposure of a DNA-binding domain in the RuvBL1-RuvBL2 complex. Nucleic Acids Res 40: 11086-11099. doi: 10.1093/nar/gks871
![]() |
[78] |
Matias PM, Gorynia S, Donner P, et al. (2006) Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 281: 38918-38929. doi: 10.1074/jbc.M605625200
![]() |
[79] |
Gorynia S, Bandeiras TM, Pinho FG, et al. (2011) Structural and functional insights into a dodecameric molecular machine - the RuvBL1/RuvBL2 complex. J Struct Biol 176: 279-291. doi: 10.1016/j.jsb.2011.09.001
![]() |
[80] |
Huen J, Kakihara Y, Ugwu F, et al. (2010) Rvb1-Rvb2: essential ATP-dependent helicases for critical complexes. Biochem Cell Biol 88: 29-40. doi: 10.1139/O09-122
![]() |
[81] |
Tosi A, Haas C, Herzog F, et al. (2013) Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154: 1207-1219. doi: 10.1016/j.cell.2013.08.016
![]() |
[82] |
Nguyen VQ, Ranjan A, Stengel F, et al. (2013) Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154: 1220-1231. doi: 10.1016/j.cell.2013.08.018
![]() |
[83] |
Jha S, Dutta A (2009) RVB1/RVB2: running rings around molecular biology. Mol Cell 34: 521-533. doi: 10.1016/j.molcel.2009.05.016
![]() |
[84] |
Melero R, Buchwald G, Castano R, et al. (2012) The cryo-EM structure of the UPF-EJC complex shows UPF1 poised toward the RNA 3' end. Nat Struct Mol Biol 19: 498-505, S491-492. doi: 10.1038/nsmb.2287
![]() |
[85] |
Chakrabarti S, Jayachandran U, Bonneau F, et al. (2011) Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol Cell 41: 693-703. doi: 10.1016/j.molcel.2011.02.010
![]() |
[86] |
Ali MM, Roe SM, Vaughan CK, et al. (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440: 1013-1017. doi: 10.1038/nature04716
![]() |
[87] |
Takai H, Xie Y, de Lange T, et al. (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24: 2019-2030. doi: 10.1101/gad.1956410
![]() |
1. | Zhexin Fan, Bo Yang, R. Paul Ross, Catherine Stanton, Jianxin Zhao, Hao Zhang, Wei Chen, The prophylactic effects of different Lactobacilli on collagen-induced arthritis in rats, 2020, 11, 2042-6496, 3681, 10.1039/C9FO02556A | |
2. | Chunhong Liu, Li Lin, Weidong Cui, Lei Wang, Min Ai, Zhongwei Zhao, Xiaohan Ma, Shengyu Li, Lactiplantibacillus plantarum HG20 attenuates II type collagen-induced rheumatoid arthritis in rats via anti-inflammatory and inhibition of apoptosis, 2022, 132, 1365-2672, 2323, 10.1111/jam.15333 |
Gene name | Oligonucleotide sequence (5'-3') | Denaturing, ℃ (time) |
Annealing, ℃ (time) |
Elongation, ℃ (time) |
Cycle No. | Product size | Gene bank No. |
mGAPDH | F-ATGGGAAGCTGGTCATCAAC R-GGATGCAGGGATGATGTTCT |
94 (30 s) | 58 (30 s) | 72 (60 s) | 30 | 440 | NM_017008 |
mTNF | F-GTCGTAAACCACCAAGC R-GACTCCAAAGTAGACCTGCCC |
94 (45 s) | 58 (45 s) | 72 (90 s) | 35 | 393 | AY 427675 |
mIL-1β | F-GGCATAACAGGCTCATCTGG R-CATCATCCCACGAGTCACAG |
94 (45 s) | 58 (45 s) | 72 (90 s) | 35 | 414 | NM_031512 |
mIL-6 | F-CCACTGCCTTCCCTACTTCA R-TGGTCCTTAGCCACTCCTTC |
94 (60 s) | 63 (60 s) | 72 (120 s) | 37 | 498 | NM_012589 |
mIL-4 | F-ATG CACCGAGATGTTTGTACC R-TTCAGTGTTCTGAGCGTGGA |
95 (60 s) | 60 (60 s) | 72 (90 s) | 40 | 275 | NM_201270.1 |
mIL-10 | F-GGAGTGAAGACCAAAGG R-TCTCCCAGGGAATTCAAATG |
94 (30 s) | 57 (1 s) | 72 (60 s) | 40 | 340 | NM_012854 |
mGAPDH: human glyceraldehyde-3-phosphate dehydrogenase; mTNF: murine tumor necrosis factor α; IL-1β: interleukin-1β; IL-6: interleukin-6; IL-4: Interleukin-4; IL-10: Interleukin-10 |
Gene name | Oligonucleotide sequence (5'-3') | Denaturing, ℃ (time) |
Annealing, ℃ (time) |
Elongation, ℃ (time) |
Cycle No. | Product size | Gene bank No. |
mGAPDH | F-ATGGGAAGCTGGTCATCAAC R-GGATGCAGGGATGATGTTCT |
94 (30 s) | 58 (30 s) | 72 (60 s) | 30 | 440 | NM_017008 |
mTNF | F-GTCGTAAACCACCAAGC R-GACTCCAAAGTAGACCTGCCC |
94 (45 s) | 58 (45 s) | 72 (90 s) | 35 | 393 | AY 427675 |
mIL-1β | F-GGCATAACAGGCTCATCTGG R-CATCATCCCACGAGTCACAG |
94 (45 s) | 58 (45 s) | 72 (90 s) | 35 | 414 | NM_031512 |
mIL-6 | F-CCACTGCCTTCCCTACTTCA R-TGGTCCTTAGCCACTCCTTC |
94 (60 s) | 63 (60 s) | 72 (120 s) | 37 | 498 | NM_012589 |
mIL-4 | F-ATG CACCGAGATGTTTGTACC R-TTCAGTGTTCTGAGCGTGGA |
95 (60 s) | 60 (60 s) | 72 (90 s) | 40 | 275 | NM_201270.1 |
mIL-10 | F-GGAGTGAAGACCAAAGG R-TCTCCCAGGGAATTCAAATG |
94 (30 s) | 57 (1 s) | 72 (60 s) | 40 | 340 | NM_012854 |
mGAPDH: human glyceraldehyde-3-phosphate dehydrogenase; mTNF: murine tumor necrosis factor α; IL-1β: interleukin-1β; IL-6: interleukin-6; IL-4: Interleukin-4; IL-10: Interleukin-10 |