Citation: Carsten Sachse. Single-particle based helical reconstruction—how to make the most of real and Fourier space[J]. AIMS Biophysics, 2015, 2(2): 219-244. doi: 10.3934/biophy.2015.2.219
[1] | Tariq A. Aljaaidi, Deepak B. Pachpatte . Some Grüss-type inequalities using generalized Katugampola fractional integral. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070 |
[2] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[3] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[4] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[5] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[6] | Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094 |
[7] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[8] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for $ m $-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[9] | Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m)$-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052 |
[10] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
Fractional calculus is like an extended version of regular calculus that allows us to deal with numbers that are not whole, like 1.5 or 2.3. This might not sound like a big deal, but it is incredibly useful in many fields. When we want to understand how things change or accumulate over time, fractional calculus helps us do that more accurately, especially when things are complicated and do not follow normal rules. These fractional calculations come in handy when we are dealing with stuff like how liquids flow, how materials deform, or how we control things like robots or machines. Inequalities, in the context of fractional calculus, are like special rules that help us understand when things are bigger or smaller than each other, but with these non-whole numbers involved. These rules are important because they help us figure out if systems with fractional calculus are stable and work the way they should. Thus, in a nutshell, fractional calculus and inequalities help us make sense of the world in a more precise and practical way. Thus, the term convexity and inequalities in the frame of fractional calculus have been recommended as an engrossing area for researchers due to their vital role and fruitful importance in numerous branches of science. Integral inequalities have remarkable uses in probability, optimization theory, information technology, stochastic processes, statistics, integral operator theory and numerical integration. For the applications, see references [1,2,3,4,5,6,7,8].
In [9], a comprehensive and up-to-date review on Hermite-Hadamard-type inequalities for different kinds of convexities and different kinds of fractional integral operators is presented. In this review paper, we aim to discuss and present the up-to-date review of the Grüss type inequality via different fractional integral operators.
In [10] (see also [11]), the Grüss inequality is defined as the integral inequality that establishes a connection between the integral of the product of two functions and the product of the integrals. The inequality is as follows.
Theorem 1.1. If $ \Omega, \Pi: [x_1, x_2]\to \mathbb{R} $ are two continuous functions satisfying $ \mathfrak{m}\le \Omega(t)\le \mathfrak{M} $ and $ \mathfrak{p}\le \Pi(t)\le \mathfrak{P}, $ $ t\in [x_1, x_2], $ $ \mathfrak{m}, \mathfrak{M}, \mathfrak{p}, \mathfrak{P}\in \mathbb{R}, $ then
$|1x2−x1∫x2x1Ω(s)Π(s)ds−1(x2−x1)2∫x2x1Ω(s)ds∫x2x1Π(s)ds|≤14(M−m)(P−p). $ |
Our objective in this paper is to present a comprehensive and up-to-date review on Grüss-type inequalities for different kinds of fractional integral operators. In each section and subsection, we first introduce the basic definitions of fractional integral operators and then include the results on Grüss-type inequalities. We believe that the collection of almost all existing in the literature Grüss-type inequalities in one file will help new researchers in the field learn about the available work on the topic before developing new results. We present the results without proof but instead provide a complete reference for the details of each result elaborated in this survey for the convenience of the reader.
The remainder of this review paper is as follows. In Sections 2–15, we summarize Grüss-type integral inequalities and especially for Riemann-Liouville fractional integral operators in Section 2, for Riemann-Liouville fractional integrals of a function with respect to another function in Section 3, in Section 4 for Katugampola fractional integral operators, in Section 5 for Hadamard's fractional integral operators, in Section 6 for $ k $-fractional integral operators, in Section 7 for Raina's fractional integral operators, in Section 8 for tempered fractional integral operators, in Section 9 for conformable fractional integrals operators, in Section 10 for proportional fractional integrals operators, in Section 11 for generalized Riemann-Liouville fractional integral operators, in Section 12 for Caputo-Fabrizio fractional integrals operators, for Saigo fractional integral operators in Section 13, in Section 14 for quantum integral operators and in Section 15 for Hilfer fractional differential operators.
Throughout this survey the following assumptions are used:
(H) Assume that $ \Omega, \Pi: I\to \mathbb{R} $ are integrable functions on $ I $ for which there exist constants $ \mathfrak{m}, \mathfrak{M}, \mathfrak{p}, \mathfrak{P}\in \mathbb{R}, $ such that
$ \mathfrak{m}\le \Omega(t)\le \mathfrak{M}, \; \; \; \mathfrak{p}\le \Pi(t)\le \mathfrak{P}, \; \; t\in I. $ |
(H1) There exist two integrable functions $ Q_1, Q_2: [0, \infty)\to \mathbb{R} $ such that
$ Q_1(t)\leq \Omega(t) \leq Q_2(t) \quad {\mbox{for all}}\quad t\in[0,\infty). $ |
(H2) There exist two integrable functions $ R_1, R_2: [0, \infty)\to \mathbb{R} $ such that
$ R_1(t)\leq \Pi(t)\leq R_2(t)\quad {\mbox{for all}}\quad t\in[0,\infty). $ |
In this subsection we give generalizations for Grüss-type inequalities by using the Riemann-Liouville fractional integrals. The first result deals with some inequalities using one fractional parameter.
Definition 2.1. [12] A real valued function $ \Omega(t), t\ge 0 $ is said to be in
(ⅰ) the space $ C_{\mu}, \mu\in \mathbb{R} $ if there exists a real number $ p > \mu $ such that $ \Omega(t) = t^p\Omega_1(t), $ where $ \Omega_1(t)\in C([0, \infty), \mathbb{R}), $
(ⅰ) the space $ C_{\mu}^n, \mu\in \mathbb{R} $ if $ \Omega^{(n)}\in C_{\mu}. $
Definition 2.2. [12] The Riemann-Liouville integral operator of fractional order $ \alpha\ge 0, $ for an integrable function $ \Omega $ is defined by
$ JαΩ(t)=1Γ(α)∫t0(t−s)α−1Ω(s)ds,α>0,t>0,$ |
and $ J^{0}\Omega(t) = \Omega(t). $
Theorem 2.1. [12] Assume that (H) holds on $ [0, \infty). $ Then for all $ t > 0 $ and $ \alpha > 0 $ we have:
$ \Big|\frac{t^{\alpha}}{\Gamma(\alpha+1)}J^{\alpha}\Omega(t)\Pi(t)-J^{\alpha}\Omega(t) J^{\alpha}\Pi(t)\Big|\le \Big(\frac{t^{\alpha}}{2\Gamma(\alpha+1)}\Big)^2(\mathfrak{M}-\mathfrak{m})(\mathfrak{P}-\mathfrak{p}). $ |
In the next result two real positive parameters are used.
Theorem 2.2. [12] Assume that (H) holds on $ [0, \infty). $ Then for all $ t > 0 $ and $ \alpha > 0, \beta > 0 $ we have:
$ (tαΓ(α+1)JβΩ(t)Π(t)+tβΓ(β+1)JαΩ(t)Π(t)−JαΩ(t)JβΠ(t)−JβΩ(t)JαΠ(t))2≤[(MtαΓ(α+1)−JαΩ(t))(JβΩ(t)−mtβΓ(β+1))+(JαΩ(t)−mtαΓ(α+1))(MtβΓ(β+1)−JβΩ(t))]×[(PtαΓ(α+1)−JαΠ(t))(JβΠ(t)−ptβΓ(β+1))+(JαΠ(t)−ptαΓ(α+1))(PtβΓ(β+1)−JβΠ(t))]. $ |
Next, we present some fractional integral inequalities of Grüss type by using the Riemann-Liouville fractional integral. The constants appeared as bounds of the functions $ \Omega $ and $ \Pi, $ are replaced by four integrable functions.
Theorem 2.3. [13] Assume that $ \Omega: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Then, for $ t > 0 $, $ \alpha, \beta > 0 $, we have:
$ JβQ1(t)JαΩ(t)+JαQ2(t)JβΩ(t)≥JαQ2(t)JβQ1(t)+JαΩ(t)JβΩ(t). $ |
Theorem 2.4. [13] Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then, for $ t > 0 $, $ \alpha $, $ \beta > 0 $, the fractional integral inequalities hold:
$ (i)JβR1(t)JαΩ(t)+JαQ2(t)JβΠ(t)≥JβR1(t)JαQ2(t)+JαΩ(t)JβΠ(t).(ii)JβQ1(t)JαΠ(t)+JαR2(t)JβΩ(t)≥JβQ1(t)JαR2(t)+JβΩ(t)JαΠ(t).(iii)JαQ2(t)JβR2(t)+JαΩ(t)JβΠ(t)≥JαQ2(t)JβΠ(t)+JβR2(t)JαΩ(t).(iv)JαQ1(t)JβR1(t)+JαΩ(t)JβΠ(t)≥JαQ1(t)JβΠ(t)+JβR1(t)JαΩ(t). $ |
Theorem 2.5. [13] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for all $ t > 0 $, $ \alpha > 0 $, we have:
$ |tαΓ(α+1)JαΩ(t)Π(t)−JαΩ(t)JαΠ(t)|≤√T(Ω,Q1,Q2)T(Π,R1,R2), $ |
where $ T(y, z, w) $ is defined by
$ T(y,z,w)=(Jαw(t)−Jαy(t))(Jαy(t)−Jαz(t))+tαΓ(α+1)Jαz(t)y(t)−Jαz(t)Jαy(t)+tαΓ(α+1)Jαw(t)y(t)−Jαw(t)Jαy(t)+Jαz(t)Jαw(t)−tαΓ(α+1)Jαz(t)w(t). $ |
In the next theorem we give an Ostrowski-Grüss type inequality of fractional type via Riemann-Liouville fractional integral.
Theorem 2.6. [14] Let $ \Omega: [x_1, x_2]\to \mathbb{R} $ be a differentiable mapping on $ (x_1, x_2) $ and $ |\Omega'(x)|\le M $ for all $ x\in [x_1, x_2]. $ Then
$ |12Ω(x)−(α+1)Γ(α)(x2−x)1−α2(x2−x1)Jαx1Ω(x2)+12Jα−1x1((x2−x)1−αΓ(α)Ω(x2))+(x2−x)2−α2(x2−x1)Γ(α)Jα−1x1Ω(x2)+(x2−x)1−α(x−x1)2(x2−x1)2−αΩ(x1)|≤M(x2−x)1−αx2−x1[(x2−x1)α(x−x1)+(x2−x)α(x1+x2−2x)2α], $ |
where $ x_1\le x < x_2. $
Definition 3.1. [15] Let $ \psi: [0, \infty)\to \mathbb{R} $ be positive, increasing function and also its derivative $ \psi' $ be continuous on $ [0, \infty) $ and $ \psi(0) = 0. $ The fractional integral of Riemann-Liouville type of an integrable function $ \Omega $ with respect to another function $ \psi $ is defined as
$ Iα,ψΩ(t)=1Γ(α)∫t0(ψ(t)−ψ(s))α−1ψ′(s)Ω(s)ds. $ |
In the next we include Grüss type integral inequalities with the help of $ \psi $-Riemann-Liouville fractional integral.
Theorem 3.1. [16] Assume that $ \psi: [0, \infty)\to \mathbb{R} $ is a positive, increasing function and also its derivative $ \psi' $ is continuous on $ [0, \infty) $ and $ \psi(0) = 0. $ Assume that $ \Omega: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Then the following inequality holds:
$ I^{\beta,\psi}Q_1(t)I^{\alpha,\psi}\Omega(t) +I^{\alpha,\psi}Q_2(t)I^{\beta,\psi}\Omega(t) \ge I^{\alpha,\psi}Q_2(t)I^{\beta,\psi}Q_1(t)+I^{\beta,\psi}\Omega(t) I^{\beta,\psi}\Omega(t) . $ |
Theorem 3.2. [16] Let $ \psi $ be as in Theorem 3.1 and $ \Omega, \Pi $ be two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then we have:
(a) $ I^{\beta, \psi} R_1(t)I^{\alpha, \psi}\Omega(t) +I^{\alpha, \psi}Q_2(t)I^{\beta, \psi}\Pi(t)\ge I^{\beta, \psi} R_1(t)I^{\alpha, \psi}Q_2(t)+I^{\alpha, \psi}\Omega(t) I^{\beta, \psi}\Pi(t). $
(b) $ I^{\beta, \psi}Q_1(t)I^{\alpha, \psi}\Pi(t)+I^{\alpha, \psi} R_2(t)I^{\beta, \psi}\Omega(t) \ge I^{\beta, \psi}Q_1(t)I^{\alpha, \psi} R_2(t)+I^{\beta, \psi}\Omega(t) I^{\alpha, \psi}\Pi(t). $
(c) $ I^{\alpha, \psi}Q_2(t)I^{\beta, \psi} R_2(t)+I^{\alpha, \psi}\Omega(t) I^{\beta, \psi}\Pi(t)\ge I^{\alpha, \psi}Q_2(t)I^{\beta, \psi}\Pi(t)+I^{\beta, \psi} R_2(t)I^{\alpha, \psi}\Omega(t). $
(d) $ I^{\alpha, \psi}Q_1(t)I^{\beta, \psi} R_1(t)+I^{\alpha, \psi}\Omega(t) I^{\beta, \psi}\Pi(t)\ge I^{\alpha, \psi}Q_1(t)I^{\beta, \psi}\Pi(t)+I^{\beta, \psi} R_1(t)I^{\alpha, \psi}\Omega(t). $
Theorem 3.3. [16] Let $ \psi $ be as in Theorem 3.1 and $ \Omega, \Pi $ be two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then the following inequality holds:
$ \Bigg|\frac{\psi^{\alpha}(t)}{\Gamma(\alpha+1)}I^{\alpha,\psi}\Omega(t) \Pi(t)-I^{\alpha,\psi}\Omega(t) I^{\alpha,\psi}\Pi(t)\Bigg|\le \sqrt{T(\Omega, Q_1,Q_2)T(\Pi, R_1, R_2)}, $ |
where
$ T(y,z,w)=(Iα,ψw(t)−Iα,ψy(t))(Iα,ψy(t)−Iα,ψz(t))+ψα(t)Γ(α+1)Iα,ψv(t)Iα,ψy(t)−Iα,ψz(t)Iα,ψy(t)+ψα(t)Γ(α+1)Iα,ψw(t)y(t)−Iα,ψw(t)Iα,ψy(t)+Iα,ψz(t)Iα,ψw(t)−ψα(t)Γ(α+1)Iα,ψz(t)w(t). $ |
Now we define the space $ X_c^p(x_1, x_2) $ in which Katugampola's fractional integrals are defined.
Definition 4.1. [17] The space $ X_c^p(x_1, x_2) \; (c\in \mathbb{R}, 1\le p < \infty) $ consists of those complex-valued Lebesgue measurable functions $ \phi $ on $ (x_1, x_2) $ for which $ \|\phi\|_{X_c^p} < \infty, $ with
$ ‖ϕ‖Xpc=(∫x2x1|xcϕ(x)|pdxx)1/p(1≤p<∞), $ |
and
$ \|\phi\|_{X_c^{\infty}} = {\rm ess}\sup\limits_{x\in (x_1, x_2)}[x^c|\phi(x)|]. $ |
Definition 4.2. [17] Let $ \phi\in X_c^p(x_1, x_2), $ $ \alpha > 0 $ and $ \beta, \rho, \eta, \kappa\in \mathbb{R}. $ Then, the left- and right- sided fractional integrals of a function $ \phi $ are defined respectively by
$ ρJα,βx1+,η,κϕ(x)=ρ1−βxκΓ(α)∫xx1τρ(η+1)−1(xρ−τρ)1−αϕ(τ)dτ,0≤x1<x<x2≤∞,$ |
and
$ρJα,βx2−,η,κϕ(x)=ρ1−βxρηΓ(α)∫x2xτκ+ρ−1(τρ−xρ)1−αϕ(τ)dτ,0≤x1<x<x2≤∞, $ |
if the integrals exist.
Now, we present several Grüss-type inequalities involving Katugampola's fractional integral.
Theorem 4.1. [17] Assume that $ (H) $ holds on $ [0, \infty). $ Then we have:
$ \Big|\Lambda_{x,\kappa}^{\rho,\beta}(\alpha,\eta)\; {}^{\rho}J_{\eta,\kappa}^{\alpha,\beta}\Omega(x)\Pi(x)-{}^{\rho}J_{\eta,\kappa}^{\alpha,\beta}\Omega(x){}^{\rho}J_{\eta,\kappa}^{\alpha,\beta}\Pi(x)\Big| \le \Big(\Lambda_{x,\kappa}^{\rho,\beta}(\alpha,\eta)\Big)^2(\mathfrak{M}-\mathfrak{m})(\mathfrak{P}-\mathfrak{p}), $ |
for all $ \beta, \kappa\in \mathbb{R}, $ $ x > 0, $ $ \alpha > 0, $ $ \rho > 0 $ and $ \eta\ge 0, $ where
$ \Lambda_{x,\kappa}^{\rho,\beta}(\alpha,\eta) = \frac{\Gamma(\eta+1)}{\Gamma(\eta+\alpha+1)}\rho^{-\beta}x^{\kappa+\rho(\eta+\alpha)}. $ |
Theorem 4.2. [17] Assume that $ (H) $ holds on $ [0, \infty). $ Then for all $ \beta, \kappa\in \mathbb{R}, $ $ x > 0, $ $ \alpha > 0, $ $ \gamma > 0 $ and $ \eta\ge 0, $ we have:
$ (Λρ,βx,κ(α,η)ρJγ,βη,κΩ(x)Π(x)+Λρ,βx,κ(γ,η)ρJα,βη,κΩ(x)Π(x)−ρJα,βη,κΩ(x)ρJα,βη,κΠ(x)−ρJγ,βη,κΩ(x)ρJα,βη,κΠ(x))2≤[(MΛρ,βx,κ(α,η)−ρJα,βη,κΩ(x))(ρJγ,βη,κΩ(x)−mΛρ,βx,κ(α,η))+(ρJα,βη,κΩ(x)−mΛρ,βx,κ(α,η))(MΛρ,βx,κ(γ,η)−ρJγ,βη,κΩ(x))]×[(PΛρ,βx,κ(α,η)−ρJα,βη,κΠ(x))(ρJγ,βη,κΠ(x)−pΛρ,βx,κ(γ,η))+(ρJα,βη,κΠ(x)−pΛρ,βx,κ(α,η))(PΛρ,βx,κ(γ,η)−ρJγ,βη,κΠ(x))]. $ |
Theorem 4.3. [17] Let $ \alpha > 0, $ $ \beta, \rho, \eta, \kappa\in \mathbb{R}, $ $ \Omega, \Pi\in X_c^p(0, x) $ $ x > 0 $ and $ p, q > 1 $ such that $ \frac{1}{p} + \frac{1}{q} = 1. $ Then we have:
$ (a)1pρJα,βη,κΩp(x)+1qρJα,βη,κΠq(x)≥Γ(η+α+1)ρβΓ(η+1)xρ(η+α)+κ(ρJα,βη,κΩ(x)ρJα,βη,κΠ(x)).(b)1pρJα,βη,κΩp(x)ρJα,βη,κΠp(x)+1qρJα,βη,κΩq(x)ρJα,βη,κΠq(x)≥(ρJα,βη,κΩ(x)Π(x))2.(c)1pρJα,βη,κΩp(x)ρJα,βη,κΠq(x)+1qρJα,βη,κΩq(x)ρJα,βη,κΠp(x)≥(ρJα,βη,κ(ΩΠ)p−1(x))(ρJα,βη,κ(ΩΠ)q−1(x)).(d)ρJα,βη,κΩp(x)ρJα,βη,κΠq(x)≥(ρJα,βη,κΩ(x)Π(x))(ρJα,βη,κΩp−1(x)Πq−1(x)).(e)1pρJα,βη,κΩp(x)ρJα,βη,κΠ2(x)+1qρJα,βη,κΩ2(x)ρJα,βη,κΠq(x)≥(ρJα,βη,κΩ(x)Π(x))(ρJα,βη,κΩ2/p(x)Π2/p(x)).(f)1pρJα,βη,κΩ2(x)ρJα,βη,κΠq(x)+1qρJα,βη,κΩq(x)ρJα,βη,κΠ2(x)≥(ρJα,βη,κΩ2/p(x)Π2/p(x))(ρJα,βη,κΩp−1(x)Πq−1(x)).(g)ρJα,βη,κΩ2(x)ρJα,βη,κ(Πq(x)p+Πq(x)q)≥(ρJα,βη,κΩ2/p(x)Π(x))(ρJα,βη,κΩ2/q(x)Π(x)). $ |
Theorem 4.4. [17]\ Assume that the assumptions of Theorem 4.3 are satisfied. In addition, let
$ \mu = \min\limits_{0\le t\le x}\frac{\Omega(t) }{\Pi(t)}\; \; \; and\; \; \; \mathcal{M} = \max\limits_{0\le t\le x}\frac{\Omega(t) }{\Pi(t)}. $ |
Then we have:
$ (i)0≤(ρJα,βη,κΩ2(x)ρJα,βη,κΠ2(x))≤(M+μ)24μM(ρJα,βη,κΩ(x)Π(x))2.(ii)0≤√ρJα,βη,κΩ2(x)ρJα,βη,κΠ2(x)−(ρJα,βη,κΩ(x)Π(x))≤(√M−√μ)22√μM(ρJα,βη,κΩ(x)Π(x)).(iii)0≤ρJα,βη,κΩ2(x)ρJα,βη,κΠ2(x)−(ρJα,βη,κΩ(x)Π(x))2≤(M−μ)24μM(ρJα,βη,κΩ(x)Π(x))2. $ |
Theorem 4.5. [18] Assume that $ \Omega: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Then we have:
$ {}^{\rho}J_{\eta,k}^{\alpha,\beta}Q_2(t)\; {}^{\rho}J_{\eta,k}^{\delta,\lambda}\Omega(t) +{}^{\rho}J_{\eta,k}^{\alpha,\beta}\Omega(t) \; {}^{\rho}J_{\eta,k}^{\delta,\lambda}Q_1(t) \ge {}^{\rho}J_{\eta,k}^{\alpha,\beta}\Omega(t) \; {}^{\rho}J_{\eta,k}^{\delta,\lambda}\Omega(t) +{}^{\rho}J_{\eta,k}^{\alpha,\beta}Q_2(t)\; {}^{\rho}J_{\eta,k}^{\delta,\lambda}Q_1(t), $ |
for all $ t > 0, \alpha, \rho, \delta > 0, $ $ \beta, \eta, k, \lambda\in \mathbb{R}. $
Theorem 4.6. [18] Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for all $ t > 0 $ and $ \alpha, \rho > 0, $ $ \beta, \eta, k\in \mathbb{R} $ we have:
$ \Big[\Lambda_{t,k}^{\rho,\beta}(\alpha,\eta)\; {}^{\rho}J_{\eta,k}^{\alpha,\beta}\Omega(t) \Pi(t)-\Big({}^{\rho}J_{\eta,k}^{\alpha,\beta}\Omega(t) \; {}^{\rho}J_{\eta,k}^{\alpha,\beta}\Pi(t)\Big)\Big]^2\le T(\Omega, Q_1, Q_2)T(\Pi, R_1, R_2), $ |
where
$ T(y,z,w)=(ρJα,βη,kw(t)−ρJα,βη,ky(t))(ρJα,βη,ky(t)−ρJα,βη,kz(t))+Λρ,βt,k(α,η)ρJα,βη,ky(t)z(t)−ρJα,βη,ky(t)ρJα,βη,kz(t)+Λρ,βt,k(α,η)ρJα,βη,ky(t)w(t)−ρJα,βη,ky(t)ρJα,βη,kw(t)−Λρ,βt,k(α,η)ρJα,βη,kz(t)w(t)+ρJα,βη,kz(t)ρJα,βη,kw(t). $ |
Theorem 4.7. [18] Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for all $ t > 0 $ and $ \alpha, \delta, \rho > 0, $ $ \beta, \lambda, \eta, k\in \mathbb{R} $ we have:
(a) $ ^{\rho}J_{\eta, k}^{\delta, \lambda}\Omega(t) \; ^{\rho}J_{\eta, k}^{\alpha, \beta}Q_2(t)+^{\rho}J_{\eta, k}^{\delta, \lambda} R_1(t)\; ^{\rho}J_{\eta, k}^{\alpha, \beta}\Pi(t) \ge ^{\rho}J_{\eta, k}^{\delta, \lambda} R_1(t)\; ^{\rho}J_{\eta, k}^{\alpha, \beta}Q_2(t)+ ^{\rho}J_{\eta, k}^{\delta, \lambda}\Omega(t) \; ^{\rho}J_{\eta, k}^{\alpha, \beta}\Pi(t). $
(b) $ ^{\rho}J_{\eta, k}^{\delta, \lambda}Q_1(t)\; ^{\rho}J_{\eta, k}^{\alpha, \beta}\Omega(t) +^{\rho}J_{\eta, k}^{\alpha, \beta} R_2(t)\; ^{\rho}J_{\eta, k}^{\delta, \lambda}\Pi(t) \ge ^{\rho}J_{\eta, k}^{\delta, \lambda}Q_1(t)\; ^{\rho}J_{\eta, k}^{\alpha, \beta} R_2(t)+ ^{\rho}J_{\eta, k}^{\delta, \lambda}\Pi(t)\; ^{\rho}J_{\eta, k}^{\alpha, \beta}\Omega(t). $
(c) $ ^{\rho}J_{\eta, k}^{\alpha, \beta}Q_2(t)\; ^{\rho}J_{\eta, k}^{\delta, \lambda} R_2(t)+^{\rho}J_{\eta, k}^{\alpha, \beta}\Pi(t)\; ^{\rho}J_{\eta, k}^{\delta, \lambda}\Omega(t) \ge ^{\rho}J_{\eta, k}^{\alpha, \beta}Q_2(t)\; ^{\rho}J_{\eta, k}^{\delta, \lambda}\Omega(t) + ^{\rho}J_{\eta, k}^{\delta, \lambda} R_2(t)\; ^{\rho}J_{\eta, k}^{\alpha, \beta}\Pi(t). $
(d) $ ^{\rho}J_{\eta, k}^{\alpha, \beta}Q_1(t)\; ^{\rho}J_{\eta, k}^{\delta, \lambda} R_1(t)+^{\rho}J_{\eta, k}^{\alpha, \beta}\Pi(t)\; ^{\rho}J_{\eta, k}^{\delta, \lambda}\Omega(t) \ge ^{\rho}J_{\eta, k}^{\alpha, \beta}Q_1(t)\; ^{\rho}J_{\eta, k}^{\delta, \lambda}\Omega(t) + ^{\rho}J_{\eta, k}^{\delta, \lambda} R_1(t)\; ^{\rho}J_{\eta, k}^{\alpha, \beta}\Pi(t). $
Definition 5.1. [15] The fractional integral of Hadamard type of order $ \alpha\in \mathbb{R^+} $ of an integrable function $ \Omega(t) $, for all $ t > 1 $ is defined as
$ HJαΩ(t)=1Γ(α)∫t1(logts)α−1Ω(s)dss, $ | (5.1) |
provided the integral exists. (Here $ \log(\cdot) = \log_e(\cdot) $).
We present, by using Hadamard's fractional integral, some Grüss-type fractional integral inequalities.
Theorem 5.1. [19] Assume that $ \Omega: [1, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Then, for $ t > 1 $, $ \alpha, \beta > 0 $, we have
$ {_{H}J}^{\beta}Q_1(t){_{H}J}^{\alpha}\Omega(t) +{_{H}J}^{\alpha}Q_2(t){_{H}J}^{\beta}\Omega(t) \geq {_{H}J}^{\alpha}Q_2(t){_{H}J}^{\beta}Q_1(t)+{_{H}J}^{\alpha}\Omega(t) {_{H}J}^{\beta}\Omega(t) . $ |
Theorem 5.2. [19] Assume that $ \Omega: [1, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Let $ \theta_1, \theta_2 > 0 $ satisfying $ 1/\theta_1+1/\theta_2 = 1 $. Then, for $ t > 1 $, $ \alpha, \beta > 0 $, we have
$ 1θ1(logt)βΓ(β+1)HJα((Q2−Ω)θ1)(t)+1θ2(logt)αΓ(α+1)HJβ((Ω−Q1)θ2)(t)+HJαQ2(t)HJβQ1(t)+HJαΩ(t)HJβΩ(t)≥HJαQ2(t)HJβΩ(t)+HJαΩ(t)HJβQ1(t). $ |
Theorem 5.3. [19] Assume that $ \Omega: [1, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Let $ \theta_1, \theta_2 > 0 $ satisfying $ \theta_1+\theta_2 = 1 $. Then, for $ t > 1 $, $ \alpha, \beta > 0 $, we have
$ θ1(logt)βΓ(β+1)HJαQ2(t)+θ2(logt)αΓ(α+1)HJβΩ(t)≥HJα(Q2−Ω)θ1(t)HJβ(Ω−Q1)θ2(t)+θ1(logt)βΓ(β+1)HJαΩ(t)+θ2(logt)αΓ(α+1)HJβQ1(t). $ |
Theorem 5.4. [19] Assume that $ \Omega: [1, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Let $ p\geq q\geq0 $, $ p\neq 0 $. Then, we have the following two inequalities, for any $ k > 0 $, $ t > 1 $, $ \alpha $, $ \beta > 0, $
$ (i)HJα(Q2−Ω)qp(t)+qpkq−ppHJαΩ(t)≤qpkq−ppHJαQ2(t)+p−qpkqp(logt)αΓ(α+1).(ii)HJα(Ω−Q1)qp(t)+qpkq−ppHJαQ1(t)≤qpkq−ppHJαΩ(t)+p−qpkqp(logt)αΓ(α+1). $ |
Theorem 5.5. [19] Suppose that $ \Omega, \Pi: [1, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then, for $ t > 0 $, $ \alpha $, $ \beta > 0 $, we have:
(a) $ \; {_{H}J}^{\beta} R_1(t){_{H}J}^{\alpha}\Omega(t) +{_{H}J}^{\alpha}Q_2(t){_{H}J}^{\beta}\Pi(t) \geq {_{H}J}^{\beta} R_1(t) {_{H}J}^{\alpha}Q_2(t)+ {_{H}J}^{\alpha}\Omega(t) {_{H}J}^{\beta}\Pi(t). $
(b) $ \; {_{H}J}^{\beta}Q_1(t){_{H}J}^{\alpha}\Pi(t)+{_{H}J}^{\alpha} R_2(t){_{H}J}^{\beta}\Omega(t) \geq {_{H}J}^{\beta}Q_1(t) {_{H}J}^{\alpha} R_2(t)+{_{H}J}^{\beta}\Omega(t) {_{H}J}^{\alpha}\Pi(t). $
(c) $ {_{H}J}^{\beta} R_2(t){_{H}J}^{\alpha}Q_2(t) + {_{H}J}^{\alpha}\Omega(t) {_{H}J}^{\beta}\Pi(t) \geq {_{H}J}^{\alpha}Q_2(t) {_{H}J}^{\beta}\Pi(t) + {_{H}J}^{\beta} R_2(t) {_{H}J}^{\alpha}\Omega(t). $
(d) $ \; {_{H}J}^{\alpha}Q_1(t) {_{H}J}^{\beta} R_1(t)+ {_{H}J}^{\alpha}\Omega(t) {_{H}J}^{\beta}\Pi(t)\geq {_{H}J}^{\alpha}Q_1(t) {_{H}J}^{\beta}\Pi(t)+ {_{H}J}^{\beta} R_1(t) {_{H}J}^{\alpha}\Omega(t). $
Theorem 5.6. [19] Suppose that $ \Omega, \Pi: [1, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Let $ \theta_1, \theta_2 > 0 $ such that $ 1/\theta_1+1/\theta_2 = 1 $. Then, for $ t > 1 $, $ \alpha $, $ \beta > 0 $, the following inequalities hold:
(ⅰ) $ \; \frac{1}{\theta_1}\frac{(\log t)^{\beta}}{\Gamma(\beta+1)}{_HJ}^{\alpha}(Q_2-\Omega)^{\theta_1}(t)+\frac{1}{\theta_2}\frac{(\log t)^{\alpha}}{\Gamma(\alpha+1)}{_HJ}^{\beta}(R_2-\Pi)^{\theta_2}(t) $ $ \geq {_HJ}^{\alpha}(Q_2-\Omega)(t){_HJ}^{\beta}(R_2-\Pi)(t). $
(ⅱ) $ \; \frac{1}{\theta_1}{_HJ}^{\alpha}(Q_2-\Omega)^{\theta_1}(t){_HJ}^{\beta}(R_2-\Pi)^{\theta_1}(t) +\frac{1}{\theta_2}{_HJ}^{\alpha}(R_2-\Pi)^{\theta_2}(t){_HJ}^{\beta}(Q_2-\Omega)^{\theta_2}(t) $ $ \geq {_HJ}^{\alpha}(Q_2-\Omega)(R_2-\Pi)(t){_HJ}^{\beta}(Q_2-\Omega)(R_2-\Pi)(t). $
(ⅲ) $ \; \frac{1}{\theta_1}\frac{(\log t)^{\beta}}{\Gamma(\beta+1)}{_HJ}^{\alpha}(\Omega-Q_1)^{\theta_1}(t)+\frac{1}{\theta_2}\frac{(\log t)^{\alpha}}{\Gamma(\alpha+1)}{_HJ}^{\beta}(\Pi- R_1)^{\theta_2}(t) $ $ \geq {_HJ}^{\alpha}(\Omega-Q_1)(t){_HJ}^{\beta}(\Pi- R_1)(t). $
(ⅳ) $ \; \frac{1}{\theta_1}{_HJ}^{\alpha}(\Omega -Q_1)^{\theta_1}(t){_HJ}^{\beta}(\Pi- R_1)^{\theta_1}(t) +\frac{1}{\theta_2}{_HJ}^{\alpha}(\Pi- R_1)^{\theta_2}(t){_HJ}^{\beta}(\Omega-Q_1)^{\theta_2}(t) $ $ \geq {_HJ}^{\alpha}(\Omega-Q_1)(\Pi- R_1)(t){_HJ}^{\beta}(\Omega-Q_1)(\Pi- R_1)(t). $
Theorem 5.7. [19] Suppose that $ \Omega, \Pi: [1, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Let $ \theta_1, \theta_2 > 0 $ such that $ \theta_1+\theta_2 = 1 $. Then, for $ t > 1 $, $ \alpha $, $ \beta > 0 $, we have:
$ (a) $ $ \; \; \; \; \; \theta_1\frac{(\log t)^{\beta}}{\Gamma(\beta+1)}{_HJ}^{\alpha}Q_2(t)+\theta_2\frac{(\log t)^{\alpha}}{\Gamma(\alpha+1)}{_HJ}^{\beta} R_2(t) $ $ \geq {_HJ}^{\alpha}(Q_2-\Omega)^{\theta_1}(t){_HJ}^{\beta}(R_2-\Pi)^{\theta_2}(t)+\theta_1\frac{(\log t)^{\beta}}{\Gamma(\beta+1)}{_HJ}^{\alpha}\Omega(t) +\theta_2\frac{(\log t)^{\alpha}}{\Gamma(\alpha+1)}{_HJ}^{\beta}\Pi(t). $
$ (b) $ $ \theta_1{_HJ}^{\alpha}Q_2(t){_HJ}^{\beta} R_2(t)+\theta_1{_HJ}^{\alpha}\Omega(t) {_HJ}^{\beta}\Pi(t) $ $ \; \; \; \; \; + \theta_2{_HJ}^{\alpha} R_2(t){_HJ}^{\beta}Q_2(t)+ \theta_2{_HJ}^{\alpha}\Pi(t){_HJ}^{\beta}\Omega(t) $ $ \geq {_HJ}^{\alpha}(Q_2-\Omega)^{\theta_1}(R_2-\Pi)^{\theta_2}(t){_HJ}^{\beta}(R_2-\Pi)^{\theta_1}(Q_2-\Omega)^{\theta_2}(t) $ $ \; \; \; \; \; +\theta_1{_HJ}^{\alpha}Q_2(t){_HJ}^{\beta}\Pi(t)+\theta_1{_HJ}^{\alpha}\Omega(t) {_HJ}^{\beta} R_2(t) $ $ \; \; \; \; \; +\theta_2{_HJ}^{\alpha} R_2(t){_HJ}^{\beta}\Omega(t) +\theta_2{_HJ}^{\alpha}\Pi(t){_HJ}^{\beta}Q_2(t). $
$ (c) $ $ \; \theta_1\frac{(\log t)^{\beta}}{\Gamma(\beta+1)}{_HJ}^{\alpha}\Omega(t) +\theta_2\frac{(\log t)^{\alpha}}{\Gamma(\alpha+1)}{_HJ}^{\beta}\Pi(t) $ $ \geq {_HJ}^{\alpha}(\Omega-Q_1)^{\theta_1}(t){_HJ}^{\beta}(\Pi- R_1)^{\theta_2}(t)+\theta_1\frac{(\log t)^{\beta}}{\Gamma(\beta+1)}{_HJ}^{\alpha}Q_1(t) +\theta_2\frac{(\log t)^{\alpha}}{\Gamma(\alpha+1)}{_HJ}^{\beta} R_1(t). $
$ (d) $ $ \; \theta_1{_HJ}^{\alpha}\Omega(t) {_HJ}^{\beta}\Pi(t)+\theta_1{_HJ}^{\alpha}Q_1(t){_HJ}^{\beta} R_1(t) $ $ \; \; \; \; \; + \theta_2{_HJ}^{\alpha}\Pi(t){_HJ}^{\beta}\Omega(t) + \theta_2{_HJ}^{\alpha} R_1(t){_HJ}^{\beta}Q_1(t) $ $ \geq {_HJ}^{\alpha}(\Omega-Q_1)^{\theta_1}(\Pi- R_1)^{\theta_2}(t){_HJ}^{\beta}(\Pi- R_1)^{\theta_1}(\Omega-Q_1)^{\theta_2}(t) $ $ \; \; \; \; \; +\theta_1{_HJ}^{\alpha}\Omega(t) {_HJ}^{\beta} R_1(t)+\theta_1{_HJ}^{\alpha}Q_1(t){_HJ}^{\beta}\Pi(t) $ $ \; \; \; \; \; +\theta_2{_HJ}^{\alpha}\Pi(t){_HJ}^{\beta}Q_1(t)+\theta_2{_HJ}^{\alpha} R_1(t){_HJ}^{\beta}\Omega(t). $
Theorem 5.8. [19] Suppose that $ \Omega, \Pi: [1, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for all $ t > 1 $, $ \alpha > 0 $, we have
$ |(logt)αΓ(α+1)HJαΩ(t)Π(t)−HJαΩ(t)HJαΠ(t)|≤|T(Ω,Q1,Q2)|12|T(Π,R1,R2)|12, $ |
where $ T(y, z, w) $ is defined by
$ T(y,z,w)=(HJαw(t)−HJαy(t))(HJαy(t)−HJαz(t))+(logt)αΓ(α+1)HJαz(t)y(t)−HJαz(t)HJαy(t)+(logt)αΓ(α+1)HJαw(t)y(t)−HJαw(t)HJαy(t)+HJαz(t)HJαw(t)−(logt)αΓ(α+1)HJαz(t)w(t). $ |
In this section we present Grüss-type fractional integral inequalities concerning $ k $-fractional integral operators.
$ k $-fractional integral inequalities of Grüss-type are included in this section.
Definition 6.1. [20] The $ k $-fractional integral of the Riemann-Liouville type is defined as follows:
$ kJαx1Ω(t)=1kΓk(α)∫tx1(x−s)αk−1Ω(s)ds,α>0,t>a. $ |
Theorem 6.1. [21] Assume that $ \Omega: [0, \infty) $ is an integrable function satisfying $ (H_1). $ Then, for $ t > 0 $, $ \alpha, \beta > 0 $, $ k > 0 $, we have
$ kJβQ1(t)kJαΩ(t)+ kJαQ2(t)kJβΩ(t)≥ kJαQ2(t)kJβQ1(t)+ kJαΩ(t)kJβΩ(t). $ |
Theorem 6.2. [21] Assume that $ \Omega: [0, \infty) $ is an integrable function satisfying $ (H_1). $ Let $ \theta_1, \theta_2 > 0 $ such that $ 1/\theta_1+1/\theta_2 = 1 $. Then, we have for $ t > 0 $, $ \alpha, \beta > 0 $ and $ k > 0 $,
$ 1θ1tβkΓk(β+k)kJα((Q2−Ω)θ1)(t)+1θ2tαkΓk(α+k)kJβ((Ω−Q1)θ2)(t)+kJαQ2(t)kJβQ1(t)+kJαΩ(t)kJβΩ(t)≥kJαQ2(t)kJβΩ(t)+kJαΩ(t)kJβQ1(t). $ |
Theorem 6.3. [21] Assume that $ \Omega: [0, \infty) $ is an integrable function satisfying $ (H_1). $ Let $ \theta_1, \theta_2 > 0 $ such that $ \theta_1+\theta_2 = 1 $. Then, for $ t > 0 $, $ \alpha, \beta > 0 $ and $ k > 0 $, we have
$ θ1tβkΓk(β+k)kJαQ2(t)+θ2tαkΓk(α+k)kJβΩ(t)≥kJα(Q2−Ω)θ1(t)kJβ(Ω−Q1)θ2(t)+θ1tβkΓk(β+k)kJαΩ(t)+θ2tαkΓk(α+k)kJβQ1(t). $ |
Theorem 6.4. [21] Assume that $ \Omega, \Pi: [0, \infty) \to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then, for $ t > 0 $, $ \alpha $, $ \beta > 0 $, $ k > 0\ $ we have:
(ⅰ) $ _{k}J^{\beta }R_{1}(t)\ _{k}J^{\alpha }\Omega(t) +\ _{k}J^{\alpha }Q_{2}(t)\ _{k}J^{\beta }\Pi(t)\geq \ _{k}J^{\beta }R _{1}(t)\ _{k}J^{\alpha }Q_{2}(t)+\ _{k}J^{\alpha }\Omega(t) \ _{k}J^{\beta }\Pi(t). $
(ⅱ) $ _{k}J^{\beta }Q_{1}(t)\ _{k}J^{\alpha }\Pi(t)+\ _{k}J^{\alpha }R_{2}(t)\ _{k}J^{\beta }\Omega(t) \geq \ _{k}J^{\beta }Q _{1}(t)\ _{k}J^{\alpha }R_{2}(t)+\ _{k}J^{\beta }\Omega(t) \ _{k}J^{\alpha }\Pi(t). $
(ⅲ) $ _{k}J^{\alpha }Q_{2}(t)_{\ k}J^{\beta }R _{2}(t)+\ _{k}J^{\alpha }\Omega(t) \ _{k}J^{\beta }\Pi(t)\geq \ _{k}J^{\alpha }Q_{2}(t)\ _{k}J^{\beta }\Pi(t)+\ _{k}J^{\beta }R_{2}(t)\ _{k}J^{\alpha }\Omega(t). $
(ⅳ) $ _{k}J^{\alpha }Q_{1}(t)J^{\beta }R _{1}(t)+\ _{k}J^{\alpha }\Omega(t) \ _{k}J^{\beta }\Pi(t)\geq \ _{k}J^{\alpha }Q_{1}(t)\ _{k}J^{\beta }\Pi(t)+\ _{k}J^{\beta }R_{1}(t)\ _{k}J^{\alpha }\Omega(t). $
Theorem 6.5. [21] Assume that $ \Omega, \Pi: [0, \infty) \to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for all $ t > 0 $, $ \alpha > 0 $, $ k > 0 $, we have
$ |tαkΓk(α+k) kJαΩ(t)Π(t)− kJαΩ(t) kJαΠ(t)|≤√T(Ω,Q1,Q2)T(Π,R1,R2), $ |
where
$ T(y,z,w)=( kJαw(t)− kJαy(t))( kJαy(t)− kJαz(t))+tαkΓk(α+k) kJαz(t)y(t)−kJαz(t) kJαy(t)+tαkΓk(α+k)Jαw(t)y(t)−kJαw(t) kJαy(t)+kJαz(t) kJαw(t)−tαkΓk(α+k) kJαz(t)w(t). $ |
Theorem 6.6. [22] Assume that (H) holds on $ [x_1, x_2] $ and $ p $ be a positive function on $ [x_1, x_2]. $ Then for all $ t > 0, $ $ k > 0, \alpha > 0, $ we have
$ \Big|\Big({}_{k}J_{x_1}^{\alpha}p(t)\Big)\Big({}_{k}J_{x_1}^{\alpha}p(t)\Omega(t)\Pi(t)\Big)-\Big({}_{k}J_{x_1}^{\alpha}p(t)\Omega(t) \Big)\Big({}_{k}J_{x_1}^{\alpha}p(t)\Pi(t)\Big)\Big|\le \frac{\Big({}_{k}J_{x_1}^{\alpha}p(t)\Big)^2}{4}(\mathfrak{M}-\mathfrak{m})(\mathfrak{P}-\mathfrak{p}). $ |
Theorem 6.7. [22] Let the assumptions of Theorem 6.6 be satisfied. Then, for all $ t > 0, $ $ k > 0, \alpha, \beta > 0, $ t he following inequality holds:
$ [(kJαx1p(t))(kJβx1p(t)Ω(t)Π(t))+(kJβx1p(t))(kJαx1p(t)Ω(t)Π(t))−(kJαx1p(t)Ω(t))(kJαx1p(t)Π(t))−(kJβx1p(t)Ω(t))(kJαx1p(t)Π(t))]2≤{[M(kJαx1p(t))−(kJαx1p(t)Ω(t))][(kJβx1p(t)Ω(t))−m(kJβx1p(t))]+[(kJαx1p(t)Ω(t))−m(kJαx1p(t))][M(kJβx1p(t))−(kJβx1pΩ(t))]}×{[P(kJαx1p(t))−(kJαx1p(t)Π(t))][(kJβx1p(t)Π(t))−p(kJβx1p(t))]+[(kJαx1p(t)Π(t))−p(kJαx1p(t))][P(kJβx1p(t))−(kJβx1p(t)Π(t))]}. $ |
Definition 6.2. [23] Let $ \psi $ be a positive and increasing function on $ [x_1, x_2]. $ Then the left-sided and right-sided generalized Riemann–Liouville fractional integrals of a function $ \Omega $ with respect to another function $ \psi $ of order $ \alpha > 0 $ are defined by
$ Jα,ψx1+,kΩ(t)=1kΓk(α)∫tx1(ψ(t)−ψ(s))αk−1ψ′(s)Ω(s)ds,t>x1,$ |
$ Jα,ψx2−,kΩ(t)=1kΓk(α)∫x2t(ψ(s)−ψ(t))αk−1ψ′(s)Ω(s)ds,t<x2. $ |
Theorem 6.8. [23] Assume that $ \Omega: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Then, for $ t > 0 $, $ \alpha, \beta > 0 $, $ k > 0 $, we have:
$ Jβ,ψ0+,kQ1(t)Jα,ψ0+,kΩ(t)+ Jα,ψ0+,kQ2(t)Jβ,ψ0+,kΩ(t)≥ Jα,ψ0+,kQ2(t)Jβ,ψ0+,kQ1(t)+ Jα,ψ0+,kΩ(t)Jβ,ψ0+,kΩ(t). $ |
Theorem 6.9. [23] Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Assume that $ \psi $ is a positive and increasing function with $ \psi(0) = 0 $ and $ \psi' $ continuous on $ [0, \infty). $ Then, for $ t > 0 $, $ \alpha $, $ \beta > 0 $, $ k > 0 $ we have:
(ⅰ) $ J^{\beta, \psi}_{0+, k}R_{1}(t)\ J^{\alpha, \psi}_{0+, k}\Omega(t) +\ J^{\alpha, \psi}_{0+, k}Q_{2}(t)\ J^{\beta, \psi}_{0+, k}\Pi(t)\geq \ J^{\beta, \psi}_{0+, k}R _{2}(t)\ J^{\alpha, \psi}_{0+, k}Q_{2}(t)+\ J^{\alpha, \psi}_{0+, k}\Omega(t) \ J^{\beta, \psi}_{0+, k}\Pi(t). $
(ⅱ) $ J^{\beta, \psi}_{0+, k}Q_{1}(t)\ J^{\alpha, \psi}_{0+, k}\Pi(t)+\ J^{\alpha, \psi}_{0+, k}R_{2}(t)\ J^{\beta, \psi}_{0+, k}\Omega(t) \geq \ J^{\beta, \psi}_{0+, k}Q _{1}(t)\ J^{\alpha, \psi}_{0+, k}R_{2}(t)+\ J^{\beta, \psi}_{0+, k}\Omega(t) \ J^{\alpha, \psi}_{0+, k}\Pi(t). $
(ⅲ) $ J^{\alpha, \psi}_{0+, k}Q_{2}(t)_{\ k} J^{\beta, \psi}_{0+, k}R _{2}(t)+\ J^{\alpha, \psi}_{0+, k}\Omega(t) \ J^{\beta, \psi}_{0+, k}\Pi(t)\geq \ J^{\alpha, \psi}_{0+, k}Q_{2}(t)\ J^{\beta, \psi}_{0+, k}\Pi(t)+\ J^{\beta, \psi}_{0+, k}R_{2}(t)\ J^{\alpha, \psi}_{0+, k}\Omega(t). $
(ⅳ) $ J^{\alpha, \psi}_{0+, k}Q_{1}(t) J^{\beta, \psi}_{0+, k}R _{1}(t)+\ J^{\alpha, \psi}_{0+, k}\Omega(t) \ J^{\beta, \psi}_{0+, k}\Pi(t)\geq \ J^{\alpha, \psi}_{0+, k}Q_{1}(t)\ J^{\beta, \psi}_{0+, k}\Pi(t)+\ J^{\beta, \psi}_{0+, k}R_{1}(t)\ J^{\alpha, \psi}_{0+, k}\Omega(t). $
Theorem 6.10. [23] Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_{1}) $ and $ (H_{2}). $ Assume that $ \psi $ is a positive and increasing function on $ [0, \infty) $ such that $ \psi(0) = 0 $ and $ \psi' $ is continuous on $ [0, \infty). $ Then for all $ t > 0 $, $ \alpha > 0 $, $ k > 0 $, we have
$ |ψ(t)αkΓk(α+k) Jα,ψ0+,kΩ(t)Π(t)− Jα,ψ0+,kΩ(t) Jα,ψ0+,kΠ(t)|≤√T(Ω,Q1,Q2)T(Π,R1,R2), $ |
where
$ T(y,z,w)=( Jα,ψ0+,kw(t)− Jαy(t))( Jα,ψ0+,ky(t)− Jα,ψ0+,kz(t))+ψ(t)αkΓk(α+k) Jα,ψ0+,kz(t)y(t)−Jα,ψ0+,kz(t) Jα,ψ0+,ky(t)+ψ(t)αkΓk(α+k)Jα,ψ0+,kw(t)y(t)−Jα,ψ0+,kw(t) Jα,ψ0+,ky(t)+Jα,ψ0+,kz(t) Jα,ψ0+,kw(t)−tαkΓk(α+k) Jα,ψ0+,kz(t)w(t). $ |
Definition 7.1. [24] The function $ \Omega $ is said to be $ L_{p, r}[x_1, x_2] $ if
$ (∫x2x1|Ω(t)|ptrdt)1/p<∞,1<p<∞,r>0. $ |
Definition 7.2. [24] The $ \Gamma_k $ (generalized gamma function) is defined by
$ \Gamma_k(z) = \lim\limits_{n\to\infty}\frac{n!k^n(nk)^{\frac{z}{k}-1}}{(z)_{nk}}, \; \; k > 0. $ |
Definition 7.3. [24] The function $ \mathcal{F}_{\rho, \lambda}^{\sigma, k} $ is defined by
$ Fσ,kρ,λ(z)=F(σ(0),σ(1),…,),kρ,λ=∞∑m=0σ(m)kΓk(ρkm+λ)zm,ρ,λ>0,z∈C,|z|<R, $ |
where $ R\in \mathbb{R}^+ $ and $ \sigma = (\sigma(1), \ldots, \sigma(m), \ldots) $ is a bounded sequence of positive real numbers.
Definition 7.4. [24] Let $ k > 0, $ $ \lambda > 0, $ $ \rho > 0 $ and $ \omega\in \mathbb{R}. $ Assume that $ \psi: [x_1, x_2]\to \mathbb{R} $ is an increasing function for which $ \psi' $ is continuous on $ (x_1, x_2). $ Then the left and right generalized $ k $-fractional integrals of the function $ \Omega $ with respect to $ \psi $ on $ [x_1, x_2] $ are defined by
$ Jσ,k,ψρ,λ,a+;ωΩ(z)=∫zx1ψ′(t)(ψ(z)−ψ(t))1−λkFσ,kρ,λ[ω(ψ(z)−ψ(t))ρ]Ω(t)dt,z>x1 $ |
and
$Jσ,k,ψρ,λ,x2−;ωΩ(z)=∫x2zψ′(t)(ψ(t)−ψ(z))1−λkFσ,kρ,λ[ω(ψ(t)−ψ(z))ρ]Ω(t)dt,z<x2,$ |
respectively.
Theorem 7.1. [24] Let $ \rho, \lambda, \delta > 0, $ $ \omega\in \mathbb{R}, $ $ \Omega\in L_{1, r}[x_1, x_2], $ and $ (H_1) $ holds. Then we have:
$ Jσ,k,ψρ,λ,0+;ωQ2(x)Jσ,k,ψρ,δ,0+;ωΩ(x)+Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)≥Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωQ2(x)+Jσ,k,ψρ,δ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΩ(x). $ |
Theorem 7.2. [24] Under the assumptions of Theorem 7.1, we have:
$ Jσ,k,ψρ,λ,0+;ωQ2(x)Jσ,k,ψρ,δ,0+;ωΩ(x)+Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)≥Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωQ2(x)+Jσ,k,ψρ,δ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΩ(x). $ |
Theorem 7.3. [24] Let $ \rho, \lambda, \delta > 0, $ $ \omega \in \mathbb{R}, $ $ \Omega, \Pi\in L_{1, r}[x_1, x_2] $ satifying $ (H_1) $ and $ (H_2) $ for all $ x\in [0, \infty). $ Then we have
$ |Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)Aδ(x)+Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)Aλ(x)−Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,δ,0+;ωΠ(x)−Jσ,k,ψρ,δ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΠ(x)|≤(Aλ(x)Aδ(x)2)2(Q2−Q1)(R1−R2), $ |
where $ \mathcal{A}_{\lambda} $ and $ \mathcal{A}_{\delta} $ are defined as
$ \mathcal{A}_{\lambda}(z) = (\psi(z))^{\frac{\lambda}{k}}\mathcal{F}_{\rho,\lambda+1}^{\sigma,k}(\omega(\psi(z))^{\rho})\; \; and\; \; \mathcal{A}_{\delta} = (\psi(z))^{\frac{\delta}{k}}\mathcal{F}_{\rho,\delta+1}^{\sigma,k}(\omega(\psi(z))^{\rho}), $ |
respectively.
Theorem 7.4. [24] Under the assumptions of Theorem 7.3, we have
$ (i)Jσ,k,ψρ,λ,0+;ωQ2(x)Jσ,k,ψρ,δ,0+;ωΠ(x)+Jσ,k,ψρ,δ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)≥Jσ,k,ψρ,δ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωQ2(x)+Jσ,k,ψρ,δ,0+;ωΠ(x)Jσ,k,ψρ,λ,0+;ωΩ(x),(ii)Jσ,k,ψρ,λ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)+Jσ,k,ψρ,λ,0+;ωΠ(x)Jσ,k,ψρ,δ,0+;ωQ1(x)≥Jσ,k,ψρ,λ,0+;ωΠ(x)Jσ,k,ψρ,δ,0+;ωΩ(x)+Jσ,k,ψρ,λ,0+;ωR1(x)Jσ,k,ψρ,δ,0+;ωQ1(x),(iii)Jσ,k,ψρ,λ,0+;ωQ2(x)Jσ,k,ψρ,δ,0+;ωΠ(x)+Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωR1(x)≥Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,δ,0+;ωΠ(x)+Jσ,k,ψρ,δ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωQ2(x),(iv)Jσ,k,ψρ,λ,0+;ωQ1(x)Jσ,k,ψρ,δ,0+;ωΠ(x)+Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωR1(x)≥Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΠ(x)+Jσ,k,ψρ,λ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωR1(x). $ |
Now we present certain other associated fractional integral inequalities.
Theorem 7.5. [24] Let $ \alpha, \beta > 1 $ and $ a^{-1}+\beta^{-1} = 1, $ and $ \Omega, \Pi\in L_{1, r}[x_1, x_2]. $ Then we have:
$ (i)a−1Aδ(x)Jσ,k,ψρ,λ,0+;ωΩα(x)+β−1Aλ(x)Jσ,k,ψρ,λ,0+;ωΠβ(x)≥Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΠ(x).(ii)a−1Jσ,k,ψρ,λ,0+;ωΩα(x)Jσ,k,ψρ,δ,0+;ωΠα(x)+β−1Jσ,k,ψρ,λ,0+;ωΠβJσ,k,ψρ,δ,0+;ωΩβ(x)≥Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)Jσ,k,ψρ,δ,0+;ωΩ(x)Π(x).(iii)a−1Jσ,k,ψρ,λ,0+;ωΩα(x)Jσ,k,ψρ,δ,0+;ωΠβ(x)+β−1Jσ,k,ψρ,δ,0+;ωΩβ(x)Jσ,k,ψρ,λ,0+;ωΠα(x)≥Jσ,k,ψρ,λ,0+;ωΩ(x)Πα−1(x)Jσ,k,ψρ,δ,0+;ωΩ(x)Πβ−1(x).(iv)a−1Jσ,k,ψρ,δ,0+;ωΩα(x)Jσ,k,ψρ,λ,0+;ωΠβ(x)+β−1Jσ,k,ψρ,δ,0+;ωΠβ(x)Jσ,k,ψρ,λ,0+;ωΩα(x)≥Jσ,k,ψρ,λ,0+;ωΩα−1(x)Πβ−1(x)Jσ,k,ψρ,δ,0+;ωΩ(x)Π(x).(v)a−1Jσ,k,ψρ,λ,0+;ωΩα(x)Jσ,k,ψρ,δ,0+;ωΠ2(x)+β−1Jσ,k,ψρ,λ,0+;ωΠβ(x)Jσ,k,ψρ,λ,0+;ωΩ(x)≥Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)Jσ,k,ψρ,δ,0+;ωΩ2/β(x)Π2/α(x).(vi)a−1Jσ,k,ψρ,λ,0+;ωΩ2(x)Jσ,k,ψρ,δ,0+;ωΠβ(x)+β−1Jσ,k,ψρ,δ,0+;ωΩα(x)Jσ,k,ψρ,λ,0+;ωΠ2(x)≥Jσ,k,ψρ,λ,0+;ωΩ2/α(x)Π2/β(x)Jσ,k,ψρ,δ,0+;ωΩα−1(x)Πβ−1(x).(vii)a−1Aδ(x)Jσ,k,ψρ,λ,0+;ωΩ2(x)Πβ(x)+β−1Aλ(x)Jσ,k,ψρ,δ,0+;ωΠβ(x)Ω2(x)≥Jσ,k,ψρ,λ,0+;ωΩ2/α(x)Πβ−1(x)Jσ,k,ψρ,δ,0+;ωΩ2/β(x)Πα−1(x). $ |
Theorem 7.6. [24] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two positive and integrable functions such that
$ \mu = \min\limits_{0\le t\le x}\frac{\Omega(t) }{\Omega(t) }, \; \; \; \; \mathcal{M} = \max\limits_{0\le t\le x}\frac{\Omega(t) }{\Pi(t)}. $ |
Then we have
$ (a)0≤Jσ,k,ψρ,λ,0+;ωΩ2(x)Jσ,k,ψρ,λ,0+;ωΠ2(x)≤(μ+M)24μM(Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x))2,(b)0≤√Jσ,k,ψρ,λ,0+;ωΩ2(x)Jσ,k,ψρ,λ,0+;ωΠ2(x)−Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)≤(√M−√μ)22√μM(Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)),(c)0≤Jσ,k,ψρ,λ,0+;ωΩ2(x)Jσ,k,ψρ,λ,0+;ωΠ2(x)−(Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x))2≤(M−μ)24μM(Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x))2. $ |
In this section we define a generalized left sided tempered fractional integral with respect to another function. Then we present Grüss-type integral inequalities.
Definition 8.1. [16] Suppose $ \Omega\in L_1[0, \infty) $ and the function $ \psi: [0, \infty)\to \mathbb{R} $ is positive, and increasing with continuous derivative and $ \psi(0) = 0. $ Then the Lebesgue real-valued measurable function $ \Omega $ defined on $ [0, \infty) $ is said to be in the space $ X_{\psi}^p, $ $ (1 \le p < \infty) $ for which
$ ‖Ω‖Xpψ=(∫x2x1|Ω(t)|ψ′(t)dt)1/p<∞,1≤p<∞.$ |
When $ p = \infty, $ then
$ \|\Omega\|_{X_{\psi}^{\infty}} = {\rm ess}\sup\limits_{0\le t < \infty}[\psi'(t)\Omega(t) ]. $ |
Definition 8.2. [25] Suppose that $ \kappa, \xi\in \mathbb{C} $ with $ \Re(\kappa) > 0 $ and $ \Re(\xi)\ge 0. $ The tempered fractional left sided integral is defined by
$ (x1Jκ,ξΩ)(t)=1Γ(κ)∫tx1e−ξ(t−s)(t−s)κ−1Ω(s)ds,t>x1. $ |
Definition 8.3. [26] Let $ \Omega $ be an integrable function in the space $ X_{\psi}^p(0, \infty) $ and assume that $ \psi: [0, \infty)\to \mathbb{R} $ is positive, and increasing with continuous derivative and $ \psi(0) = 0. $ Then the generalized left sided tempered fractional integral of a function $ \Omega $ with respect to another function $ \psi $ is defined by
$ (ψJκ,ξΩ)(t)=1Γ(κ)∫t0e−ξ(ψ(t)−ψ(s))(ψ(t)−ψ(s))κ−1ψ′(s)Ω(s)ds,t>0, $ |
where $ \xi > 0 $, $ \kappa\in \mathbb{C} $ with $ \Re(\kappa) > 0. $
Theorem 8.1. [27] Suppose that $ \Omega\in X_{\psi}^p(0, \infty) $ and assume that $ \psi: [0, \infty)\to \mathbb{R} $ is positive, and increasing with continuous derivative and $ \psi(0) = 0. $ Moreover, we assume that $ (H_1) $ holds. Then for $ t > 0, $ $ \kappa, \lambda > 0, $ we have
$ ψJκ,ξQ2(t)ψJλ,ξΩ(t)+ψJκ,ξΩ(t)ψJλ,ξQ1(t)≥ψJκ,ξQ2(t)ψJλξQ1(t)+ψJκ,λΩ(t)ψJλ,ξΩ(t). $ |
Theorem 8.2. [27] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ In addition, we suppose that $ \psi: [0, \infty)\to \mathbb{R} $ is positive, and increasing with continuous derivative and $ \psi(0) = 0. $ Then, for $ t > 0 $ and $ \kappa, \lambda > 0, $ the following inequalities hold:
$ (a)ψJκ,ξQ2(t)ψJλ,ξΠ(t)+ψJλ,ξΩ(t)ψJκ,ξR1(t)≥ψJκ,ξQ2(t)ψJλ,ξR1(t)+ψJκ,ξΩ(t)ψJλ,ξΠ(t).(b)ψJλ,ξQ1(t)ψJκ,ξΠ(t)+ψJκ,ξR2(t)ψJλ,ξΩ(t)≥ψJκ,ξQ1(t)ψJλ,ξR2(t)+ψJκ,ξΩ(t)ψJλ,ξΠ(t).(c)ψJκ,ξQ2(t)ψJλ,ξR2(t)+ψJκ,ξΩ(t)ψJλ,ξΠ(t)≥ψJκ,ξQ2(t)ψJλ,ξΠ(t)+ψJκ,ξΩ(t)ψJλ,ξR2(t).(d)ψJκ,ξQ1(t)ψJλ,ξR1(t)+ψJκ,ξΩ(t)ψJλ,ξΠ(t)≥ψJκ,ξQ1(t)ψJλ,ξΠ(t)+ψJκ,ξΩ(t)ψJλ,ξR1(t). $ |
We present in the next certain other types of inequalities for tempered fractional integral.
Theorem 8.3. [27] Assume that the assumptions on Theorem 8.2 hold. If $ p, q > 1 $ are such that $ \frac{1}{p}+\frac{1}{q} = 1, $ then, for $ t > 0 $ we have:
$ (i)1pψJκ,ξΩp(t)ψJλ,ξΠp(t)+1qψJκ,ξΠq(t)ψJλ,ξΩq(t)≥ψJκ,ξΩ(t)Π(t)ψJλ,ξΠ(t)Ω(t).(ii)1pψJκ,ξΩp(t)ψJλ,ξΠp(t)+1qψJκ,ξΠq(t)ψJλ,ξΩp(t)≥ψJλ,ξΠq−1(t)Ωp−1(t)ψJκ,ξΠ(t)Ω(t).(iii)1pψJκ,ξΩp(t)ψJλ,ξΠ2(t)+1qψJκ,ξΠq(t)ψJλ,ξΩ2(t)≥ψJλ,ξΩ2/p(t)Π2/q(t)ψJκ,ξΩ(t)Π(t).(iv)1pψJκ,ξΩ2(t)ψJλ,ξΠq(t)+1qψJκ,ξΠ2(t)ψJλ,ξΩp(t)≥ψJλ,ξΩp−1(t)Πq−1(t)ψJκ,ξΩ2/p(t)Π2/q(t). $ |
Theorem 8.4. [27] Assume that the assumptions on Theorem 8.2 hold. If $ p, q > 1 $ are such that $ \frac{1}{p}+\frac{1}{q} = 1, $ then, for $ t > 0 $ we have:
$ (a)pψJκ,ξΩ(t)ψJλ,ξΠ(t)+qψJκ,ξΠ(t)ψJλ,ξΩ(t)≥ψJκ,ξΩp(t)Πq(t)ψJλ,ξΩq(t)Πp(t).(b)pψJκ,ξΩp−1(t)ψJλ,ξΩ(t)Πq(t)+qψJκ,ξΩq−1(t)ψJλ,ξΩq(t)Π(t)≥ψJκ,ξΠq(t)ψJλ,ξΩp(t).(c)pψJκ,ξΩ(t)ψJλ,ξΠ2/p(t)+qψJκ,ξΠq(t)ψJλ,ξΩ2/q(t))≥ψJλ,ξΩp(t)Π(t)ψJκ,ξΠq(t)Ω2(t).(d)pψJκ,ξΩ2/p(t)Πq(t)ψJλ,ξΠq−1(t)+qψJκ,ξΠq−1(t)ψJλ,ξΩ2/q(t)Πp(t)≥ψJλ,ξΩ2(t)ψJκ,ξΠ2(t). $ |
Theorem 8.5. [27] Assume that the assumptions on Theorem 8.2 hold. Let $ p, q > 1 $ be such that $ \frac{1}{p}+\frac{1}{q} = 1. $ Suppose that
$ \mathcal{K} = \min\limits_{0\le s\le t}\frac{\Omega(t) }{\Pi(t)}\; \; \; \; and\; \; \; \; \mathcal{H} = \max\limits_{0\le s\le t}\frac{\Omega(t) }{\Pi(t)}. $ |
Then, for $ t > 0 $ we have:
$ (i)ψJκ,ξΩ2(t)ψJκ,ξΠ2(t)≤(K+H)24KH(ψJκ,ξΩ(t)Π(t))2,(ii)0≤√ψJκ,ξΩ2(t)ψJκ,ξΠ2(t)−(ψJκ,ξΩ(t)Π(t))≤√H−√K2√KH(ψJκ,ξΩ(t)Π(t)),(iii)0≤ψJκ,ξΩ2(t)ψJκ,ξΠ2(t)−(ψJκ,ξΩ(t)Π(t))2≤H−K4KH(ψJκ,ξΩ(t)Π(t))2. $ |
In this section we deal with Grüss-type integral inequalities concerning conformable fractional integrals.
We now introduced the definition of the generalized mixed $ \eta $-conformable fractional integral.
Definition 9.1. [28] Assume that $ \Omega: [x_1, x_2]\to \mathbb{R} $ and $ \alpha\in \mathbb{C}, $ $ \Re(\alpha) > 0, $ $ \rho > 0, $ $ \eta $ is defined on $ [x_1, x_2] \times [x_1, x_2]. $ Then the mixed left $ \eta $-conformable generalized fractional integral of $ \Omega $ is defined by
$ Jα,ρηΩ(x)=1Γ(α)∫x2x1+η(x,x1)Ω(s)((η(x2,s))ρ−(x1−x+η(x2,x1))ρρ)α−1(η(x2,s))ρ−1ds,$ |
and the mixed right $ \eta $-conformable generalized fractional integral of $ \Omega $ is defined by
$ Jα,ρηΩ(x)=1Γ(α)∫x1+η(x,x1)x1Ω(s)((η(s,x1))ρ−(x−b+η(x2,x1))ρρ)α−1(η(s,x1))ρ−1ds.$ |
Theorem 9.1. [28] Assume that $ \Omega: [0, \infty) $ is an integrable function satisfying $ (H_1) $ and $ t > 0, $ $ \alpha, \beta, \rho > 0. $ Then, we have:
$ J_{\eta}^{\beta,\rho}Q_1(t)J_{\eta}^{\alpha,\rho}\Omega(t) +J_{\eta}^{\alpha,\rho}Q_2(t)J_{\eta}^{\beta,\rho}\Omega(t) \ge J_{\eta}^{\alpha,\rho}Q_2(t)J_{\eta}^{\beta,\rho}Q_1(t)+ J_{\eta}^{\alpha,\rho}\Omega(t) J_{\eta}^{\beta,\rho}\Omega(t) . $ |
Theorem 9.2. [28] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable function satisfying $ (H_1) $ and $ (H_2) $ and $ t > 0, $ $ \alpha, \beta, \rho > 0. $ Then we have:
(ⅰ). $ J_{\eta}^{\beta, \rho} R_1(t)J_{\eta}^{\alpha, \rho}\Omega(t) +J_{\eta}^{\alpha, \rho}Q_2(t)J_{\eta}^{\beta, \rho}\Pi(t)\ge J_{\eta}^{\beta, \rho} R_1(t)J_{\eta}^{\alpha, \rho}Q_2(t)+ J_{\eta}^{\alpha, \rho}\Omega(t) J_{\eta}^{\beta, \rho}\Pi(t). $
(ⅱ). $ J_{\eta}^{\beta, \rho}Q_1(t)J_{\eta}^{\alpha, \rho}\Pi(t)+J_{\eta}^{\alpha, \rho} R_2(t)J_{\eta}^{\beta, \rho}\Omega(t) \ge J_{\eta}^{\beta, \rho}Q_1(t)J_{\eta}^{\alpha, \rho} R_2(t)+ J_{\eta}^{\beta, \rho}\Omega(t) J_{\eta}^{\alpha, \rho}\Pi(t). $
(ⅲ). $ J_{\eta}^{\alpha, \rho}Q_2(t)J_{\eta}^{\beta, \rho} R_2(t)+J_{\eta}^{\alpha, \rho}\Omega(t) J_{\eta}^{\beta, \rho}\Pi(t)\ge J_{\eta}^{\alpha, \rho}Q_2(t)J_{\eta}^{\beta, \rho}\Pi(t)+ J_{\eta}^{\beta, \rho} R_2(t)J_{\eta}^{\alpha, \rho}\Omega(t). $
(ⅳ). $ J_{\eta}^{\alpha, \rho}Q_1(t)J_{\eta}^{\beta, \rho} R_1(t)+J_{\eta}^{\alpha, \rho}\Omega(t) J_{\eta}^{\beta, \rho}\Pi(t)\ge J_{\eta}^{\alpha, \rho}Q_1(t)J_{\eta}^{\beta, \rho}\Pi(t)+ J_{\eta}^{\beta, \rho} R_1(t)J_{\eta}^{\alpha, \rho}\Omega(t). $
Theorem 9.3. [28] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable function satisfying $ (H_1) $ and $ (H_2) $ and $ t > 0, $ $ \alpha, \beta, \rho > 0. $ Then:
$ |Jα,ρηΩ(t)Π(t){(η(x2,x1+η(t,x1))ρ−(x1−t+η(x2,x1))ρ)αΓ(α+1)ρα−(η(x2,x1)ρ−(x1−t+η(x2,x1))ρ)αΓ(α+1)ρα}−Jα,ρηΩ(t)Jα,ρηΠ(t)|≤√T(Ω,Q1,Q2)T(Π,R1,R2), $ |
where
$ T(u,v,w)=(Jα,ρηw(t)−Jα,ρηu(t))(Jα,ρηu(t)−Jα,ρηv(t))+Jα,ρηv(t)u(t)×{(η(x2,x1+η(t,x1))ρ−(x1−t+η(x2,x1))ρ)αΓ(α+1)ρα−(η(x2,x1)ρ−(x1−t+η(x2,x1))ρ)αΓ(α+1)ρα}−Jα,ρηv(t)Jα,ρηu(t)+Jα,ρηw(t){(η(x2,x1+η(t,x1))ρ−(x1−t+η(x2,x1))ρ)αΓ(α+1)ρα−(η(x2,x1)ρ−(x1−t+η(x2,x1))ρ)αΓ(α+1)ρα}−Jα,ρηw(t)Jα,ρηu(t)+Jα,ρηv(t)Jα,ρηw(t)−Jα,ρηv(t)w(t){(η(x2,x1+η(t,x1))ρ−(x1−t+η(x2,x1))ρ)αΓ(α+1)ρα−(η(x2,x1)ρ−(x1−t+η(x2,x1))ρ)αΓ(α+1)ρα}. $ |
The $ (k, s) $-fractional conformable integral operator is defined as
Definition 9.2. [29] Let $ \Omega $ be an integrable function, $ \alpha\in \mathbb{C}, $ $ \Re(\alpha) > 0 $ and $ s > 0. $ The $ (k, s) $-fractional conformable integral operator is defined as
$ Iα,skΩ(t)=s1−αkkΓk(α)∫tx1[(t−x1)s−(x−x1)s]αk−1(x−x1)s−1Ω(x)ds,t∈[x1,x2].$ |
Here, we present Grüss type inequalities involving the $ (k, s) $-fractional conformable integral $ I_{k}^{\alpha, s} $ defined in Definition 9.2.
Theorem 9.4. [29] Assume that $ \Omega: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1) $ and $ k, s, \alpha, \beta > 0. $ Then we have:
$ I_{k}^{\beta,s}Q_1(t)I_{k}^{\alpha,s}\Omega(t) +I_{k}^{\alpha,s}Q_2(t)I_{k}^{\beta,s}\Omega(t) \ge I_{k}^{\alpha,s}Q_2(t)I_{k}^{\beta,s}Q_1(t)+I_{k}^{\alpha,s}\Omega(t) I_{k}^{\beta,s}\Omega(t) . $ |
Theorem 9.5. [29] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable function satisfyingt $ (H_1) $ and $ (H_2) $ and $ k, s, \alpha, \beta > 0. $ Then we have:
(ⅰ). $ I_{k}^{\beta, s} R_1(t)I_{k}^{\alpha, s}\Omega(t) +I_{k}^{\alpha, s}Q_2(t)I_{k}^{\beta, s}\Pi(t)\ge I_{k}^{\beta, s} R_1(t)I_{k}^{\beta, s}Q_2(t)+I_{k}^{\alpha, s}\Omega(t) I_{k}^{\beta, s}\Pi(t). $
(ⅱ). $ I_{k}^{\beta, s}Q_1(t)I_{k}^{\alpha, s}\Pi(t)+I_{k}^{\alpha, s} R_2(t)I_{k}^{\beta, s}\Omega(t) \ge I_{k}^{\beta, s}Q_1(t)I_{k}^{\beta, s} R_2(t)+I_{k}^{\alpha, s}\Pi(t)I_{k}^{\beta, s}\Omega(t). $
(ⅲ). $ I_{k}^{\alpha, s}Q_2(t)I_{k}^{\beta, s} R_2(t)+I_{k}^{\alpha, s}\Omega(t) I_{k}^{\beta, s}\Pi(t)\ge I_{k}^{\alpha, s}Q_2(t)I_{k}^{\beta, s}\Pi(t)+I_{k}^{\beta, s} R_2(t)I_{k}^{\alpha, s}\Omega(t). $
(ⅳ). $ I_{k}^{\alpha, s}Q_1(t)I_{k}^{\beta, s} R_1(t)+I_{k}^{\alpha, s}\Omega(t) I_{k}^{\beta, s}\Pi(t)\ge I_{k}^{\alpha, s}Q_1(t)I_{k}^{\beta, s}\Pi(t)+I_{k}^{\beta, s} R_1(t)I_{k}^{\alpha, s}\Omega(t). $
Theorem 9.6. [29] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable function satisfyingt $ (H_1) $ and $ (H_2) $ and $ k, s, \alpha > 0. $ Then we have:
$ \Big|\frac{s^{-\frac{\alpha}{k}}(t-x_1)^{\frac{s\alpha}{k}}}{\Gamma_k(\alpha+k)}I_{k}^{\alpha,s}(\Omega(t) \Pi(t))-I_{k}^{\alpha,s}\Omega(t) I_{k}^{\alpha,s}\Pi(t)\Big|\ge \sqrt{T_k(\Omega, Q_1,Q_2)T_k(\Pi, R_1, R_2)}, $ |
where
$ Tk(x,y,z)=(Iα,skz(t)−Iα,skx(t))(Iα,skx(t)−Iα,sky(t))+s−αk(t−x1)sαkΓk(α+k)Iα,sk(y(t)x(t))−Iα,sky(t)Iα,skx(t)+s−αk(t−x1)sαkΓk(α+k)Iα,sk(z(t)x(t))−Iα,skz(t)Iα,skx(t)−s−αk(t−x1)sαkΓk(α+k)Iα,sk(y(t)z(t))+Iα,sky(t)Iα,skz(t). $ |
Definition 9.3. [30] Let $ \lambda\in \mathbb{C}, \Re(\lambda) > 0. $ We define the left and right sided fractional conformable integral operators as
$ λx1JμΩ(x)=1Γ(λ)∫xx1((x−x1)μ−(t−x1)μμ)λ−1Ω(t)(t−x1)1−μdt,$ |
$ λx2JμΩ(x)=1Γ(λ)∫x2x((x2−x)μ−(x2−t)μμ)λ−1Ω(t)(x2−t)1−μdt. $ |
For the results in this section we consider $ x_1 = 0. $
Theorem 9.7. [30] Suppose that $ \Omega: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Then for $ x, \alpha, \beta > 0 $ we have:
$ {}^{\beta}J^{\mu}Q_1(t)\; {}^{\alpha}J^{\mu}\Omega(t) +{}^{\alpha}J^{\mu}Q_2(t)\; {}^{\beta}J^{\mu}\Omega(t) \ge {}^{\alpha}J^{\mu}Q_2(t)\; {}^{\beta}J^{\mu}Q_1(t)+{}^{\alpha}J^{\mu}\Omega(t) \; {}^{\beta}J^{\mu}\Omega(t). $ |
Theorem 9.8. [30] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for $ x, \alpha, \beta > 0 $ we have:
(1) $ ^{\beta}J^{\mu} R_1(t)\; ^{\alpha}J^{\mu}\Omega(t) +^{\alpha}J^{\mu}Q_2(t)\; ^{\beta}J^{\mu}\Pi(t)\ge ^{\alpha}J^{\mu}Q_2(t)\; ^{\beta}J^{\mu} R_1(t)+^{\alpha}J^{\mu}\Omega(t) \; ^{\beta}J^{\mu}\Pi(t). $
(2) $ ^{\beta}J^{\mu}Q_1(t)\; ^{\alpha}J^{\mu}\Pi(t)+^{\alpha}J^{\mu} R_2(t)\; ^{\beta}J^{\mu}\Omega(t) \ge ^{\alpha}J^{\mu}Q_1(t)\; ^{\beta}J^{\mu} R_2(t)+^{\alpha}J^{\mu}\Omega(t) \; ^{\beta}J^{\mu}\Pi(t). $
(3) $ ^{\alpha}J^{\mu}Q_2(t)\; ^{\beta}J^{\mu} R_2(t)+^{\alpha}J^{\mu}\Omega(t) \; ^{\beta}J^{\mu}\Pi(t)\ge ^{\alpha}J^{\mu}Q_2(t)\; ^{\beta}J^{\mu}\Pi(t)+^{\beta}J^{\mu} R_2(t)\; ^{\alpha}J^{\mu}\Omega(t). $
(4) $ ^{\alpha}J^{\mu}Q_1(t)\; ^{\beta}J^{\mu} R_1(t)+^{\alpha}J^{\mu}\Omega(t) \; ^{\beta}J^{\mu}\Pi(t)\ge ^{\alpha}J^{\mu}Q_1(t)\; ^{\beta}J^{\mu}\Pi(t)+^{\alpha}J^{\mu}\Omega(t) \; ^{\beta}J^{\mu} R_1(t). $
Theorem 9.9. [30] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for $ x, \alpha, \beta > 0 $ we have:
$ \Bigg|\frac{t^{\mu \alpha}}{\mu^{\alpha}\Gamma(\alpha+1)} {}^{\alpha}J^{\mu}\Omega(t) \Pi(t)-{}^{\alpha}J^{\mu}\Omega(t) \; {}^{\alpha}J^{\mu}\Pi(t)\Bigg|\le \sqrt{T(\Omega, Q_1, Q_2)T(\Pi, R_1 R_2)}, $ |
where
$ T(y,z,w)=(αJμw(t)−αJμy(t))(αJμy(t)−αJμz(t))+tμαμαΓ(α+1)αJμz(t)y(t)−αJμz(t)αJμy(t)+tμαμαΓ(α+1)αJμw(t)y(t)−αJμw(t)αJμy(t)+αJμz(t)αJμw(t)−tμαμαΓ(α+1)αJμz(t)w(t). $ |
Definition 10.1. [31] The proportional fractional integrals, left- and right-sided, of a function $ \Omega $ of order $ \alpha $ and $ \sigma\in (0, 1] $ are defined by
$ Iα,σx1Ω(t)=1σαΓ(α)∫tx1eσ−1σ(t−s)(t−s)α−1Ω(s)ds,$ |
and
$ Iα,σx2Ω(t)=1σαΓ(α)∫x2teσ−1σ(s−t)(s−t)α−1Ω(s)ds,$ |
where $ \alpha\in \mathbb{C}, $ $ \Re(\alpha) > 0. $
In what follows, we present Grüss-type inequality with the help of the proportional fractional integral defined above.
Theorem 10.1. [31] Assume that $ \Omega: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Then:
$ I^{\beta,\sigma}Q_1(t)I^{\alpha,\sigma}\Omega(t) +I^{\alpha,\sigma}Q_2(t)I^{\beta,\sigma}\Omega(t) \ge I^{\alpha,\sigma}Q_2(t)I^{\beta,\sigma}Q_1(t)+I^{\beta,\sigma}\Omega(t) I^{\beta,\sigma}\Omega(t) . $ |
Theorem 10.2. [31] Let $ \sigma\in (0, 1]. $ Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then the following inequalities hold:
(a) $ I^{\beta, \sigma} R_1(t)I^{\alpha, \sigma}\Omega(t) +I^{\alpha, \sigma}Q_2(t)I^{\beta, \sigma}\Pi(t)\ge I^{\beta, \sigma} R_1(t)I^{\alpha, \sigma}Q_2(t)+I^{\alpha, \sigma}\Omega(t) I^{\beta, \sigma}\Pi(t). $
(b) $ I^{\beta, \sigma}Q_1(t)I^{\alpha, \sigma}\Pi(t)+I^{\alpha, \sigma} R_2(t)I^{\beta, \sigma}\Omega(t) \ge I^{\beta, \sigma}Q_1(t)I^{\alpha, \sigma} R_2(t)+I^{\beta, \sigma}\Omega(t) I^{\alpha, \sigma}\Pi(t). $
(c) $ I^{\alpha, \sigma}Q_2(t)I^{\beta, \sigma} R_2(t)+I^{\alpha, \sigma}\Omega(t) I^{\beta, \sigma}\Pi(t)\ge I^{\alpha, \sigma}Q_2(t)I^{\beta, \sigma}\Pi(t)+I^{\beta, \sigma} R_2(t)I^{\alpha, \sigma}\Omega(t). $
(d) $ I^{\alpha, \sigma}Q_1(t)I^{\beta, \sigma} R_1(t)+I^{\alpha, \sigma}\Omega(t) I^{\beta, \sigma}\Pi(t)\ge I^{\alpha, \sigma}Q_1(t)I^{\beta, \sigma}\Pi(t)+I^{\beta, \sigma} R_1(t)I^{\alpha, \sigma}\Omega(t). $
Theorem 10.3. [31] Let $ x > 0, $ $ \alpha, \beta > 0, $ and $ p, q > 1 $ satisfying $ \frac{1}{p} + \frac{1}{q} = 1, $ and $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ be two positive integrable functions. Then we have:
$ (i)1pJα,σ0+Ωp(x)Jβ,σ0+Πp(x)+1qJα,σ0+Πq(x)Jβ,σ0+Ωq(x)≥(Jα,σ0+Ω(x)Π(x))(Jβ,σ0+Ω(x)Π(x)).(ii)1pJβ,σ0+Πq(x)Jα,σ0+Ωp(x)+1qJβ,σ0+Ωp(x)Jα,σ0+Πq(x)≥(Jβ,σ0+Ωp−1Πq−1(x))(Jα,σ0+Ω(x)Π(x)).(iii)1pJβ,σ0+Π2(x)Jα,σ0+Ωp(x)+1qJβ,σ0+Ω2(x)Jα,σ0+Πq(x)≥(Jβ,σ0+Ω2/q(x)Π2/p(x))(Jα,σ0+Ω(x)Π(x)).(iv)1pJβ,σ0+Πq(x)Jα,σ0+Ω2(x)+1qJβ,σ0+Ωp(x)Jα,σ0+Π2(x)≥(Jβ,σ0+Ωp−1(x)Πq−1(x))(Jα,σ0+Ω2/p(x)Π2/p(x)). $ |
Theorem 10.4. [31] Let the assumptions of Theorem 10.1 be hold. In addition, let
$ \mu = \min\limits_{0\le t\le x}\frac{\Omega(t) }{\Pi(t)}\; \; \; and\; \; \; \mathcal{M} = \max\limits_{0\le t\le x}\frac{\Omega(t) }{\Pi(t)}. $ |
Then, we have:
$ (a)0≤(Jα,σ0+Ω2(x)Jα,σ0+Π2(x))≤(M+μ)24μM(Jα,σ0+Ω(x)Π(x))2.(b)0≤√Jα,σ0+Ω2(x)Jα,σ0+Π2(x)−(Jα,σ0+Ω(x)Π(x))≤(√M−√μ)22√μM(Jα,σ0+Ω(x)Π(x)).(c)0≤Jα,σ0+Ω2(x)Jα,σ0+Π2(x)−(Jα,σ0+Ω(x)Π(x))2≤(M−μ)24μM(Jα,σ0+Ω(x)Π(x))2. $ |
Definition 10.2. [32] Assume that $ \Omega $ is integrable and $ \psi $ is a strictly increasing continuous function on $ [x_1, x_2]. $ For $ \sigma\in (0, 1], $ $ \alpha\in \mathbb{C}, \Re(\alpha)\ge 0, $ $ k\in \mathbb{R}^+, $ we define the left- and right-sided proportional $ k $-fractional integrals, respectively, as
$ k,ψIα,σx1Ω(t)=1σαkkΓk(α)∫tx1eσ−1σ(ψ(t)−ψ(s))(ψ(t)−ψ(s))αk−1ψ′(s)Ω(s)ds,$ |
and
$k,ψIα,σx2Ω(t)=1σαkkΓk(α)∫x2teσ−1σ(ψ(s)−ψ(t))(ψ(s)−ψ(t))αk−1ψ′(s)Ω(s)ds.$ |
In what follows, we present Grüss-type inequality with the help of the generalized $ k $-fractional integral.
Theorem 10.5. [32] Let $ \Omega, \Pi:[0, \infty)\to \mathbb{R} $ be positive integrable functions. satisfying $ (H_1), (H_2) $ with positive integrable functions $ Q_1, Q_2, R_1, R_2 $ and $ \psi $ be a strictly increasing continuous function. Tthen the following inequality also holds:
$ |1α[ψ(t)−ψ(0))αkσαkΓk(α)k,ψIα,σΩ(t)Π(t)−k,ψIα,σΩ(t)k,ψIα,σΠ(t)|≤√T(Ω,Q1,Q2)(t)T(Π,R1,R2)(t), $ |
where
$ T(u,v,w)(t) = \frac{\frac{1}{\alpha}[\psi(t)-\psi(0))^{\frac{\alpha}{k}}}{4\sigma^{\frac{\alpha}{k}}\Gamma_k(\alpha)}\frac{\Big({}^{k,\psi}I^{\alpha,\sigma}\{(v+w)u\}(t)\Big)^2}{{}^{k,\psi}I^{\alpha,\sigma}\Omega(t) \Pi(t)}-\Big({}^{k,\psi}I^{\alpha,\sigma}(u)(t)\Big)^2. $ |
Definition 11.1. A function $ \Omega $ is said to be $ L_{p, s}[x_1, x_2] $ if
$ (∫x2x1|Ω(t)|ptsdt)1/p<∞,1≤p<∞,s≥0.$ |
Definition 11.2. [33] Let $ \Omega\in L_{1, s}[0, \infty). $ The Riemann-Liouville generalized fractional integral of $ \Omega $ of order $ \alpha > 0 $ and $ s\ge 0 $ is defined by
$ Iα,sΩ(t)=(s+1)1−αΓ(α)∫tx1(ts+1−τs+1)α−1τsΩ(τ)dτ,t∈[x1,x2]. $ |
In this section, we present some Grüss type inequalities via the fractional integral defined in Definition 11.2.
Theorem 11.1. [34] Let $ \Omega\in L_{1, s}[x_1, x_2] $ satisfying $ (H_1) $ and $ k > 0, $ $ s\ge 0, $ $ \alpha, \beta > 0. $ Then we have the following inequality:
$ I^{\beta,s}Q_1(t)I^{\alpha,s}\Omega(t) +I^{\alpha,s}Q_2(t)I^{\beta,s}\Omega(t) \ge I^{\alpha,s}Q_2(t)I^{\beta,s}Q_1(t)+I^{\alpha,s}\Omega(t) I^{\beta,s}\Omega(t) . $ |
Theorem 11.2. [34] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2) $ and $ k > 0, $ $ s\ge 0, $ $ \alpha, \beta > 0. $ Then we have the following inequalities:
(ⅰ) $ I^{\beta, s} R_1(t)I^{\alpha, s}\Omega(t) +I^{\alpha, s}Q_2(t)I^{\beta, s}\Pi(t)\ge I^{\beta, s} R_1(t)I^{\alpha, s}Q_2(t)+I^{\alpha, s}\Omega(t) I^{\beta, s}\Pi(t). $
(ⅱ) $ I^{\beta, s}Q_1(t)I^{\alpha, s}\Pi(t)+I^{\alpha, s} R_2(t)I^{\beta, s}\Omega(t) \ge I^{\beta, s}Q_1(t)I^{\alpha, s} R_2(t)+I^{\alpha, s}\Pi(t)I^{\beta, s}\Omega(t). $
(ⅲ) $ I^{\alpha, s}Q_2(t)I^{\beta, s} R_2(t)+I^{\alpha, s}\Omega(t) I^{\beta, s}\Pi(t)\ge I^{\alpha, s}Q_2(t)I^{\beta, s}\Pi(t)+I^{\beta, s} R_2(t)I^{\alpha, s}\Omega(t). $
(ⅳ) $ I^{\alpha, s}Q_1(t)I^{\beta, s} R_1(t)+I^{\alpha, s}\Omega(t) I^{\beta, s}\Pi(t)\ge I^{\alpha, s}Q_1(t)I^{\beta, s}\Pi(t)+I^{\beta, s} R_1(t)I^{\alpha, s}\Omega(t). $
Theorem 11.3. [35] Under the assumptions of Theorem 11.2 we have for all $ t\in [x_1, x_2], $ $ s\ge 0 $ and $ \alpha > 0 $
$ \Bigg|\frac{(s+1)^{- \alpha}t^{(s+1) \alpha}}{\Gamma(\alpha+1)}I^{\alpha,s}\Omega(t) \Pi(t)-I^{\alpha,s}\Omega(t) I^{\alpha,s}\Pi(t)\Bigg|\le \sqrt{T(\Omega, Q_1,Q_1)T(\Pi, R_1, R_2)}, $ |
where
$ T(x,y,z)=(Iα,sz(t)−Iα,sx(t))(Iα,sx(t)−Iα,sy(t))+(s+1)−αt(s+1)αΓ(α+1)Iα,sy(t)x(t)−Iα,sy(t)Iα,sx(t)+(s+1)−αt(s+1)αΓ(α+1)Iα,sz(t)x(t)−Iα,sz(t)Iα,sx(t)−(s+1)−αt(s+1)αΓ(α+1)Iα,sy(t)z(t)+Iα,sy(t)Iα,sx(t). $ |
Now we define $ (k, s) $-Riemann-Liouville fractional integral.
Definition 11.3. [33] Let $ \Omega: [x_1, x_2]\to \mathbb{R} $ be a continuous function. Then $ (k, s) $-Riemann-Liouville fractional integral of $ \Omega $ of order $ \alpha > 0 $ is defined by
$ Jα,sx1,kΩ(t)=(s+1)1−αkkΓk(α)∫tx1(ts+1−τs+1)αk−1τsΩ(τ)dτ,t∈[x1,x2], $ |
where $ k > 0, s\in \mathbb{R}\setminus\{-1\}. $
Now, for the generalized $ (k, s) $-Riemann-Liouville fractional integral defined above, we give some Grüss type inequalities.
Theorem 11.4. [35] Let $ \Omega\in L_{1, s}[x_1, x_2] $ satisfying $ (H_1) $ and $ k > 0, $ $ s\ge 0, $ $ \alpha, \beta > 0. $ Then we have the following inequality:
$ J_{x_1,k}^{\beta,s}Q_1(t)J_{x_1,k}^{\alpha,s}\Omega(t) +J_{x_1,k}^{\alpha,s}Q_2(t)\Omega(t) \ge J_{x_1,k}^{\alpha,s}Q_2(t)J_{x_1,k}^{\beta,s}Q_1(t)+J_{x_1,k}^{\alpha,s}\Omega(t) J_{x_1,k}^{\beta,s}\Omega(t) . $ |
Theorem 11.5. [35] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} are $ two integrable functions satisfying $ (H_1) $ and $ (H_2) $ and $ k > 0, $ $ s\ge 0, $ $ \alpha, \beta > 0. $ Then we have:
(ⅰ) $ J_{x_1, k}^{\beta, s} R_1(t)J_{x_1, k}^{\alpha, s}\Omega(t) +J_{x_1, k}^{\alpha, s}Q_2(t)J_{x_1, k}^{\beta, s}\Pi(t)\ge J_{x_1, k}^{\beta, s} R_1(t)J_{x_1, k}^{\alpha, s}Q_2(t)+J_{x_1, k}^{\alpha, s}\Omega(t) J_{x_1, k}^{\beta, s}\Pi(t). $
(ⅱ) $ J_{x_1, k}^{\beta, s}Q_1(t)J_{x_1, k}^{\alpha, s}\Pi(t)+J_{x_1, k}^{\alpha, s} R_2(t)J_{x_1, k}^{\beta, s}\Omega(t) \ge J_{x_1, k}^{\beta, s}Q_1(t)J_{x_1, k}^{\alpha, s} R_2(t)+J_{x_1, k}^{\alpha, s}\Pi(t)J_{x_1, k}^{\beta, s}\Omega(t). $
(ⅲ) $ J_{x_1, k}^{\alpha, s}Q_2(t)J_{x_1, k}^{\beta, s} R_2(t)+J_{x_1, k}^{\alpha, s}\Omega(t) J_{x_1, k}^{\beta, s}\Pi(t)\ge J_{x_1, k}^{\alpha, s}Q_2(t)J_{x_1, k}^{\beta, s}\Pi(t)+J_{x_1, k}^{\beta, s} R_2(t)J_{x_1, k}^{\alpha, s}\Omega(t). $
(ⅳ) $ J_{x_1, k}^{\alpha, s}Q_1(t)J_{x_1, k}^{\beta, s} R_1(t)+J_{x_1, k}^{\alpha, s}\Omega(t) J_{x_1, k}^{\beta, s}\Pi(t)\ge J_{x_1, k}^{\alpha, s}Q_1(t)J_{x_1, k}^{\beta, s}\Pi(t)+J_{x_1, k}^{\beta, s} R_1(t)J_{x_1, k}^{\alpha, s}\Omega(t). $
Theorem 11.6. [35] Under the assumptions of Theorem 11.5 we have for all $ t\in [x_1, x_2], $ $ s\ge 0 $ and $ \alpha > 0 $
$ \Bigg|\frac{(s+1)^{-\frac{\alpha}{k}}t^{(s+1)\frac{\alpha}{k}}}{\Gamma_k(\alpha+k)}J_{x_1,k}^{\alpha,s}\Omega(t) \Pi(t)-J_{x_1,k}^{\alpha,s}\Omega(t) J_{x_1,k}^{\alpha,s}\Pi(t)\Bigg|\le \sqrt{T_k^s(\Omega,Q_1,Q_1)T_k^s(\Pi, R_1, R_2)}, $ |
where
$ Tsk(x,y,z)=(Jα,sx1,kz(t)−Jα,sx1,kx(t))(Jα,sx1,kx(t)−Jα,sx1,ky(t))+(s+1)−αkt(s+1)αkΓk(α+k)Jα,sx1,ky(t)x(t)−Jα,sx1,ky(t)Jα,sx1,kx(t)+(s+1)−αkt(s+1)αkΓk(α+k)Jα,sx1,kz(t)x(t)−Jα,sx1,kz(t)Jα,sx1,kx(t)−(s+1)−αkt(s+1)αkΓk(α+k)Jα,sx1,ky(t)z(t)+Jα,sx1,ky(t)Jα,sx1,kx(t). $ |
In this section, we present the Grüss-type fractional integral inequalities involving the Caputo-Fabrizio fractional integral.
Definition 12.1. [36] Assume that $ \alpha\in \mathbb{R} $ such that $ 0 < \alpha < 1. $ We define the Caputo-Fabrizio fractional integral of a function $ \Omega $ of order $ \alpha $ by
$ Iα0,tΩ(t)=1α∫t0e−(1−αα)(t−s)Ω(s)ds.$ |
Theorem 12.1. [37] Assume that $ \Omega: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying $ (H_1). $ Then, for $ t > 0 $, $ \alpha, \beta > 0 $, $ k > 0 $, we have:
$ Iβ0,tQ1(t)Iα0,tΩ(t)+ Iα0,tQ2(t)Iβ0,tΩ(t)≥ Iα0,tQ2(t)Iβ0,tQ1(t)+ Iα0,tΩ(t)Iβ0,tΩ(t). $ |
Theorem 12.2. [37] Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then, for $ t > 0 $, $ \alpha $, $ \beta > 0 $, $ k > 0 $ we have the inequalities:
(a) $ I_{0, t}^{\beta}R_{1}(t)\ I_{0, t}^{\alpha}\Omega(t) +\ I_{0, t}^{\alpha}Q_{2}(t)\ I_{0, t}^{\beta}\Pi(t)\geq \ I_{0, t}^{\beta}R _{1}(t)\ I_{0, t}^{\alpha}Q_{2}(t)+\ I_{0, t}^{\alpha}\Omega(t) \ I_{0, t}^{\beta}\Pi(t). $
(b) $ I_{0, t}^{\beta}Q_{1}(t)\ I_{0, t}^{\alpha}\Pi(t)+\ I_{0, t}^{\alpha}R_{2}(t)\ I_{0, t}^{\beta}\Omega(t) \geq \ I_{0, t}^{\beta}Q _{1}(t)\ I_{0, t}^{\alpha}R_{2}(t)+\ I_{0, t}^{\beta}\Omega(t) \ I_{0, t}^{\alpha}\Pi(t). $
(c) $ I_{0, t}^{\alpha}Q_{2}(t)_{\ k} I_{0, t}^{\beta}R _{2}(t)+\ I_{0, t}^{\alpha}\Omega(t) \ I_{0, t}^{\beta}\Pi(t)\geq \ I_{0, t}^{\alpha}Q_{2}(t)\ I_{0, t}^{\beta}\Pi(t)+\ I_{0, t}^{\beta}R_{2}(t)\ I_{0, t}^{\alpha}\Omega(t). $
(d) $ I_{0, t}^{\alpha}Q_{1}(t) I_{0, t}^{\beta}R _{1}(t)+\ I_{0, t}^{\alpha}\Omega(t) \ I_{0, t}^{\beta}\Pi(t)\geq \ I_{0, t}^{\alpha}Q_{1}(t)\ I_{0, t}^{\beta}\Pi(t)+\ I_{0, t}^{\beta}R_{1}(t)\ I_{0, t}^{\alpha}\Omega(t). $
Theorem 12.3. [37] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_{1}) $ and $ (H_{2}). $ Then for all $ t > 0 $, $ \alpha > 0 $, we have:
$ |(11−α[1−e−(1−αα)t]) Iα0,tΩ(t)Π(t)− Iα0,tΩ(t) Iα0,tΠ(t)|≤√T(Ω,Q1,Q2)T(Π,R1,R2), $ |
where
$ T(y,z,w)=( Iα0,tw(t)− Jαy(t))( Iα0,ty(t)− Iα0,tz(t))+(11−α[1−e−(1−αα)t])Iα0,tz(t)y(t)−Iα0,tz(t) Iα0,ty(t)+(11−α[1−e−(1−αα)t])Iα0,tw(t)y(t)−Iα0,tw(t) Iα0,ty(t)+Iα0,tz(t) Iα0,tw(t)+(11−α[1−e−(1−αα)t])Iα0,tz(t)w(t). $ |
In this section, Grüss-type fractional integral inequalities are presented via Saigo fractional integer operator.
Definition 13.1. [38] Assume that $ \alpha > 0, \beta, \eta\in \mathbb{R}. $ The Saigo fractional integral $ I_{0, x}^{\alpha, \beta, \eta}[\Omega(x)] $ of order $ \alpha $ for a real-valued continuous function $ \Omega $ is defined by
$ Iα,β,η0,x[Ω(x)]=x−α−βΓ(α)∫x0(x−t)α−12F1(α+β,−η;α;1−tx)Ω(t)dt, $ |
where $ {}_{2}F_1 $ is the Gaussian hypergeometric function defined by
$ {}_{2}F_1(a,b;c;x) = \sum\limits_{n = 0}^{\infty}\frac{(a)_n(b)_nx^n}{(c)_n n!}, $ |
and $ (a)_n $ is the Pochhammer symbol
$ (a)_0 = 1, \; (a)_n = a(a+1)\cdots(a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}. $ |
Theorem 13.1. [39] Assume that $ \Omega, \Pi:[0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for all $ x > 0, $ $ \alpha > \max\{0, -\beta\}, $ $ \beta < 1, $ $ \beta-1 < \eta < 0, $ one has
$ |Γ(1−β+η)Γ(1−β)Γ(1+α+η)xβIα,β,η0,x[Ω(x)Π(x)]−Iα,β,η0,x[Ω(x)]Iα,β,η0,x[Π(x)]|≤√T(Ω,Q1(x),Q2(x))T(Π,R1(x),R2(x)), $ |
where
$ T(a,b,c)=(Iα,β,η0,x[c(x)]−Iα,β,η0,x[a(x)])(Iα,β,η0,x[a(x)]−Iα,β,η0,x[b(x)])+Γ(1−β+η)Γ(1−β)Γ(1+α+η)xβIα,β,η0,x[b(x)a(x)]−Iα,β,η0,x[b(x)]Iα,β,η0,x[a(x)]+Γ(1−β+η)Γ(1−β)Γ(1+α+η)xβIα,β,η0,x[c(x)a(x)]−Iα,β,η0,x[c(x)]Iα,β,η0,x[a(x)]+Iα,β,η0,x[b(x)]Iα,β,η0,x[c(x)]+Γ(1−β+η)Γ(1−β)Γ(1+α+η)xβIα,β,η0,x[b(x)c(x)]. $ |
Theorem 13.2. [39] Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfying $ (H_1) $ and $ (H_2). $ Then for all $ x > 0, $ $ \alpha > \max\{0, -\beta\}, $ $ \psi > \max\{0-\phi\}, $ $ \beta < 1, $ $ \beta-1 < \eta < 0, $ $ \phi < 1, $ $ \phi-1 < \zeta < 0, $ we have:
$ (a)Iψ,ϕ,ζ0,x[Q1(x)]Iα,β,η0,x[Ω(x)]+Iα,β,η0,x[Q2(x)]Iψ,ϕ,ζ0,x[Ω(x)]≥Iψ,ϕ,ζ0,x[Q2(x)]Iα,β,η0,x[Q1(x)]+Iα,β,η0,x[Ω(x)]Iψ,ϕ,ζ0,x[Ω(x)].(b)Iψ,ϕ,ζ0,x[R1(x)]Iα,β,η0,x[Ω(x)]+Iα,β,η0,x[Q2(x)]Iψ,ϕ,ζ0,x[Π(x)]≥Iψ,ϕ,ζ0,x[R1(x)]Iα,β,η0,x[Q2(x)]+Iα,β,η0,x[Ω(x)]Iψ,ϕ,ζ0,x[Π(x)].(c)Iψ,ϕ,ζ0,x[Q1(x)]Iα,β,η0,x[Π(x)]+Iα,β,η0,x[R2(x)]Iψ,ϕ,ζ0,x[Ω(x)]≥Iψ,ϕ,ζ0,x[Q1(x)]Iα,β,η0,x[R2(x)]+Iψ,ϕ,ζ0,x[uΩ(x)]Iα,β,η0,x[Π(x)].(d)Iα,β,η0,x[Q2(x)]Iψ,ϕ,ζ0,x[R2(x)]+Iα,β,η0,x[Ω(x)]Iψ,ϕ,ζ0,x[Π(x)]≥Iα,β,η0,x[Q2(x)]Iψ,ϕ,ζ0,x[Π(x)]+Iψ,ϕ,ζ0,x[R2(x)]Iα,β,η0,x[Ω(x)].(e)Iα,β,η0,x[Q1(x)]Iψ,ϕ,ζ0,x[R1(x)]+Iα,β,η0,x[Ω(x)]Iψ,ϕ,ζ0,x[Π(x)]≥Iα,β,η0,x[Q1(x)]Iψ,ϕ,ζ0,x[Π(x)]+Iψ,ϕ,ζ0,x[R1(x)]Iα,β,η0,x[Ω(x)]. $ |
We define a fractional integral $ K^{\alpha, \beta, \eta} $ associated with the Gauss hypergeometric function as follows:
Definition 13.2. [40] Let $ \Omega\in C_{\mu}. $ For $ \alpha > \max\{0, -(\eta+1)\}, $ $ \eta-\beta > -1, $ $ \beta < 1, $ we define a fractional integral $ K^{\alpha, \beta, \eta}f $ as follows:
$ K^{\alpha,\beta,\eta}\Omega(t) = \frac{\Gamma(1-\beta)\Gamma(\alpha+\eta+1)}{\Gamma(\eta-\beta+1)}t^{\beta}I_{0+}^{\alpha,\beta,\eta}\Omega(t) , $ |
where $ I_{0+}^{\alpha, \beta, \eta}f $ is the right-hand sided Gauss hypergeometric fractional integral of order $ \alpha $ defined in Definition 13.1.
We present integral inequalities of Grüss type for the above defined hypergeometric fractional integral.
Theorem 13.3. [40] Let $ \Omega, \Pi\in C_{\mu} $ satisfying the condition $ (H) $ on $ [0, \infty). $ Then for all $ t > 0, $ $ \alpha > \max\{0, -(\eta+1)\}, $ $ \eta-\beta > -1, $ $ \beta < 1, $ we have
$ |K^{\alpha,\beta,\eta}\Omega(t) \Pi(t)-K^{\alpha,\beta,\eta}\Omega(t) K^{\alpha,\beta,\eta}\Pi(t)|\le \frac{1}{4}(\mathfrak{M}-\mathfrak{m})(\mathfrak{P}-\mathfrak{p}). $ |
Theorem 13.4. [40] Let $ \Omega $ and $ \Pi $ be two synchronous functions on $ [0, \infty). $ Then the following inequality holds:
$ K^{\alpha,\beta,\eta}\Omega(t) \Pi(t)\ge K^{\alpha,\beta,\eta}\Omega(t) K^{\alpha,\beta,\eta}\Pi(t). $ |
Another fractional integral operator $ K^{\alpha, \beta, \eta, \delta} $ associated with the Gauss hypergeometric function is defined as follows.
Definition 13.3. [41] Let $ \Omega\in C_{\mu}. $ For $ \alpha > \max\{0, -(\delta+\eta+1)\}, $ $ \eta-\beta > -1, $ $ \beta < 1, $ $ \delta > -1 $ we define a fractional integral $ K^{\alpha, \beta, \eta, \delta}\Omega $ as follows:
$ K^{\alpha,\beta,\eta,\delta}\Omega(t) = \frac{\Gamma(1-\beta)\Gamma(\alpha+\delta+\eta+1)}{\Gamma(\eta-\beta+1)\Gamma(\delta+1)}t^{\beta+\beta}I_{0+}^{\alpha,\beta,\eta, \delta}\Omega(t) , $ |
where $ I_{0+}^{\alpha, \beta, \eta, \delta}\Omega $ is the right-hand sided Gauss hypergeometric fractional integral of order $ \alpha $ defined by
$ Iα,β,η,δ0,x[Ω(x)]=x−α−β−2δΓ(α)∫x0tδ(x−t)α−12F1(α+β+δ,−η;α;1−tx)Ω(t)dt, $ |
and $ {}_{2}F_1 $ is the Gaussian hypergeometric function defined in Definition 13.1.
We establish two Grüss-type fractional integral inequalities involving the Gauss hypergeometric function.
Theorem 13.5. [41] Assume that $ \Omega, \Pi: [x_1, x_2]\to \mathbb{R} $ are two integrable functions satisfying the condition $ (H) $ on $ [0, \infty). $ Then, for all $ x\in [0, \infty), $ $ \alpha > 0, $ $ \delta > -1, $ and $ \beta, \eta\in \mathbb{R} $ with $ \alpha+\beta+\delta\ge 0 $ and $ \eta\le 0, $ we have:
$ |K^{\alpha,\beta,\eta;\delta}\Omega(t) \Pi(t)-K^{\alpha,\beta,\eta,\delta}\Omega(t) K^{\alpha,\beta,\eta,\delta}\Pi(t)|\le \frac{1}{4}(\mathfrak{M}-\mathfrak{m})(\mathfrak{P}-\mathfrak{p}). $ |
Theorem 13.6. [41] Suppose that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two synchronous functions (i.e $ (\Omega(t) -\Omega(s))(\Pi(t)-\Pi(s))\ge 0, \; t, s\in [0, \infty) $). Then, for all $ x\in [0, \infty), $ $ \alpha > 0, $ $ \delta > -1, $ and $ \beta, \eta\in \mathbb{R} $ with $ \alpha+\beta+\delta\ge 0 $ and $ \eta\le 0, $ we have:
$ K^{\alpha,\beta,\eta,\delta}\Omega(t) \Pi(t)\ge K^{\alpha,\beta,\eta,\delta}\Omega(t) K^{\alpha,\beta,\eta,\delta}\Pi(t). $ |
Now we give some Grüss-type inequalities for generalized hypergeometric function fractional order integral operators. We start with the following definitions.
Definition 13.4. [42] Let $ \alpha, \alpha', \beta, \beta', \gamma\in \mathbb{R} $ and $ \gamma > 0. $ Then the Saigo and Maeda fractional integral operator $ I_{t}^{\alpha, \alpha', \beta, \beta', \gamma}[\Omega(x)] $ of order $ \alpha $ for a real-valued continuous function $ \Omega $ is defined by
$ Iα,α′,β,β′,γt[Ω(x)]=x−αΓ(γ)∫x0(x−t)γ−1t−α′F3(α,α′,β,β′,γ,1−tx,1−xt)Ω(t)dt, $ |
where $ F_3 $ is the Appell hypergeometric function defined by
$ F_3(\alpha, \alpha', \beta,\beta', \gamma, x,y) = \sum\limits_{n = 0}^{\infty}\sum\limits_{n = 0}^{\infty}\frac{(\alpha)_n(\alpha')_n(\beta)_n(\beta')_n x^my^n}{(\gamma)_{m+n}m! n!}, \; \; \max\{|x|,|y|\} < 1, $ |
and $ (a)_n $ is the Pochhammer symbol.
Definition 13.5. [43] Assume that $ \alpha, \alpha', \beta, \beta', \gamma\in \mathbb{R} $ such that
$ \gamma > \max\{0, \alpha+\alpha'+\beta-1, \alpha+\alpha'-1,\alpha'+\beta-1\}\; \; and\; \; \beta' > \max\{-1,\alpha'-1\}. $ |
Then we define a fractional integral operator
$ (S_t^{\alpha, \alpha', \beta, \beta', \gamma}\Omega)(x) = \frac{\Gamma(1+\gamma-\alpha-\alpha')\Gamma(1+\gamma-\alpha'-\beta)\Gamma(1+\beta')}{\Gamma(1+\gamma-\alpha-\alpha'-\beta)\Gamma(1+\beta'-\alpha')}x^{\alpha+\alpha'-\gamma}(I_t^{\alpha, \alpha', \beta, \beta', \gamma}\Omega)(x), $ |
where $ I_t^{\alpha, \alpha', \beta, \beta', \gamma} $ is the Saigo-Maeda fractional integral of order $ \gamma. $
The main results for Grüss inequalities are given now.
Theorem 13.7. [43] Assume that $ h: [0, \infty)\to \mathbb{R} $ is an integrable function satisfying the condition $ m_1\le h(x)\le M_1 $ for all $ x\in [0, \infty). $ Then for $ \alpha, \alpha', \beta, \beta', \gamma\in \mathbb{R} $ we have:
$ |(Sα,α′,β,β′,γth2)(x)−((Sα,α′,β,β′,γth)(x))2=(M1−(Sα,α′,β,β′,γth)(x))((Sα,α′,β,β′,γth)(x)−m)(M1−h)(h−m1)(x), $ |
provided $ \alpha, \alpha', \beta, \beta', \gamma > 0. $
Theorem 13.8. [43] Assume that (H) holds on $ [0, \infty). $ In addition, let $ \Omega, \Pi\in C_{\mu}. $ Then for $ \alpha, \alpha', \beta, \beta', \gamma\in \mathbb{R} $ and $ \alpha, \alpha', \beta, \beta', \gamma > 0 $ we have:
$ |(Sα,α′,β,β′,γΩ(x)Π(x)−(Sα,α′,β,β′,γΩ)(x)(Sα,α′,β,β′,γΠ)(x)|≤14(M−m)(P−p),∀x∈[0,∞). $ |
Theorem 13.9. [43] Let $ \Omega $ and $ \Pi $ be two synchronous functions on $ [0, \infty) $ and let $ v, w: [0, \infty) \to [0, \infty). $ Then for all $ t > 0, $
$ (Sα,α′,β,β′,γtvΩΠ)(x)(Sα,α′,β,β′,γtw)(x)+(Sα,α′,β,β′,γtwΩΠ)(x)(Sα,α′,β,β′,γtv)(x)≥(Sα,α′,β,β′,γtwΠ)(x)(Sα,α′,β,β′,γtvΩ)(x)+(Sα,α′,β,β′,γtwΩ)(x)(Sα,α′,β,β′,γtvΠ)(x). $ |
In this section we present Grüss-type integral inequalities via quantum calculus.
Definition 14.1. [44] The Jakson's $ q $-derivarive and $ q $-integral of a function $ \Omega $ defined on $ J $ are, respectively, given by
$ D_q\Omega(t) = \frac{\Omega(t) -\Omega(tq)}{t(1-q)}, \; \; \; t\ne 0, \; \; q\ne 1, $ |
$ ∫t0Ω(s)dqs=t(1−q)∞∑k=0qkΩ(tqk). $ |
Definition 14.2. [45] The Riemann-Liouville fractional $ q $-integral operator of a function $ \Omega $ of order $ \alpha $ is given by
$ IαqΩ(t)=tα−1Γq(α)∫t0(qst,q)α−1Ω(s)dqs,α>0,0<q<1, $ |
where
$ (a,q)_{\alpha} = \frac{(a;q)_{\infty}}{(aq^{\alpha};q)_{\infty}}, \; \; \alpha\in \mathbb{R} $ |
and
$ (\alpha, q)_{\infty} = \prod\limits_{j = 0}^{\infty}(1-\alpha q^j). $ |
Now, we present some $ q $-Grüss integral inequalities.
Theorem 14.1. [46] Assume that $ \Omega, \Pi: [0, \infty)\to \mathbb{R} $ are two integrable functions satisfyingt $ (H_1) $ and $ (H_2). $ Then, for $ t > 0 $ and $ \alpha > 0, $ we have:
$ \Big|\frac{t^{\alpha}}{\Gamma_q(\alpha+1)}I_q^{\alpha}\Omega(t) \Pi(t)- I_q^{\alpha}\Omega(t) I_q^{\alpha} \Pi(t)\Big|\le \sqrt{T_q(\Omega,Q_1.Q_2)T_q(\Pi, R_1, R_2)}, $ |
where
$ Tq(u,v,w)=(Iαqw(t)−Iαqu(t))(Iαqu(t)−Iαqv(t))+tαΓq(α+1)Iαqv(t)u(t)−Iαqv(t)Iαqu(t)+Iαqv(t)Iαqw(t)−tαΓq(α+1)Iαqv(t)w(t). $ |
Definition 14.3. [47] Assume $ \Omega:J\rightarrow \mathbb{R} $ is a continuous function and let $ x\in J $. Then the expression
$ x1DqΩ(x)=Ω(x)−Ω(qx+(1−q)x1)(1−q)(x−x1),t≠x1,x1DqΩ(x1)=lim $ |
is called the $ q $-derivative on $ J $ of function $ \Omega $ at $ x $.
Definition 14.4. [47] Assume $ \Omega:J\rightarrow \mathbb{R} $ is a continuous function. Then the $ q $-integral on $ J $ is defined by
$ \begin{align} \label{A2.4} \int_{x_1}^x\Omega(t) {_{x_1}d_{q}}t = (1-q)(x-x_1)\sum\limits_{n = 0}^{\infty}q^n\Omega(q^nx+(1-q^n)x_1) \end{align} $ |
for $ x\in J $. Moreover, if $ c\in(a, x) $ then the definite $ q $-integral on $ J $ is defined by
$ \begin{eqnarray*} \int_{c}^x\Omega(t) {_{x_1}d_{q}}t& = &\int_{x_1}^x\Omega(t) {_{x_1}d_{q}}t-\int_{x_1}^c\Omega(t) {_{x_1}d_{q}t}\\ & = &(1-q)(x-x_1)\sum\limits_{n = 0}^{\infty}q^n\Omega(q^nx+(1-q^n)x_1)\\ &&-(1-q)(c-x_1)\sum\limits_{n = 0}^{\infty}q^n\Omega(q^nc+(1-q^n)x_1). \end{eqnarray*} $ |
Theorem 14.2. [47] Assume $ \Omega, \Pi:J \rightarrow \mathbb{R} $ are continuous functions on $ J $ satisfying the vondition $ (H). $ Then we have the inequality
$ \begin{eqnarray*} &&\left|\frac{1}{x_2-x_1}\int_{x_1}^{x_2}\Omega(x)\Pi(x){_{x_1}d_q}x-\left(\frac{1}{x_2-x_1}\int_{x_1}^{x_2}\Omega(x){_{x_1}d_q}x\right)\left(\frac{1}{x_2-x_1}\int_{x_1}^{x_2}\Pi(x){_{x_1}d_q}x\right)\right|\nonumber\\ &&\; \leq\frac{1}{4}(\mathfrak{M}-\mathfrak{m})(\mathfrak{P}-\mathfrak{p}). \end{eqnarray*} $ |
Now, we are going to present the $ q $-Grüss-$ \check{C} $eby$ \check{s} $ev integral inequality on interval $ [x_1, x_2] $.
Theorem 14.3. [47] Let $ \Omega, \Pi:J \rightarrow \mathbb{R} $ be $ L_1 $, $ L_2 $-Lipschitzian continuous functions on $ [x_1, x_2] $, so that
$ \begin{eqnarray*} |\Omega(u)-\Omega(v)|\leq L_1|u-v|, \qquad |\Pi(u)-\Pi(v)|\leq L_2|u-v|, \end{eqnarray*} $ |
for all $ u, v\in[x_1, x_2] $. Then we have:
$ \begin{eqnarray*} &&\left|\frac{1}{x_2-x_1}\int_{x_1}^{x_2}\Omega(x)\Pi(x){_{x_1}d_q}x-\left(\frac{1}{x_2-x_1}\int_{x_1}^{x_2}\Omega(x){_{x_1}d_q}x\right)\left(\frac{1}{x_2-x_1}\int_{x_1}^{x_2}\Pi(x){_{x_1}d_q}x\right)\right|\nonumber\\ & \leq& \frac{qL_1L_2}{(1+q+q^2)(1+q)^2}(x_2-x_1)^2. \end{eqnarray*} $ |
Let $ q\in (0, 1) $ and let $ I $ be any interval of $ \mathbb{R} $ containing $ 0, $ and denote by $ I_q $ the set
$ I_q = qI = \{qX: X\in I\}; \; \; I_q\subseteq I. $ |
Definition 14.5. [44] Let $ \Omega:I\to \mathbb{R}. $ The $ q $-symmetric difference operator of $ \Omega $ is defined by
$ (\tilde{D}_q\Omega)(t) = \frac{\Omega(qt)-\Omega(q^{-1}t)}{(q-q^{-1})t}; \; \; t\in I_q\setminus\{0\}, $ |
and
$ (\tilde{D}_q\Omega)(t) = \Omega'(0), \; t = 0. $ |
Definition 14.6. [44] Suppose that $ x_1, x_2\in I $ and $ x_1 < x_2. $ For $ \Omega: I\to \mathbb{R} $ and for $ q\in (0, 1), $ the $ q $-symmetric integral of $ \Omega $ is given by
$ \begin{align} \int_{x_1}^{x_2} \Omega(t) \tilde{d}_qt = \int_0^{x_2}\Omega(t) \tilde{d}_qt-\int_0^{x_1}\Omega(t) \tilde{d}_qt, \end{align}$ |
where
$ \begin{align} \int_0^x\Omega(t) \tilde{d}_qt = x(1-q^2)\sum\limits_{n = 0}^{\infty}q^{2n}\Omega(q^{2n+1}x), \; \; x\in I, \end{align}$ |
provided that the series converges at $ x = x_1 $ and $ x = x_2. $
Now, the concepts of $ q $-symmetric derivative and $ q $-symmetric integral are extended on finite intervals. We fix $ s\in \mathbb{N}\cup \{0\}. $ Let $ J_s = [t_s, t_{s+1}]\subset \mathbb{R} $ be an interval containing $ 0 $ and $ 0 < q_s < 1 $ be a constant. For a function $ \Omega: I_s\to \mathbb{R}, $ we define the $ q_s $-symmetric derivative at a point $ t\in I_s $ as follows:
Definition 14.7. [48] Assume that $ \Omega: I_s\to \mathbb{R} $ is continuous and $ t\in I_s. $ The $ q_s $-symmetric derivative of $ \Omega $ at $ t $ is defined as
$ (D_{q_s}\Omega)(t) = \frac{\Omega(q_s^{-1}t+(1-q_s^{-1})t_s)-\Omega(q_s t+(1-q_s)t_s)}{(q_s^{-1}-q_s)(t-t_s)}; \; \; t\ne t_s, $ |
$ (D_{q_s}\Omega)(t_s)\lim\limits_{t\to t_s}(D_{q_s}\Omega)(t). $ |
Definition 14.8. [48] Assume that $ \Omega: I_s\to \mathbb{R} $ is a continuous function. The $ q_s $-symmetric integral is defined as
$ \begin{align} \int_{t_s}^t\Omega(s)d_{q_s}t = (t-t_s)(1-q_s^2)\sum\limits_{n = 0}^{\infty}q_s^{2n}\Omega(q_s^{2n+1} t+(1-q_s^{2n+1})t_s). \end{align} $ |
Now, we present $ q_s $-symmetric analogue of Grüss-Chebyshev integral inequality.
Theorem 14.4. [48] Let $ \Omega $ and $ \Pi:J = [x_1, x_2]\to \mathbb{R} $ be $ L_1, L_2 $-Lipschitzian continuous functions on $ [x_1, x_2] $ so that
$ |\Omega(u)-\Omega(v)|\le L_1|u-v|, \; \; \; |\Pi(u)-\Pi(v)|\le L_2|u-v|, $ |
for all $ u, v\in [x_1, x_2]. $ Then:
$ \begin{eqnarray*} &&\Big|\frac{1}{x_2-x_1}\int_{x_1}^{x_2} \Omega(x)\Pi(x)d_{q_s}x-\Big(\frac{1}{x_2-x_1}\int_{x_1}^{x_2} \Omega(x)d_{q_s}x\Big)\Big(\frac{1}{x_2-x_1}\int_{x_1}^{x_2} \Pi(x)d_{q_s}x\Big)\Big|\\ &\le&\frac{L_1L_2q_s^4(x_2-x_1)^2}{(1+q_s^2+q_s^4)(1+q_s^2)^2}. \end{eqnarray*} $ |
The following concepts are adapted by Ref. ([49]). We state a $ q $-shifting operator as
$ {}_{x_1}\Phi_q(m) = qm+(1-q)x_1, \; \; \; 0 < q < 1, \; \; m,x_1\in \mathbb{R}. $ |
The $ q $-analog is stated by
$ (m;q)_0 = 1, \; \; \; \; (m;q)_k = \prod\limits_{i = 1}^{k-1}(1-q^im), \; \; k\in \mathbb{N}\cup\{\infty\}. $ |
The $ q $ number is stated by
$ [m]_q = \frac{1-q^m}{1-q}, \; \; m\in \mathbb{R}. $ |
The $ q $-Gamma function is stated by
$ \Gamma_q(t) = \frac{{}_{0}(1-{}_{0}\Phi_q(1))_q^{(t-1)}}{(1-q)^{t-1)}}, \; \; t\in \mathbb{R}\setminus\{0,-1,-2,\ldots\}. $ |
Here, we add some definitions regarding fractional $ q $-calculus, namely the Riemann-Liouville fractional $ q $-integral.
Definition 14.9. [49] Let $ \alpha\ge 0 $ and function $ \Omega $ be a continuous stated on $ [x_1, x_2]. $ Then $ (_{x_1}I^{0}_q\Omega)(t) = \Omega (t) $ is given by
$ \begin{eqnarray*} (_{x_1}I^{\alpha}_q \Omega)(t)& = &\frac{1}{\Gamma_q(\alpha)}\int_{x_1}^t{}_{x_1}(t-{}_{x_1}\Phi_q(s))^{\alpha-1}_{q}\Omega(s)\; _{x_1}d_qs\\ & = &\frac{(1-q)(t-x_1)}{\Gamma_q(\alpha)}\sum\limits_{i = 0}^{\infty}q^i\; {}_{x_1}(t-{}_{x_1}\Phi_q^{i+1}(t))^{\alpha-1}_{q}\Omega({}_{x_1}\Phi^{i}_{q}(t)). \end{eqnarray*} $ |
Now, we present the fractional $ q $-Grüss integral inequality on the interval $ [x_1, x_2]. $
Theorem 14.5. [50] Let $ \Omega, \Pi: [x_1, x_2]\to \mathbb{R} $ be continuous functions satisfying $ (H). $ For $ 0 < q < 1 $ and $ \alpha > 0, $ we have the inequality
$ \begin{eqnarray*} &&\Big|\frac{\Gamma_q(\alpha+1)}{(x_2-x_1)^{\alpha}}({}_{x_1}I_q^{\alpha}\Omega(s)\Pi(s))(b)-\Big(\frac{\Gamma_q(\alpha+1)}{(x_2-x_1)^{\alpha}}({}_{x_1}I_q^{\alpha}\Omega(s))(b)\Big)\Big(\frac{\Gamma_q(\alpha+1)}{(x_2-x_1)^{\alpha}}({}_{x_1}I_q^{\alpha}\Pi(s))(b)\Big)\Big|\\ &\le&\frac{1}{4}(\mathfrak{M}-\mathfrak{m})(\mathfrak{P}-\mathfrak{p}). \end{eqnarray*} $ |
Next, we give the fractional $ q $-Grüss-Čebyšev integral inequality on the interval $ [x_1, x_2]. $
Theorem 14.6. [50] Let $ \Omega, \Pi: [x_1, x_2]\to \mathbb{R} $ be $ L_1 $-, $ L_2 $-Lipschitzian continuous functions, so that
$ |\Omega(u)-\Omega(v)|\le L_1 |u-v|, \; \; \; \; \; |\Pi(u)-\Pi(v)|\le L_2 |u-v|, $ |
for all $ u, v\in [x_1, x_2], $ $ 0 < q < 1, $ $ L_1, L_2 > 0, $ and $ \alpha > 0. $ Then we have the inequality
$ \begin{eqnarray*} &&\Big|\frac{(x_2-x_1)^{\alpha}}{\Gamma_q(\alpha+1)}({}_{x_1}I_q^{\alpha}\Omega(s)\Pi(s))(x_2)-({}_{x_1}I_q^{\alpha}\Omega(s))(x_2)({}_{x_1}I_q^{\alpha}\Pi(s))(x_2)\Big|\\ &\le&\frac{L_1L_2(x_2-x_1)^{2\alpha+2}}{\Gamma_q(\alpha+2)\Gamma_q(\alpha+3)}\Big((1+q)[\alpha+1]_q-[\alpha+2]_q\Big). \end{eqnarray*} $ |
In this section we give Grüss-type integral inequalities via fractional Hilfer derivative operators.
In this section we present several integral inequalities for the $ k $-Hilfer fractional derivative operator.
Definition 15.1. [51] Let $ \Omega\in L^1[x_1, x_2], $ $ \Omega\star K_{(1-\eta)(\eta-\xi)}\in AC^n[x_1, x_2], $ $ n-1 < \xi < n, $ $ 0 < \eta\le 1, $ $ n\in \mathbb{N}. $ Then the following
$ ({}^{k}D^{\xi,\eta}_{x_1+}\Omega)(x) = I^{\eta(n-\xi)}_{x_1+,k}\frac{d^n}{dx^n}(I^{(1-\eta)(n-\xi)}_{x_1+,k} \Omega(x)), $ |
is called the Hiler $ k $-fractional derivative.
Theorem 15.1. [51] Let $ k > 0 $ and $ (D^{\xi+\eta(n-\xi)}_{x_1+, k}\Pi) $ be a positive function on $ [0, \infty), $ and let $ ({}^{k}D^{\xi, \eta}_{x_1+}\Omega) $ denote the Hilfer $ k $-fractional derivative of order $ \xi, $ $ 0 < \xi < 1, $ and type $ 0 < \eta\le 1. $ Suppose that:
There exist $ (D^{\xi+\eta(n-\xi)}_{x_1+, k} R_1), $ $ (D^{\xi+\eta(n-\xi)}_{x_1+, k} R_2) $ such that
$ (D^{\xi+\eta(n-\xi)}_{x_1+,k} R_1)(\xi)\le (D^{\xi+\eta(n-\xi)}_{x_1+,k}\Pi)(\xi)\le (D^{\xi+\eta(n-\xi)}_{x_1+,k} R_2)(\xi), $ |
for all $ \xi\in [0, \infty). $
Then
$ \begin{eqnarray*} &&({}^{k}D^{\xi,\eta}_{x_1+} R_1)(\xi)({}^{k}D^{\xi,\eta}_{x_1+}\Pi)(\xi)+({}^{k}D^{\xi,\eta}_{x_1+} R_2)(\xi)({}^{k}D^{\xi,\eta}_{x_1+}\Pi)(\xi)\\ &\ge&({}^{k}D^{\xi,\eta}_{x_1+} R_1)(\xi)({}^{k}D^{\xi,\eta}_{x_1+} R_2)(\xi)+({}^{k}D^{\xi,\eta}_{x_1+}\Pi)(\xi)({}^{k}D^{\xi,\eta}_{x_1+}\Pi)(\xi). \end{eqnarray*} $ |
In this section, we present inequalities of the Grüss-type via $ k $-fractional Hilfer-Katugampola generalized derivative.
Definition 15.2. [52] Let $ n-1 < \alpha\le n, $ $ 0\le \beta\le 1, $ $ n\in \mathbb{N}, $ $ \rho > 0, k > 0 $ and $ \Omega\in M_q[x_1, x_2] = \Big\{\Omega: \|\Omega_q\| = \Big(\int_{x_1}^{x_2}|\Omega(t) |^qdt\Big)^{1/q} < \infty\Big\}, 1 < q < \infty. $ The generalized $ k $-fractional Hilfer-Katugampola derivatives (left-sided and right-sided) are defined as
$ \begin{align} \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) = \frac{\rho^{1-\frac{\gamma-\alpha}{k}}}{k\Gamma_k(\gamma-\alpha)}\int_{x_1}^t(t^{\rho}-y^{\rho})^{\frac{\gamma-\alpha}{k}-1}y^{\rho-1}\Omega^{(\gamma)}(y)dy,\; \; t > x_1, \end{align}$ |
$ \begin{align} \mathcal{D}^{\alpha, \gamma, \rho}_{x_2,k}\Omega(t) = \frac{\rho^{1-\frac{\gamma-\alpha}{k}}}{k\Gamma_k(\gamma-\alpha)}\int_t^{x_2}(y^{\rho}-t^{\rho})^{\frac{\gamma-\alpha}{k}-1}y^{\rho-1}\Omega^{(\gamma)}(y)dy,\; \; t < x_2, \end{align}$ |
where $ \gamma = \alpha+\beta(kn-\alpha), \alpha > 0. $
Theorem 15.2. [52] Let $ \rho, \delta, \alpha, \gamma, k, a > 0 $ and $ \Omega\in M_q[x_1, x_2] $ be positive integrable function on $ [x_1, x_2] $ satisfying $ (H_1). $ Then we have:
$ \begin{eqnarray*} &&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Omega(t) \; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}Q_2(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}Q_1(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) \\ &\ge& \mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}Q_1(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}Q_2(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Omega(t) \; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) . \end{eqnarray*} $ |
Theorem 15.3. [52] Let $ \rho, \delta, \alpha, \gamma, k, a > 0 $ and $ \Omega, \Pi\in M_q[x_1, x_2] $ be positive integrable functions on $ [x_1, x_2] $ satisfying $ (H_1) $ and $ (H_2). $ Then we have:
$ \begin{eqnarray*} (a)\; \; \; &&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k} R_1(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) +\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Pi(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}Q_2(t)\\ &\ge&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k} R_1(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}Q_2(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Pi(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) .\\[0.3cm] (b)\; \; \; &&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}Q_1(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Pi(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Omega(t) \; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k} R_2(t)\\ &\ge&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}Q_1(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k} R_2(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Pi(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) .\\[0.3cm] (c)\; \; \; &&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k} R_2(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}Q_2(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Pi(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) \\ &\ge&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Pi(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}Q_2(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k} R_2(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) .\\[0.3cm] (d)\; \; \; &&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k} R_1(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}Q_1(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Pi(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) \\ &\ge&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Pi(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}Q_1(t)+\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k} R_1(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) . \end{eqnarray*} $ |
Theorem 15.4. [52] Let $ \rho, \delta, \alpha, \gamma, k, a > 0 $ and $ \Omega, \Pi\in M_q[x_1, x_2] $ be positive integrable functions on $ [x_1, x_2] $ satisfying $ (H_1) $ and $ (H_2). $ If $ p, q > 1 $ and $ \frac{1}{p}+\frac{1}{q} = 1, $ then we have:
$ \begin{eqnarray*} (a)\; \; \; &&\frac{1}{p}\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}(\Pi(t))^p\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}(\Omega(t) )^p+\frac{1}{q}\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}(\Omega(t) )^q\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}(\Pi(t))^q\\ &\ge&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Omega(t) \Pi(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) \Pi(t).\\[0.3cm] (b)\; \; \; &&\frac{1}{p}\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}(\Pi(t))^p\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}(\Omega(t) )^p+\frac{1}{q}\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}(\Omega(t) )^q\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}(\Pi(t))^q\\ &\ge&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Omega^{p-1}(t)\Pi^{q-1}(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k} \Omega(t) \Pi(t).\\[0.3cm] (c)\; \; \; &&\frac{1}{p}\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}(\Pi(t))^p\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}(\Omega(t) )^2+\frac{1}{q}\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}(\Omega(t) )^q\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}(\Pi(t))^2\\ &\ge&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Omega^{2/p}(t)\Pi^{2/q}(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega(t) \Pi(t).\\[0.3cm] (d)\; \; \; &&\frac{1}{p}\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}(\Pi(t))^q\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}(\Omega(t) )^2+\frac{1}{q}\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}(\Omega(t) )^p\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}(\Pi(t))^2\\ &\ge&\mathcal{D}^{\delta, \gamma, \rho}_{x_1,k}\Omega^{p-1}(t)\Pi^{q-1}(t)\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}\Omega^{2/p}(t)\Pi^{2/q}(t). \end{eqnarray*} $ |
Theorem 15.5. [52] Let $ \rho, \delta, \alpha, \gamma, k, a > 0 $ and $ \Omega, \Pi\in M_q[x_1, x_2] $ be positive integrable functions on $ [x_1, x_2]. $ Let
$ \mu = \min\limits_{0\le y\le t}\frac{\Omega(y)}{\Pi(y)}, \; \; \; \mathcal{M} = \max\limits_{0\le y\le t}\frac{\Omega(y)}{\Pi(y)}. $ |
Then we have:
$ \begin{eqnarray*} &&(i)\; \; \frac{(\mu+\mathcal{M})^2}{4\mu\mathcal{M}}\mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Omega(t) \Pi(t)]^2\ge \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Pi(t)]^2\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Omega(t) ]^2.\\[0.3cm] &&(ii)\; \; \frac{\sqrt{\mu}-\sqrt{\mathcal{M}}}{2\sqrt{\mu\mathcal{M}}}\mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Omega(t) \Pi(t)]\ge \sqrt{\mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Pi(t)]^2\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Omega(t) ]^2}-\mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Omega(t) \Pi(t)]\ge 0.\\[0.3cm] &&(iii)\; \; \frac{\mu-\mathcal{M}}{4\mu\mathcal{M}} \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Omega(t) \Pi(t)]^2\ge \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Pi(t)]^2\; \mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Omega(t) ]^2- [\mathcal{D}^{\alpha, \gamma, \rho}_{x_1,k}[\Omega(t) \Pi(t)]]^2\ge 0. \end{eqnarray*} $ |
Our objective in this paper was to present a comprehensive and up-to-date review on Grüss-type inequalities for fractional differential operators. We presented results including inequalities of the Grüss-type for different kinds of fractional integral and differential operators. Grüss-type inequalities for fractional integrals of Riemann-Liouville, Katugampola, Hadamard's, Raina's, tempered, conformable, proportional, Caputo-Fabrizio, Saigo's are included. Moreover Grüss-type inequalities concerning Hilfer fractional differential operators and quantum Grüss-type integral inequalities are also presented. We believe that the present survey will provide a platform for the researchers working on Grüss-type inequalities to learn about the available work on the topic before developing the new results. Future research regarding this review paper is fascinating. Our review paper might inspire a good number of additional studies.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3-340-1).
The authors declare that they do not have conflict of interest regarding this manuscript.
[1] |
De Rosier D, Klug A (1968) Reconstruction of Three Dimensional Structures from Electron Micrographs. Nature 217: 130-134. doi: 10.1038/217130a0
![]() |
[2] | Cochran W, Crick FHC, Vand V (1952) The Structure of Synthetic Polypeptides. I. The Transform of Atoms on a Helix. Acta Crystallographica 5: 581-586. |
[3] |
Franklin RE, Klug A (1955) The splitting of layer lines in X-ray fibre diagrams of helical structures: application to tobacco mosaic virus. Acta Crystallographica 8: 777-780. doi: 10.1107/S0365110X55002399
![]() |
[4] |
Franklin R, Holmes K (1958) Tobacco mosaic virus: application of the method of isomorphous replacement to the determination of the helical parameters and radial density distribution. Acta Crystallographica 11: 213-220. doi: 10.1107/S0365110X58000529
![]() |
[5] |
Crowther RA, Amos LA, Finch JT, et al. (1970) Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature 226: 421-425. doi: 10.1038/226421a0
![]() |
[6] |
Adrian M, Dubochet J, Lepault J, et al. (1984) Cryo-electron microscopy of viruses. Nature 308: 32-36. doi: 10.1038/308032a0
![]() |
[7] |
Henderson R, Baldwin JM, Ceska TA, et al. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213: 899-929. doi: 10.1016/S0022-2836(05)80271-2
![]() |
[8] |
Miyazawa A, Fujiyoshi Y, Unwin N. (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423: 949-955. doi: 10.1038/nature01748
![]() |
[9] |
Yonekura K, Maki-Yonekura S, Namba K (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424: 643-650. doi: 10.1038/nature01830
![]() |
[10] | van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6: 187-194. |
[11] |
Penczek PA, Grassucci RA, Frank J (1994) The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53: 251-270. doi: 10.1016/0304-3991(94)90038-8
![]() |
[12] | Lawson CL, Baker ML, Best C, et al. (2011) EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res 39: D456-64. |
[13] |
Sachse C, Chen JZ, Coureux P-D, et al. (2007) High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J Mol Biol 371: 812-835. doi: 10.1016/j.jmb.2007.05.088
![]() |
[14] | Yu X, Jin L, Zhou ZH (2008) 3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453: 415-419. |
[15] |
Zhang X, Settembre E, Xu C, et al. (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 105: 1867-1872. doi: 10.1073/pnas.0711623105
![]() |
[16] | Cong Y, Baker ML, Jakana J, et al. (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA 107: 4967-4972. |
[17] | Bai X-C, Fernandez IS, McMullan G, et al. (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2: e00461. |
[18] | Voorhees RM, Fernandez IS, Scheres SHW, et al. (2014) Structure of the Mammalian ribosome-sec61 complex to 3.4Å resolution. Cell 157: 1632-1643. |
[19] |
Li X, Mooney P, Zheng S, et al. (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10: 584-590. doi: 10.1038/nmeth.2472
![]() |
[20] |
Lu P, Bai X-C, Ma D, et al. (2014) Three-dimensional structure of human γ-secretase. Nature 512: 166-170. doi: 10.1038/nature13567
![]() |
[21] |
Wu B, Peisley A, Tetrault D, et al. (2014) Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol Cell 55: 511-523. doi: 10.1016/j.molcel.2014.06.010
![]() |
[22] | Bharat TAM, Murshudov GN, Sachse C, et al. (2015) Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles. Nature: 1-5. |
[23] | Ecken von der J, Müller M, Lehman W, et al. (2015) Structure of the F-actin-tropomyosin complex. Nature 519: 114-117. |
[24] |
Fromm SA, Bharat TAM, Jakobi AJ, et al. (2015) Seeing tobacco mosaic virus through direct electron detectors. J Struct Biol 189: 87-97. doi: 10.1016/j.jsb.2014.12.002
![]() |
[25] | Behrmann E, Tao G, Stokes DL, et al. (2012) Real-space processing of helical filaments in SPARX. J Struct Biol: 1-12. |
[26] |
Egelman EH (2000) A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85: 225-234. doi: 10.1016/S0304-3991(00)00062-0
![]() |
[27] |
Desfosses A, Ciuffa R, Gutsche I, et al. (2014) SPRING—an image processing package for single-particle based helical reconstruction from electron cryomicrographs. J Struct Biol 185: 15-26. doi: 10.1016/j.jsb.2013.11.003
![]() |
[28] |
Rohou A, Grigorieff N (2014) Frealix: model-based refinement of helical filament structures from electron micrographs. J Struct Biol 186: 234-244. doi: 10.1016/j.jsb.2014.03.012
![]() |
[29] |
Sindelar CV, Downing KH (2007) The beginning of kinesin's force-generating cycle visualized at 9-A resolution. J Cell Biol 177: 377-385. doi: 10.1083/jcb.200612090
![]() |
[30] |
Klug A, Crick FHC, Wyckhoff HW (1958) Diffraction by Helical Structures. Acta Crystallographica 11: 199-213. doi: 10.1107/S0365110X58000517
![]() |
[31] |
Caspar DL, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27: 1-24. doi: 10.1101/SQB.1962.027.001.005
![]() |
[32] |
Moore PB, Huxley HE, DeRosier DJ (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 50: 279-295. doi: 10.1016/0022-2836(70)90192-0
![]() |
[33] | Mandelkow EM, Mandelkow E (1985) Unstained microtubules studied by cryo-electron microscopy. Substructure, supertwist and disassembly. J Mol Biol 181: 123-135. |
[34] |
Finch JT (1964) Resolution of the substructure of tobacco mosaic virus in the electron microscope. J Mol Biol 8: 872-874. doi: 10.1016/S0022-2836(64)80168-6
![]() |
[35] |
Sachse C, Fändrich M, Grigorieff N (2008) Paired beta-sheet structure of an Abeta(1-40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci USA 105: 7462-7466. doi: 10.1073/pnas.0712290105
![]() |
[36] | Carragher B, Bluemke DA, Gabriel B, et al. (1988) Structural analysis of polymers of sickle cell hemoglobin. I. Sickle hemoglobin fibers. J Mol Biol 199: 315-331. |
[37] |
Xu C, Rice WJ, He W, et al. (2002) A structural model for the catalytic cycle of Ca(2+)-ATPase. J Mol Biol 316: 201-211. doi: 10.1006/jmbi.2001.5330
![]() |
[38] |
Korkhov VM, Sachse C, Short JM, et al. (2010) Three-dimensional structure of TspO by electron cryomicroscopy of helical crystals. Structure 18: 677-687. doi: 10.1016/j.str.2010.03.001
![]() |
[39] |
Hou F, Sun L, Zheng H, et al. (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146: 448-461. doi: 10.1016/j.cell.2011.06.041
![]() |
[40] |
Alushin GM, Lander GC, Kellogg EH, et al. (2014) High-Resolution Microtubule Structures Reveal the Structural Transitionsin ab-Tubulin upon GTP Hydrolysis. Cell 157: 1117-1129. doi: 10.1016/j.cell.2014.03.053
![]() |
[41] |
Galkin VE, Orlova A, Vos MR, et al. (2015) Near-atomic resolution for one state of f-actin. Structure 23: 173-182. doi: 10.1016/j.str.2014.11.006
![]() |
[42] |
Stewart M (1988) Computer image processing of electron micrographs of biological structures with helical symmetry. J Electron Microsc Tech 9: 325-358. doi: 10.1002/jemt.1060090404
![]() |
[43] |
DeRosier DJ, Moore PB (1970) Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol 52: 355-369. doi: 10.1016/0022-2836(70)90036-7
![]() |
[44] | Moody MF (1990) Biophysical electron microscopy: basic concepts and modern techniques—image analysis of electron micrographs. 517. |
[45] |
Carragher B, Whittaker M, Milligan RA (1996) Helical processing using PHOELIX. J Struct Biol 116: 107-112. doi: 10.1006/jsbi.1996.0018
![]() |
[46] |
Owen CH, Morgan DG, DeRosier DJ (1996) Image analysis of helical objects: the Brandeis Helical Package. J Struct Biol 116: 167-175. doi: 10.1006/jsbi.1996.0027
![]() |
[47] |
Beroukhim R, Unwin N (1997) Distortion correction of tubular crystals: improvements in the acetylcholine receptor structure. Ultramicroscopy 70: 57-81. doi: 10.1016/S0304-3991(97)00070-3
![]() |
[48] |
Pomfret AJ, Rice WJ, Stokes DL (2007) Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases. J Struct Biol 157: 106-116. doi: 10.1016/j.jsb.2006.05.012
![]() |
[49] |
Ramey VH, Wang H-W, Nogales E (2009) Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries. J Struct Biol 167: 97-105. doi: 10.1016/j.jsb.2009.05.002
![]() |
[50] |
Diaz R, Rice WJ, Stokes DL. (2010) Fourier-Bessel reconstruction of helical assemblies. Meth Enzymol 482: 131-165. doi: 10.1016/S0076-6879(10)82005-1
![]() |
[51] |
Erickson HP, Klug A (1971) Measurement and Compensation of Defocusing and Aberrations by Fourier Processing of Electron Micrographs. Philos Trans R Soc Lond, B, Biol Sci 261: 105-118. doi: 10.1098/rstb.1971.0040
![]() |
[52] |
Henderson R (1992) Image contrast in high-resolution electron microscopy of biological macromolecules: TMV in ice. Ultramicroscopy 46: 1-18. doi: 10.1016/0304-3991(92)90003-3
![]() |
[53] | Glaeser RM (2007) Electron Crystallography of Helical Structures in Electron Crystallography of Biological Macromolecules. Oxford University Press, USA; 2007: 304-342. |
[54] |
Egelman EH (2010) Reconstruction of helical filaments and tubes. Meth Enzymol 482: 167-183. doi: 10.1016/S0076-6879(10)82006-3
![]() |
[55] |
Heymann JB, Chagoyen M, Belnap DM (2005) Common conventions for interchange and archiving of three-dimensional electron microscopy information in structural biology. J Struct Biol 151:196-207. doi: 10.1016/j.jsb.2005.06.001
![]() |
[56] | Egelman EH (2014) Ambiguities in helical reconstruction. eLife 3. |
[57] |
Vonck J (2000) Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography. Ultramicroscopy 85: 123-129. doi: 10.1016/S0304-3991(00)00052-8
![]() |
[58] | Moody MF (2011) Structural Biology Using Electrons and X-Rays. Academic Press; 2011. |
[59] |
Sachse C, Xu C, Wieligmann K, et al. (2006) Quaternary structure of a mature amyloid fibril from Alzheimer's Abeta(1-40) peptide. J Mol Biol 362: 347-354. doi: 10.1016/j.jmb.2006.07.011
![]() |
[60] |
Lučić V, Förster F, Baumeister W (2005) STRUCTURAL STUDIES BY ELECTRON TOMOGRAPHY: From Cells to Molecules. Annu Rev Biochem 74: 833-865. doi: 10.1146/annurev.biochem.73.011303.074112
![]() |
[61] |
Briggs JA (2013) Structural biology in situ—the potential of subtomogram averaging. Curr Opin Struct Biol 23: 261-267. doi: 10.1016/j.sbi.2013.02.003
![]() |
[62] |
Skruzny M, Desfosses A, Prinz S, et al. (2015) An Organized Co-assembly of Clathrin Adaptors Is Essential for Endocytosis. Dev Cell 33: 150-162. doi: 10.1016/j.devcel.2015.02.023
![]() |
[63] |
Bharat TAM, Davey NE, Ulbrich P, et al. (2012) Structure of the immature retroviral capsid at 8Å resolution by cryo-electron microscopy. Nature 487: 385-389. doi: 10.1038/nature11169
![]() |
[64] |
Wall JS, Hainfeld JF (1986) Mass mapping with the scanning transmission electron microscope. Annu Rev Biophys Biophys Chem 15: 355-376. doi: 10.1146/annurev.bb.15.060186.002035
![]() |
[65] | Wall JS, Simon MN (2001) Scanning transmission electron microscopy of DNA-protein complexes. Methods Mol Biol 148: 589-601. |
[66] | Scheele RB, Borisy GG (1978) Electron microscopy of metal-shadowed and negatively stained microtubule protein. Structure of the 30 S oligomer. J Biol Chem 253: 2846-2851. |
[67] | Hoenger A, Doerhoefer M, Woehlke G, et al. (2000) Surface topography of microtubule walls decorated with monomeric and dimeric kinesin constructs. Biol Chem 381: 1001-1011. |
[68] |
Schmitz S, Schaap IAT, Kleinjung J, et al. (2010) Malaria Parasite Actin Polymerization and Filament Structure. J Biol Chem 285: 36577-36585. doi: 10.1074/jbc.M110.142638
![]() |
[69] |
Finch JT (1972) The hand of the helix of tobacco virus. J Mol Biol 66: 291-294. doi: 10.1016/0022-2836(72)90480-9
![]() |
[70] |
Low HH, Sachse C, Amos LA, et al. (2009) Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139: 1342-1352. doi: 10.1016/j.cell.2009.11.003
![]() |
[71] |
Stewart A, Grigorieff N (2004) Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102: 67-84. doi: 10.1016/j.ultramic.2004.08.008
![]() |
[72] |
Mindell JA, Grigorieff N (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142: 334-347. doi: 10.1016/S1047-8477(03)00069-8
![]() |
[73] |
Grigorieff N (1998) Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J Mol Biol 277: 1033-1046. doi: 10.1006/jmbi.1998.1668
![]() |
[74] |
Fujii T, Iwane AH, Yanagida T, et al. (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467: 724-728. doi: 10.1038/nature09372
![]() |
[75] |
Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157: 117-125. doi: 10.1016/j.jsb.2006.05.004
![]() |
[76] |
Heymann JB, Belnap DM (2007) Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 157: 3-18. doi: 10.1016/j.jsb.2006.06.006
![]() |
[77] |
Scheres SHW (2012) RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180: 519-530. doi: 10.1016/j.jsb.2012.09.006
![]() |
[78] |
Clemens DL, Ge P, Lee B-Y, et al. (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell 160: 940-951. doi: 10.1016/j.cell.2015.02.005
![]() |
[79] | Gutsche I, Desfosses A, Effantin G, et al. (2015) Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 348: 704-707. |
[80] |
Ciuffa R, Lamark T, Tarafder AK, et al. (2015) The Selective Autophagy Receptor p62 Forms a Flexible Filamentous Helical Scaffold. Cell Rep 11: 748-758. doi: 10.1016/j.celrep.2015.03.062
![]() |
[81] |
Kühlbrandt W (2014) The Resolution Revolution. Science 343: 1443-1444. doi: 10.1126/science.1251652
![]() |
[82] |
Faruqi AR, Henderson R (2007) Electronic detectors for electron microscopy. Curr Opin Struct Biol 17: 549-555. doi: 10.1016/j.sbi.2007.08.014
![]() |
[83] |
Wang Z, Hryc CF, Bammes B, et al. (2014) An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat Commun 5: 4808. doi: 10.1038/ncomms5808
![]() |
[84] |
Campbell MG, Cheng A, Brilot AF, et al. (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20: 1823-1828. doi: 10.1016/j.str.2012.08.026
![]() |
[85] | Bartesaghi A, Matthies D, Banerjee S, et al. (2014) Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. Proc Natl Acad Sci USA 111: 11709-11714. |
[86] | Allegretti M, Mills DJ, McMullan G, et al. (2014) Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. eLife 3: e01963-e01963. |
[87] |
Brilot AF, Chen JZ, Cheng A, et al. (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177: 630-637. doi: 10.1016/j.jsb.2012.02.003
![]() |
[88] | Scheres SH (2014) Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3: e03665. |
[89] |
Holmes K, Franklin R (1958) The radial density distribution in some strains of tobacco mosaic virus. Virology 6: 328-336. doi: 10.1016/0042-6822(58)90086-2
![]() |
[90] |
Cyrklaff M, Kühlbrandt W (1994) High-resolution electron microscopy of biological specimens in cubic ice. Ultramicroscopy 55: 141-153. doi: 10.1016/0304-3991(94)90165-1
![]() |
[91] | Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6Å reconstruction of rotavirus VP6. eLife 4. |
[92] | Bartesaghi A, Merk A, Banerjee S, et al. (2015) Electron microscopy. 2.2Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348: 1147-1151. |
[93] |
McMullan G, Faruqi AR, Henderson R, et al. (2009) Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109: 1144-1147. doi: 10.1016/j.ultramic.2009.05.005
![]() |
1. | HUI-YAN CHENG, IBRAHIM MEKAWY, JUAN WANG, HUMERA BATOOL, MUHAMMAD IMRAN QURESHI, ANALYSIS OF NEWTON AND HERMITE–HADAMARD-TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES ON FRACTAL SETS USING GENERALIZED PRE-INVEXITY, 2025, 33, 0218-348X, 10.1142/S0218348X25401036 |