Loading [MathJax]/jax/output/SVG/jax.js
Mini review Special Issues

Non-conventional yeasts as superior production platforms for sustainable fermentation based bio-manufacturing processes

  • Non-conventional yeasts are an excellent option for a number of different industrial bioprocesses. They possess beneficial natural phenotypes, which translates to several fermentation advantages when compared to traditional hosts, like Saccharomyces cerevisiae. The non-conventional yeasts Yarrowia lipolytica, Trichosporon oleaginosus, Kluyveromyces marxianus, Dekkera bruxellensis, Pichia kudriavzevii, Debaryomyces hansenii and Hansenula polymorpha, are considered desirable industrial hosts due to their natural characteristics, including tolerance to several by-products and inhibitors, thermotolerance, salt resistance or osmo- and xerotolerance. Therefore, they are a great alternative for the industrial production of bioethanol, fine chemicals, lipids and recombinant proteins, among others. In this review, we summarize the best natural characteristics of those seven non-conventional yeasts and their use in industrial biotechnology, as well as the molecular/synthetic biology tools available for their genetic modification. Moreover, possible limitations regarding their performance in industrial fermentations and a list of challenges to overcome in the future are also discussed.

    Citation: Clara Navarrete, José L. Martínez. Non-conventional yeasts as superior production platforms for sustainable fermentation based bio-manufacturing processes[J]. AIMS Bioengineering, 2020, 7(4): 289-305. doi: 10.3934/bioeng.2020024

    Related Papers:

    [1] Ruijin Hong, Jialin Ji, Chunxian Tao, Daohua Zhang, Dawei Zhang . Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties. AIMS Materials Science, 2017, 4(1): 223-230. doi: 10.3934/matersci.2017.1.223
    [2] Purabi R. Ghosh, Derek Fawcett, Michael Platten, Shashi B. Sharma, John Fosu-Nyarko, Gerrard E. J. Poinern . Sustainable green chemical synthesis of discrete, well-dispersed silver nanoparticles with bacteriostatic properties from carrot extracts aided by polyvinylpyrrolidone. AIMS Materials Science, 2020, 7(3): 269-287. doi: 10.3934/matersci.2020.3.269
    [3] Johnson N. Naat, Yantus A. B Neolaka, Yosep Lawa, Calvin L. Wolu, Dewi Lestarani, Sri Sugiarti, Dyah Iswantini . Modification of Takari natural sand based silica with BSA (SiO2@BSA) for biogenic amines compound adsorbent. AIMS Materials Science, 2022, 9(1): 36-55. doi: 10.3934/matersci.2022003
    [4] Mohsen Safaei, Mohammad Salmani Mobarakeh, Bahram Azizi, Ehsan Shoohanizad, Ling Shing Wong, Nafiseh Nikkerdar . Optimization of synthesis of cellulose/gum Arabic/Ag bionanocomposite for antibacterial applications. AIMS Materials Science, 2025, 12(2): 278-300. doi: 10.3934/matersci.2025015
    [5] Reisfeld Renata . Optical Properties of Lanthanides in Condensed Phase, Theory and Applications. AIMS Materials Science, 2015, 2(2): 37-60. doi: 10.3934/matersci.2015.2.37
    [6] Harikrishnan Pulikkalparambil, Jyotishkumar Parameswaranpillai, Jinu Jacob George, Krittirash Yorseng, Suchart Siengchin . Physical and thermo-mechanical properties of bionano reinforced poly(butylene adipate-co-terephthalate), hemp/CNF/Ag-NPs composites. AIMS Materials Science, 2017, 4(3): 814-831. doi: 10.3934/matersci.2017.3.814
    [7] Abdulkader A. Annaz, Saif S. Irhayyim, Mohanad L. Hamada, Hashim Sh. Hammood . Comparative study of mechanical performance between Al–Graphite and Cu–Graphite self-lubricating composites reinforced by nano-Ag particles. AIMS Materials Science, 2020, 7(5): 534-551. doi: 10.3934/matersci.2020.5.534
    [8] Takayuki Aoyama, Mari Aoki, Isao Sumita, Atsushi Ogura . Effects of particle size of aluminum powder in silver/aluminum paste on n-type solar cells. AIMS Materials Science, 2018, 5(4): 614-623. doi: 10.3934/matersci.2018.4.614
    [9] Abdullah Ahmed Ali Ahmed, Abdullah Mohammed Al-Hussam, Abdu Mohammed Abdulwahab, Ahmed Nasser Ahmed Ali Ahmed . The impact of sodium chloride as dopant on optical and electrical properties of polyvinyl alcohol. AIMS Materials Science, 2018, 5(3): 533-542. doi: 10.3934/matersci.2018.3.533
    [10] Shreeram S. Joglekar, Harish M. Gholap, Prashant S. Alegaonkar, Anup A. Kale . The interactions between CdTe quantum dots and proteins: understanding nano-bio interface. AIMS Materials Science, 2017, 4(1): 209-222. doi: 10.3934/matersci.2017.1.209
  • Non-conventional yeasts are an excellent option for a number of different industrial bioprocesses. They possess beneficial natural phenotypes, which translates to several fermentation advantages when compared to traditional hosts, like Saccharomyces cerevisiae. The non-conventional yeasts Yarrowia lipolytica, Trichosporon oleaginosus, Kluyveromyces marxianus, Dekkera bruxellensis, Pichia kudriavzevii, Debaryomyces hansenii and Hansenula polymorpha, are considered desirable industrial hosts due to their natural characteristics, including tolerance to several by-products and inhibitors, thermotolerance, salt resistance or osmo- and xerotolerance. Therefore, they are a great alternative for the industrial production of bioethanol, fine chemicals, lipids and recombinant proteins, among others. In this review, we summarize the best natural characteristics of those seven non-conventional yeasts and their use in industrial biotechnology, as well as the molecular/synthetic biology tools available for their genetic modification. Moreover, possible limitations regarding their performance in industrial fermentations and a list of challenges to overcome in the future are also discussed.


    Fractional calculus is a notably attractive subject owing to having wide-ranging application areas of theoretical and applied sciences. Despite the fact that there are a large number of worthwhile mathematical works on the fractional differential calculus, there is no noteworthy parallel improvement of fractional difference calculus up to lately. This statement has shown that discrete fractional calculus has certain unforeseen hardship.

    Fractional sums and differences were obtained firstly in Diaz-Osler [1], Miller-Ross [2] and Gray and Zhang [3] and they found discrete types of fractional integrals and derivatives. Later, several authors began to touch upon discrete fractional calculus; Goodrich-Peterson [4], Baleanu et al. [5], Ahrendt et al. [6]. Nevertheless, discrete fractional calculus is a rather novel area. The first studies have been done by Atıcı et al. [7,8,9,10,11], Abdeljawad et al. [12,13,14], Mozyrska et al. [15,16,17], Anastassiou [18,19], Hein et al. [20] and Cheng et al. [21] and so forth [22,23,24,25,26].

    Self-adjoint operators have an important place in differential operators. Levitan and Sargsian [27] studied self-adjoint Sturm-Liouville differential operators and they obtained spectral properties based on self-adjointness. Also, they found representation of solutions and hence they obtained asymptotic formulas of eigenfunctions and eigenvalues. Similarly, Dehghan and Mingarelli [28,29] obtained for the first time representation of solution of fractional Sturm-Liouville problem and they obtained asymptotic formulas of eigenfunctions and eigenvalues of the problem. In this study, firstly we obtain self-adjointness of DFSL operator within nabla fractional Riemann-Liouville and delta fractional Grünwald-Letnikov operators. From this point of view, we obtain orthogonality of distinct eigenfunctions, reality of eigenvalues. In addition, we open a new gate by obtaining representation of solution of DFSL problem for researchers study in this area.

    Self-adjointness of fractional Sturm-Liouville differential operators have been proven by Bas et al. [30,31], Klimek et al. [32,33]. Variational properties of fractional Sturm-Liouville problem has been studied in [34,35]. However, self-adjointness of conformable Sturm-Liouville and DFSL with Caputo-Fabrizio operator has been proven by [36,37]. Nowadays, several studies related to Atangana-Baleanu fractional derivative and its discrete version are done [38,39,40,41,42,43,44,45].

    In this study, we consider DFSL operators within Riemann-Liouville and Grünwald-Letnikov sense, and we prove the self-adjointness, orthogonality of distinct eigenfunctions, reality of eigenvalues of DFSL operator. However, we get sum representation of solutions for DFSL equation by means Laplace transform for nabla fractional difference equations. Finally, we compare the results for the solution of DFSL problem, discrete Sturm-Liouville (DSL) problem with the second order, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem with the second order. The aim of this paper is to contribute to the theory of DFSL operator.

    We discuss DFSL equations in three different ways with;

    i) Self-adjoint (nabla left and right) Riemann-Liouville (R-L) fractional operator,

    L1x(t)=μa(p(t)bμx(t))+q(t)x(t)=λr(t)x(t), 0<μ<1,

    ii) Self-adjoint (delta left and right) Grünwald-Letnikov (G-L) fractional operator,

    L2x(t)=Δμ(p(t)Δμ+x(t))+q(t)x(t)=λr(t)x(t), 0<μ<1,

    iii)(nabla left) DFSL operator is defined by R-L fractional operator,

    L3x(t)=μa(μax(t))+q(t)x(t)=λx(t), 0<μ<1.

    Definition 2.1. [4] Delta and nabla difference operators are defined by respectively

    Δx(t)=x(t+1)x(t),x(t)=x(t)x(t1). (1)

    Definition 2.2. [46] Falling function is defined by, αR

    tα_=Γ(α+1)Γ(α+1n), (2)

    where Γ is Euler gamma function.

    Definition 2.3. [46] Rising function is defined by, αR,

    t¯α=Γ(t+α)Γ(t). (3)

    Remark 1. Delta and nabla operators have the following properties

    Δtα_=αtα1_, (4)
    t¯α=αt¯α1.

    Definition 2.4. [2,7] Fractional sum operators are defined by,

    (i) The left defined nabla fractional sum with order μ>0 is defined by

    μax(t)=1Γ(μ)ts=a+1(tρ(s))¯μ1x(s), tNa+1, (5)

    (ii) The right defined nabla fractional sum with order μ>0 is defined by

    bμx(t)=1Γ(μ)b1s=t(sρ(t))¯μ1x(s), t b1N, (6)

    where ρ(t)=t1 is called backward jump operators, Na={a,a+1,...}, bN={b,b1,...}.

    Definition 2.5. [47] Fractional difference operators are defined by,

    (i) The nabla left fractional difference of order μ>0 is defined

    μax(t)=n(nμ)ax(t)=nΓ(nμ)ts=a+1(tρ(s))¯nμ1x(s), tNa+1, (7)

    (ii) The nabla right fractional difference of order μ>0 is defined

    bμx(t)=(1)nΔn b(nμ)x(t)=(1)nΔnΓ(nμ)b1s=t(sρ(t))¯nμ1x(s), t b1N. (8)

    Fractional differences in (78) are called the Riemann-Liouville (R-L) definition of the μ-th order nabla fractional difference.

    Definition 2.6. [1,21,48] Fractional difference operators are defined by,

    (i) The left defined delta fractional difference of order μ, 0<μ1, is defined by

    Δμx(t)=1hμts=0(1)sμ(μ1)...(μs+1)s!x(ts), t=1,...,N. (9)

    (ii) The right defined delta fractional difference of order μ, 0<μ1, is defined by

    Δμ+x(t)=1hμNts=0(1)sμ(μ1)...(μs+1)s!x(t+s), t=0,..,N1. (10)

    Fractional differences in (910) are called the Grünwald-Letnikov (G-L) definition of the μ-th order delta fractional difference.

    Theorem 2.7. [47] We define the summation by parts formula for R-L fractional nabla difference operator, u is defined on bN and v is defined on Na, then

    b1s=a+1u(s)μav(s)=b1s=a+1v(s)bμu(s). (11)

    Theorem 2.8. [26,48] We define the summation by parts formula for G-L delta fractional difference operator, u, v is defined on {0,1,...,n}, then

    ns=0u(s)Δμv(s)=ns=0v(s)Δμ+u(s). (12)

    Definition 2.9. [20] f:NaR, s, Laplace transform is defined as follows,

    La{f}(s)=k=1(1s)k1f(a+k),

    where =C{1} and is called the set of regressive (complex) functions.

    Definition 2.10. [20] Let f,g:NaR, all tNa+1, convolution property of f and g is given by

    (fg)(t)=ts=a+1f(tρ(s)+a)g(s),

    where ρ(s) is the backward jump function defined in [46] as

    ρ(s)=s1.

    Theorem 2.11. [20] f,g:NaR, convolution theorem is expressed as follows,

    La{fg}(s)=La{f}La{g}(s).

    Lemma 2.12. [20] f:NaR, the following property is valid,

    La+1{f}(s)=11sLa{f}(s)11sf(a+1).

    Theorem 2.13. [20] f:NaR, 0<μ<1, Laplace transform of nabla fractional difference

    La+1{μaf}(s)=sμLa+1{f}(s)1sμ1sf(a+1),tNa+1.

    Definition 2.14. [20] For |p|<1, α>0, βR and tNa, discrete Mittag-Leffler function is defined by

    Ep,α,β(t,a)=k=0pk(ta)¯αk+βΓ(αk+β+1),

    where t¯n={t(t+1)(t+n1),nZΓ(t+n)Γ(t),nR is rising factorial function.

    Theorem 2.15. [20] For |p|<1, α>0, βR, |1s|<1, and |s|α>p, Laplace transform of discrete Mittag-Leffler function is as follows,

    La{Ep,α,β(.,a)}(s)=sαβ1sαp.

    Definition 2.16. Laplace transform of f(t)R+, t0 is defined as follows,

    L{f}(s)=0estf(t)dt.

    Theorem 2.17. For z, θC,Re(δ)>0, Mittag-Leffler function with two parameters is defined as follows

    Eδ,θ(z)=k=0zkΓ(δk+θ).

    Theorem 2.18. Laplace transform of Mittag-Leffler function is as follows

    L{tθ1Eδ,θ(λtδ)}(s)=sδθsδλ.

    Property 2.19. [28] f:NaR, 0<μ<1, Laplace transform of fractional derivative in Caputo sense is as follows, 0<α<1,

    L{CDα0+f}(s)=sαL{f}(s)sα1f(0).

    Property 2.20. [28] f:NaR, 0<μ<1, Laplace transform of left fractional derivative in Riemann-Liouville sense is as follows, 0<α<1,

    L{Dα0+f}(s)=sαL{f}(s)I1α0+f(t)|t=0,

    here Iα0+ is left fractional integral in Riemann-Liouville sense.

    We consider discrete fractional Sturm-Liouville equations in three different ways as follows:

    First Case: Self-adjoint L1 DFSL operator is defined by (nabla right and left) R-L fractional operator,

    L1x(t)=μa(p(t)bμx(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, (13)

    where p(t)>0, r(t)>0, q(t) is a real valued function on [a+1,b1] and real valued, λ is the spectral parameter, t[a+1,b1], x(t)l2[a+1,b1]. In 2(a+1,b1), the Hilbert space of sequences of complex numbers u(a+1),...,u(b1) with the inner product is given by,

    u(n),v(n)=b1n=a+1u(n)v(n),

    for every uDL1, let's define as follows

    DL1={u(n), v(n)2(a+1,b1):L1u(n), L1v(n)2(a+1,b1)}.

    Second Case: Self-adjoint L2 DFSL operator is defined by(delta left and right) G-L fractional operator,

    L2x(t)=Δμ(p(t)Δμ+x(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, (14)

    where p,r,λ is as defined above, q(t) is a real valued function on [0,n], t[0,n], x(t)l2[0,n]. In 2(0,n), the Hilbert space of sequences of complex numbers u(0),...,u(n) with the inner product is given by, n is a finite integer,

    u(i),r(i)=ni=0u(i)r(i),

    for every uDL2, let's define as follows

    DL2={u(i), v(i)2(0,n):L2u(n), L2r(n)2(0,n)}.

    Third Case:L3 DFSL operator is defined by (nabla left) R-L fractional operator,

    L3x(t)=μa(μax(t))+q(t)x(t)=λx(t), 0<μ<1, (15)

    p,r,λ is as defined above, q(t) is a real valued function on [a+1,b1], t[a+1,b1].

    Firstly, we consider the first case and give the following theorems and proofs;

    Theorem 3.1. DFSL operator L1 is self-adjoint.

    Proof.

    u(t)L1v(t)=u(t)μa(p(t)bμv(t))+u(t)q(t)v(t), (16)
    v(t)L1u(t)=v(t)μa(p(t)bμu(t))+v(t)q(t)u(t). (17)

    If (1617) is subtracted from each other

    u(t)L1v(t)v(t)L1u(t)=u(t)μa(p(t)bμv(t))v(t)μa(p(t)bμu(t))

    and sum operator from a+1 to b1 to both side of the last equality is applied, we get

    b1s=a+1(u(s)L1v(s)v(s)L1u(s))=b1s=a+1u(s)μa(p(s)bμv(s)) (18)
    b1s=a+1v(s)μa(p(s)bμu(s)).

    If we apply the summation by parts formula in (11) to right hand side of (18), we have

    b1s=a+1(u(s)L1v(s)v(s)L1u(s))=b1s=a+1p(s)bμv(s)bμu(s)b1s=a+1p(s)bμu(s)bμv(s)=0,
    L1u,v=u,L1v.

    Hence, the proof completes.

    Theorem 3.2. Two eigenfunctions, u(t,λα) and v(t,λβ), of the equation (13) are orthogonal as λαλβ.

    Proof. Let λα and λβ are two different eigenvalues corresponds to eigenfunctions u(t) and v(t) respectively for the the equation (13),

    μa(p(t)bμu(t))+q(t)u(t)λαr(t)u(t)=0,μa(p(t)bμv(t))+q(t)v(t)λβr(t)v(t)=0.

    If we multiply last two equations by v(t) and u(t) respectively, subtract from each other and apply definite sum operator, owing to the self-adjointness of the operator L1, we have

    (λαλβ)b1s=a+1r(s)u(s)v(s)=0,

    since λαλβ,

    b1s=a+1r(s)u(s)v(s)=0,u(t),v(t)=0.

    Hence, the proof completes.

    Theorem 3.3. All eigenvalues of the equation (13) are real.

    Proof. Let λ=α+iβ, owing to the self-adjointness of the operator L1, we can write

    L1u(t),u(t)=u(t),L1u(t),λru(t),u(t)=u(t),λr(t)u(t),
    (λ¯λ)u(t),u(t)r=0.

    Since u(t),u(t)r0,

    λ=¯λ

    and hence β=0. The proof completes.

    Secondly, we consider the second case and give the following theorems and proofs;

    Theorem 3.4. DFSL operator L2 is self-adjoint.

    Proof.

    u(t)L2v(t)=u(t)Δμ(p(t)Δμ+v(t))+u(t)q(t)v(t), (19)
    v(t)L2u(t)=v(t)Δμ(p(t)Δμ+u(t))+v(t)q(t)u(t). (20)

    If (1920) is subtracted from each other

    u(t)L2v(t)v(t)L2u(t)=u(t)Δμ(p(t)Δμ+v(t))v(t)Δμ(p(t)Δμ+u(t))

    and definite sum operator from 0 to t to both side of the last equality is applied, we have

    ts=0(u(s)L1v(s)v(s)L2u(s))=ts=0u(s)Δμ(p(s)Δμ+v(s))ts=0v(s)Δμ(p(s)Δμ+u(s)). (21)

    If we apply the summation by parts formula in (12) to r.h.s. of (21), we get

    ts=0(u(s)L2v(s)v(s)L2u(s))=ts=0p(s)Δμ+v(s)Δμ+u(s)ts=0p(s)Δμ+u(s)Δμ+v(s)=0,
    L2u,v=u,L2v.

    Hence, the proof completes.

    Theorem 3.5. Two eigenfunctions, u(t,λα) and v(t,λβ), of the equation (14) are orthogonal as λαλβ. orthogonal.

    Proof. Let λα and λβ are two different eigenvalues corresponds to eigenfunctions u(t) and v(t) respectively for the the equation (14),

    Δμ(p(t)Δμ+u(t))+q(t)u(t)λαr(t)u(t)=0,Δμ(p(t)Δμ+v(t))+q(t)v(t)λβr(t)v(t)=0.

    If we multiply last two equations to v(t) and u(t) respectively, subtract from each other and apply definite sum operator, owing to the self-adjointness of the operator L2, we get

    (λαλβ)ts=0r(s)u(s)v(s)=0,

    since λαλβ,

    ts=0r(s)u(s)v(s)=0u(t),v(t)=0.

    So, the eigenfunctions are orthogonal. The proof completes.

    Theorem 3.6. All eigenvalues of the equation (14) are real.

    Proof. Let λ=α+iβ, owing to the self-adjointness of the operator L2

    L2u(t),u(t)=u(t),L2u(t),λr(t)u(t),u(t)=u(t),λr(t)u(t),
    (λ¯λ)u,ur=0.

    Since u,ur0,

    λ=¯λ,

    and hence β=0. The proof completes.

    Now, we consider the third case and give the following theorem and proof;

    Theorem 3.7.

    L3x(t)=μa(μax(t))+q(t)x(t)=λx(t),0<μ<1, (22)
    x(a+1)=c1,μax(a+1)=c2, (23)

    where p(t)>0, r(t)>0, q(t) is defined and real valued, λ is the spectral parameter. The sum representation of solution of the problem (22)(23) is found as follows,

    x(t)=c1[(1+q(a+1))Eλ,2μ,μ1(t,a)λEλ,2μ,2μ1(t,a)] (24)
    +c2[Eλ,2μ,2μ1(t,a)Eλ,2μ,μ1(t,a)]ts=a+1Eλ,2μ,2μ1(tρ(s)+a)q(s)x(s),

    where |λ|<1, |1s|<1, and |s|α>λ from Theorem 2.15.

    Proof. Let's use the Laplace transform of both side of the equation (22) by Theorem 2.13, and let q(t)x(t)=g(t),

    La+1{μa(μax)}(s)+La+1{g}(s)=λLa+1{x}(s),=sμLa+1{μax}(s)1sμ1sc2=λLa+1{x}(s)La+1{g}(s),=sμ(sμLa+1{x}(s)1sμ1sc1)1sμ1sc2=λLa+1{x}(s)La+1{g}(s),
    =La+1{x}(s)=1sμ1s1s2μλ(sμc1+c2)1s2μλLa+1{g}(s),

    from Lemma 2.12, we get

    La{x}(s)=c1(sμλs2μλ)1ss2μλ(11sLa{g}(s)11sg(a+1))+c2(1sμs2μλ). (25)

    Applying inverse Laplace transform to the equation (25), then we get representation of solution of the problem (22)(23),

    x(t)=c1((1+q(a+1))Eλ,2μ,μ1(t,a)λEλ,2μ,2μ1(t,a))+c2(Eλ,2μ,2μ1(t,a)Eλ,2μ,μ1(t,a))ts=a+1Eλ,2μ,2μ1(tρ(s)+a)q(s)x(s).

    Now, let us consider comparatively discrete fractional Sturm-Liouville (DFSL) problem, discrete Sturm-Liouville (DSL) problem, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem respectively as follows by taking q(t)=0,

    DFSL problem:

    μ0(μ0x(t))=λx(t), (26)
    x(1)=1, μax(1)=0, (27)

    and its analytic solution is as follows by the help of Laplace transform in Lemma 2.12

    x(t)=Eλ,2μ,μ1(t,0)λEλ,2μ,2μ1(t,0), (28)

    DSL problem:

    2x(t)=λx(t), (29)
    x(1)=1, x(1)=0, (30)

    and its analytic solution is as follows

    x(t)=12(1λ)t[(1λ)t(1+λ)(1+λ)(1+λ)t], (31)

    FSL problem:

     CDμ0+(Dμ0+x(t))=λx(t), (32)
    I1μ0+x(t)|t=0=1, Dμ0+x(t)|t=0=0, (33)

    and its analytic solution is as follows by the help of Laplace transform in Property 2.19 and 2.20

    x(t)=tμ1E2μ,μ(λt2μ), (34)

    CSL problem:

    x(t)=λx(t), (35)
    x(0)=1, x(0)=0, (36)

    and its analytic solution is as follows

    x(t)=coshtλ, (37)

    where the domain and range of function x(t) and Mittag-Leffler functions must be well defined. Note that we may show the solution of CSL problem can be obtained by taking μ1 in the solution of FSL problem and similarly, the solution of DSL problem can be obtained by taking μ1 in the solution of DFSL problem.

    Firstly, we compare the solutions of DFSL and DSL problems and from here we show that the solutions of DFSL problem converge to the solutions of DSL problem as μ1 in Figure 1 for discrete Mittag-Leffler function Ep,α,β(t,a)=1000k=0pk(ta)¯αk+βΓ(αk+β+1); let λ=0.01,

    Figure 1.  Comparison of solutions of DFSL–DSL problems.

    Secondly, we compare the solutions of DFSL, DSL, FSL and CSL problems for discrete Mittag-Leffler function Ep,α,β(t,a)=1000k=0pk(ta)¯αk+βΓ(αk+β+1). At first view, we observe the solution of DSL and CSL problems almost coincide in any order μ, and we observe the solutions of DFSL and FSL problem almost coincide in any order μ. However, we observe that all of the solutions of DFSL, DSL, FSL and CSL problems almost coincide to each other as μ1 in Figure 2. Let λ=0.01,

    Figure 2.  Comparison of solutions of DFSL–DSL–CSL–SL problems.

    Thirdly, we compare the solutions of DFSL problem (2223) with different orders, different potential functions and different eigenvalues for discrete Mittag-Leffler function Ep,α,β(t,a)=1000k=0pk(ta)¯αk+βΓ(αk+β+1) in the Figure 3;

    Figure 3.  Analysis of solutions of DFSL problem.

    Eigenvalues of DFSL problem (2223), correspond to some specific eigenfunctions for numerical values of discrete Mittag-Leffler function Ep,α,β(t,a)=ik=0pk(ta)¯αk+βΓ(αk+β+1), is given with different orders while q(t)=0 in Table 1;

    Table 1.  Approximations to three eigenvalues of the problem (22–23).
    i λ1,i λ2,i λ3,i λ1,i λ2,i λ3,i λ1,i λ2,i λ3,i
    750 0.992 0.982 0.057 0.986 0.941 0.027 0.483 0.483 0
    1000 0.989 0.977 0.057 0.990 0.954 0.027 0.559 0.435 0
    2000 0.996 0.990 0.057 0.995 0.978 0.027 0.654 0.435 0
    x(5),μ=0.5 x(10),μ=0.9 x(2000),μ=0.1
    i λ1,i λ2,i λ3,i λ1,i λ2,i λ3,i λ1,i λ2,i λ3,i
    750 0.951 0.004 0 0.868 0.793 0.0003 0.190 3.290×106 0
    1000 0.963 0.004 0 0.898 0.828 0.0003 0.394 3.290×106 0
    2000 0.981 0.004 0 0.947 0.828 0.0003 0.548 3.290×106 0
    x(20),μ=0.5 x(100),μ=0.9 x(1000),μ=0.7
    i λ1,i λ2,i λ3,i λ1,i λ2,i λ3,i λ1,i λ2,i λ3,i
    750 0.414 9.59×107 0 0.853 0.0003 0 0.330 4.140×106 0
    1000 0.478 9.59×107 0 0.887 0.0003 0 0.375 4.140×106 0
    2000 0.544 9.59×107 0 0.940 0.0003 0 0.361 4.140×106 0
    x(1000),μ=0.3 x(100),μ=0.8 x(1000),μ=0.9
    i λ1,i λ2,i λ3,i λ1,i λ2,i λ3,i λ1,i λ2,i λ3,i
    750 0.303 3.894×106 0 0.192 0.066 0 0.985 0.955 0.026
    1000 0.335 3.894×106 0 0.197 0.066 0 0.989 0.941 0.026
    2000 0.399 3.894×106 0 0.289 0.066 0 0.994 0.918 0.026
    x(1000),μ=0.8 x(2000),μ=0.6 x(10),μ=0.83

     | Show Table
    DownLoad: CSV

    Finally, we give the solutions of DFSL problem (2223) with different orders, different potential functions and different eigenvalues for discrete Mittag-Leffler function Ep,α,β(t,a)=100k=0pk(ta)¯αk+βΓ(αk+β+1) in Tables 24;

    Table 2.  q(t)=0,λ=0.2.
    x(t) μ=0.1 μ=0.2 μ=0.5 μ=0.7 μ=0.9
    x(1) 1 1 1 1 1
    x(2) 0.125 0.25 0.625 0.875 1.125
    x(3) 0.075 0.174 0.624 1.050 1.575
    x(5) 0.045 0.128 0.830 1.968 4.000
    x(7) 0.0336 0.111 1.228 4.079 11.203
    x(9) 0.0274 0.103 1.878 8.657 31.941
    x(12) 0.022 0.098 3.622 27.05 154.56
    x(15) 0.0187 0.0962 7.045 84.75 748.56
    x(16) 0.0178 0.0961 8.800 124.04 1266.5
    x(18) 0.0164 0.0964 13.737 265.70 3625.6
    x(20) 0.0152 0.0972 21.455 569.16 10378.8

     | Show Table
    DownLoad: CSV
    Table 3.  λ=0.01,μ=0.45.
    x(t) q(t)=1 q(t)=t q(t)=t
    x(1) 1 1 1
    x(2) 0.2261 0.1505 0.1871
    x(3) 0.1138 0.0481 0.0767
    x(5) 0.0518 0.0110 0.0252
    x(7) 0.0318 0.0043 0.0123
    x(9) 0.0223 0.0021 0.0072
    x(12) 0.0150 0.0010 0.0039
    x(15) 0.0110 0.0005 0.0025
    x(16) 0.0101 0.0004 0.0022
    x(18) 0.0086 0.0003 0.0017
    x(20) 0.0075 0.0002 0.0014

     | Show Table
    DownLoad: CSV
    Table 4.  λ=0.01,μ=0.5.
    x(t) q(t)=1 q(t)=t q(t)=t
    x(1) 1 1 1
    x(2) 0.2261 0.1505 0.1871
    x(3) 0.1138 0.0481 0.0767
    x(5) 0.0518 0.0110 0.0252
    x(7) 0.0318 0.0043 0.0123
    x(9) 0.0223 0.0021 0.0072
    x(12) 0.0150 0.0010 0.0039
    x(15) 0.0110 0.0005 0.0025
    x(16) 0.0101 0.0004 0.0022
    x(18) 0.0086 0.0003 0.0017
    x(20) 0.0075 0.0002 0.0014

     | Show Table
    DownLoad: CSV

    Now, let's consider the problems together DFSL (26)(27), DSL (29)(30), FSL (32)(33) and CSL (35)(36). Eigenvalues of these problems are the roots of the following equation

    x(35)=0.

    Thus, if we apply the solutions (28), (31), (34) and (37) of these four problems to the equation above respectively, we can find the eigenvalues of these problems for the orders μ=0.9 and μ=0.99 respectively in Table 5, and Table 6,

    Table 5.  μ=0.9.
    λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10
    DFSL 0.904 0.859 0.811 0.262 0.157 0.079 0.029 0.003 0.982
    FSL 0.497 0.383 0.283 0.196 0.124 0.066 0.026 0.003 0 ...
    DSL 1.450 0.689 0.469 0.310 0.194 0.112 0.055 0.019 0.002
    CSL 0.163 0.128 0.098 0.072 0.050 0.032 0.008 0.002 0

     | Show Table
    DownLoad: CSV
    Table 6.  μ=0.99.
    λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10
    DFSL 0.866 0.813 0.200 0.115 0.057 0.020 0.002 0 0.982
    FSL 0.456 0.343 0.246 0.165 0.100 0.051 0.018 0.002 0 ...
    DSL 1.450 0.689 0.469 0.310 0.194 0.112 0.055 0.019 0.002 ...
    CSL 0.163 0.128 0.098 0.072 0.050 0.032 0.008 0.002 0

     | Show Table
    DownLoad: CSV

    In here, we observe that these four problems have real eigenvalues under different orders μ=0.9 and μ=0.99, hence we can find eigenfunctions putting these eigenvalues into the four solutions. Furthermore, as the order changes, we can see that eigenvalues change for DFSL problems.

    We consider firstly discrete fractional Sturm-Liouville (DFSL) operators with nabla Riemann-Liouville and delta Grünwald-Letnikov fractional operators and we prove self-adjointness of the DFSL operator and fundamental spectral properties. However, we analyze DFSL problem, discrete Sturm-Liouville (DSL) problem, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem by taking q(t)=0 in applications. Firstly, we compare the solutions of DFSL and DSL problems and we observe that the solutions of DFSL problem converge to the solutions of DSL problem when μ1 in Fig. 1. Secondly, we compare the solutions of DFSL, DSL, FSL and CSL problems in Fig. 2. At first view, we observe the solutions of DSL and CSL problems almost coincide with any order μ, and we observe the solutions of DFSL and FSL problem almost coincide with any order μ. However, we observe that all of solutions of DFSL, DSL, FSL and CSL problems almost coincide with each other as μ1. Thirdly, we compare the solutions of DFSL problem (2223) with different orders, different potential functions and different eigenvalues in Fig. 3.

    Eigenvalues of DFSL problem (2223) corresponded to some specific eigenfunctions is given with different orders in Table 1. We give the eigenfunctions of DFSL problem (2223) with different orders, different potential functions and different eigenvalues in Table 2, Table 3 and Table 4.

    In Section 4.1, we consider DFSL, DSL, FSL and CSL problems together and thus, we can compare the eigenvalues of these four problems in Table 5 and Table 6 for different values of μ. We observe that these four problems have real eigenvalues under different values of μ, from here we can find eigenfunctions corresponding eigenvalues. Moreover, when the order change, eigenvalues change for DFSL problems.

    Consequently, important results in spectral theory are given for discrete Sturm-Liouville problems. These results will lead to open gates for the researchers studied in this area. Especially, representation of solution will be practicable for future studies. It worths noting that visual results both will enable to be understood clearly by readers and verify the results to the integer order discrete case while the order approaches to one.

    This paper includes a part of Ph.D. thesis data of Ramazan OZARSLAN.

    The authors declare no conflict of interest.


    Acknowledgments



    We acknowledge funding from the Novo Nordisk Fonden, within the framework of the Fermentation Based Biomanufacturing Initiative (Grant number NNF17SA0031362) and the AIM-Bio project (Grant number NNF19SA0057794), for supporting this work.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] Carlson R (2016) Estimating the biotech sector's contribution to the US economy. Nat Biotechnol 34: 247-255. doi: 10.1038/nbt.3491
    [2] Parapouli M, Vasileiadis A, Afendra AS, et al. (2020) Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology 6: 1-31. doi: 10.3934/microbiol.2020001
    [3] Baeshen NA, Baeshen MN, Sheikh A, et al. (2014) Cell factories for insulin production. Microb Cell Fact 13: 1-9. doi: 10.1186/s12934-014-0141-0
    [4] Hu W, Li WJ, Yang HQ, et al. (2019) Current strategies and future prospects for enhancing microbial production of citric acid. Appl Microbiol Biotechnol 103: 201-209. doi: 10.1007/s00253-018-9491-6
    [5] Park HS, Jun SC, Han KH, et al. (2017) Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv Appl Microbiol 100: 161-202. doi: 10.1016/bs.aambs.2017.03.001
    [6] Fang H, Li D, Kang J, et al. (2018) Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12Nat Commun 9: 4917. doi: 10.1038/s41467-018-07412-6
    [7] Zhao C, Zhang Y, Li Y (2019) Production of fuels and chemicals from renewable resources using engineered Escherichia coliBiotechnol Adv 37: 107402. doi: 10.1016/j.biotechadv.2019.06.001
    [8] Hong KK, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69: 2671-2690. doi: 10.1007/s00018-012-0945-1
    [9] Pontrelli S, Chiu TYC, Lan EI, et al. (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50: 16-46. doi: 10.1016/j.ymben.2018.04.008
    [10] Thorwall S, Schwartz C, Chartron JW, et al. (2020) Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol 16: 113-121. doi: 10.1038/s41589-019-0452-x
    [11] Rebello S, Abraham A, Madhavan A, et al. (2018) Non-conventional yeast cell factories for sustainable bioprocesses. FEMS Microbiol Lett 365: fny222.
    [12] Löbs AK, Schwartz C, Wheeldon I (2017) Genome and metabolic engineering in non-conventional yeasts: current advances and applications. Syn Syst Biotechnol 2: 198-207. doi: 10.1016/j.synbio.2017.08.002
    [13] Jensen NB, Strucko T, Kildegaard KR, et al. (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiaeFEMS Yeast Res 14: 238-248. doi: 10.1111/1567-1364.12118
    [14] Vernis L, Poljak L, Chasles M, et al. (2001) Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolyticaJ Mol Biol 305: 203-217. doi: 10.1006/jmbi.2000.4300
    [15] Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79: 181-211. doi: 10.1146/annurev.biochem.052308.093131
    [16] Flagfeldt DB, Siewers V, Huang L, et al. (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiaeYeast 26: 545-551. doi: 10.1002/yea.1705
    [17] Schwartz C, Shabbir-Hussain M, Frogue K, et al. (2017) Standardized markerless gene integration for pathway engineering in Yarrowia lipolyticaACS Synth Biol 6: 402-409. doi: 10.1021/acssynbio.6b00285
    [18] Jinek M, Chylinski K, Fonfara I, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821. doi: 10.1126/science.1225829
    [19] Liu Z, Liang Y, Ang EL, et al. (2017) A new era of genome integration-simply cut and paste!. ACS Synth Biol 6: 601-609. doi: 10.1021/acssynbio.6b00331
    [20] Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science 277: 1259-1260. doi: 10.1126/science.277.5330.1259
    [21] Liu HH, Ji XJ, Huang H (2015) Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol Adv 33: 1522-1546. doi: 10.1016/j.biotechadv.2015.07.010
    [22] Xie D (2017) Integrating cellular and bioprocess engineering in the non-conventional yeast Yarrowia lipolytica for biodiesel production: A review. Front Bioeng Biotechnol 5: 65. doi: 10.3389/fbioe.2017.00065
    [23] Ledesma-Amaro R, Nicaud JM (2016) Metabolic engineering for expanding the substrate range of Yarrowia lipolyticaTrends Biotechnol 34: 798-809. doi: 10.1016/j.tibtech.2016.04.010
    [24] Jun S, XiaoFeng J, Yuan Z, et al. (2018) Expression, purification, crystallization, and diffraction analysis of a selenomethionyl lipase Lip8 from Yarrowia lipolyticaPrep Biochem Biotechnol 48: 213-217. doi: 10.1080/10826068.2016.1188316
    [25] Carly F, Steels S, Telek S, et al. (2018) Identification and characterization of EYD1, encoding an erythritol dehydrogenase in Yarrowia lipolytica and its application to bioconvert erythritol into erythrulose. Bioresour Technol 247: 963-969. doi: 10.1016/j.biortech.2017.09.168
    [26] Qiao K, Wasylenko TM, Zhou K, et al. (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35: 173-177. doi: 10.1038/nbt.3763
    [27] Dujon B, Sherman D, Fischer G, et al. (2004) Genome evolution in yeasts. Nature 430: 35-44. doi: 10.1038/nature02579
    [28] Fickers P, Le Dall MT, Gaillardin C, et al. (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolyticaJ Microbiol Methods 55: 727-737. doi: 10.1016/j.mimet.2003.07.003
    [29] Verbeke J, Beopoulos A, Nicaud JM (2013) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett 35: 571-576. doi: 10.1007/s10529-012-1107-0
    [30] Wang HJ, Le Dall MT, Wach Y, et al. (1999) Evaluation of acylcoenzyme A oxidase (Aox) isozyme function in the n-alkane- assimilating yeast Yarrowia lipolyticaJ Bacteriol 181: 5140-5148. doi: 10.1128/JB.181.17.5140-5148.1999
    [31] Gao S, Tong Y, Wen Z, et al. (2016) Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J Ind Microbiol Biotechnol 43: 1085-1093. doi: 10.1007/s10295-016-1789-8
    [32] Schwartz CM, Shabbir-Hussain M, Blenner M, et al. (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolyticaACS Synth Biol 5: 356-359. doi: 10.1021/acssynbio.5b00162
    [33] Yaguchi A, Rives D, Blenner M (2017) New kids on the block: emerging oleaginous yeast of biotechnological importance. AIMS Microbiology 3: 227-247. doi: 10.3934/microbiol.2017.2.227
    [34] Moon NJ, Hammond EG, Glatz BA (1978) Conversion of cheese whey and whey permeate to oil and single-cell protein. J Dairy Sci 61: 1537-1547. doi: 10.3168/jds.S0022-0302(78)83762-X
    [35] Bednarski W, Leman J, Tomasik J (1986) Utilization of beet molasses and whey for fat biosynthesis by a yeast. Agr Wastes 18: 19-26. doi: 10.1016/0141-4607(86)90104-6
    [36] Christophe G, Deo JL, Kumar V, et al. (2012) Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatusAppl Biochem Biotechnol 167: 1270-1279. doi: 10.1007/s12010-011-9507-5
    [37] Yu X, Zheng Y, Dorgan KM, et al. (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102: 6134-6140. doi: 10.1016/j.biortech.2011.02.081
    [38] Zheng Y, Chi Z, Ahring BK, et al. (2012) Oleaginous yeast Cryptococcus curvatus for biofuel production: Ammonia's effect. Biomass Bioenergy 37: 114-121. doi: 10.1016/j.biombioe.2011.12.022
    [39] Zhanga X, Chena J, Wu D, et al. (2019) Economical lipid production from Trichosporon oleaginosus via dissolved oxygen adjustment and crude glycerol addition. Bioresour Technol 273: 288-296. doi: 10.1016/j.biortech.2018.11.033
    [40] Chen J, Zhang X, Drogui P, et al. (2018) The pH-based fed-batch for lipid production from Trichosporon oleaginosus with crude glycerol. Bioresour Technol 259: 237-243. doi: 10.1016/j.biortech.2018.03.045
    [41] Yaguchi A, Robinson A, Mihealsick E, et al. (2017) Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous. Microb Cell Fact 16: 206. doi: 10.1186/s12934-017-0820-8
    [42] Kourist R, Bracharz F, Lorenzen J, et al. (2015) Genomics and transcriptomics analyses of the oil-accumulating basidiomycete yeast Trichosporon oleaginosus: insights into substrate utilization and alternative evolutionary trajectories of fungal mating systems. MBio 6: e0091815. doi: 10.1128/mBio.00918-15
    [43] Görner C, Redai V, Bracharz F, et al. (2016) Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chem 18: 2037-2046. doi: 10.1039/C5GC01767J
    [44] Nurcholis M, Lertwattanasakul N, Rodrussamee N, et al. (2020) Integration of comprehensive data and biotechnological tools for industrial applications of Kluyveromyces marxianusAppl Microbiol Biotechnol 104: 475-488. doi: 10.1007/s00253-019-10224-3
    [45] Radecka D, Mukherjee V, Mateo RQ, et al. (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15: fov053. doi: 10.1093/femsyr/fov053
    [46] Nonklang S, Abdel-Banat BMA, Cha-aim K, et al. (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3–1042. Appl Environ Microb 74: 7514-7521. doi: 10.1128/AEM.01854-08
    [47] Rouwenhorst RJ, Visser LE, Baan AA, et al. (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microb 54: 1131-1137. doi: 10.1128/AEM.54.5.1131-1137.1988
    [48] Martins DBG, de Souza CG, Simões DA, et al. (2002) The betagalactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr Microbiol 44: 379-382. doi: 10.1007/s00284-001-0052-2
    [49] Kosaka T, Lertwattanasakul N, Rodrussamee N, et al. (2018) Potential of thermotolerant ethanologenic yeasts isolated from ASEAN countries and their application in high-temperature fermentation. Fuel Ethanol Production from Sugarcane London: IntechOpen, 121-154.
    [50] Fonseca GG, Heinzle E, Wittmann C, et al. (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79: 339-354. doi: 10.1007/s00253-008-1458-6
    [51] Kim TY, Lee SW, Oh MK (2014) Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianusEnzym Microb Technol 61: 44-47. doi: 10.1016/j.enzmictec.2014.04.011
    [52] Jeong H, Lee D-H, Kim SH, et al. (2012) Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var marxianus KCTC 17555. Eukaryot Cell 11: 1584-1585. doi: 10.1128/EC.00260-12
    [53] Heo P, Yang TJ, Chung SC, et al. (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J Biotechnol 167: 323-325. doi: 10.1016/j.jbiotec.2013.06.020
    [54] Lertwattanasakul N, Kosaka T, Hosoyama A, et al. (2015) Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnol Biofuels 8: 47. doi: 10.1186/s13068-015-0227-x
    [55] Schabort DTWP, Letebele PK, Steyn L, et al. (2016) Differential RNA-seq, multi-network analysis and metabolic regulation analysis of Kluyveromyces marxianus reveals a compartmentalised response to xylose. PLoS One 11: e0156242. doi: 10.1371/journal.pone.0156242
    [56] Rollero S, Bloem A, Ortiz-Julien A, et al. (2019) A comparison of the nitrogen metabolic networks of Kluyveromyces marxianus and Saccharomyces cerevisiaeEnviron Microbiol 21: 4076-4091. doi: 10.1111/1462-2920.14756
    [57] Pentjuss A, Stalidzans E, Liepins J, et al. (2017) Model-based biotechnological potential analysis of Kluyveromyces marxianus central metabolism. J Ind Microbiol Biotechnol 44: 1177-1190. doi: 10.1007/s10295-017-1946-8
    [58] Marcišauskas S, Ji B, Nielsen J (2019) Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. BMC Bioinformatics 20: 551. doi: 10.1186/s12859-019-3134-5
    [59] Sakihama Y, Hidese R, Hasunuma T, et al. (2019) Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions. Sci Rep 9: 5319. doi: 10.1038/s41598-019-41863-1
    [60] Nambu-Nishida Y, Nishida K, Hasunuma T, et al. (2017) Development of a comprehensive set of tools for genome engineering in a cold- and thermo-tolerant Kluyveromyces marxianus yeast strain. SciRep 7: 8993.
    [61] Löbs AK, Schwartz C, Thorwal S, et al. (2018) Highly multiplexed CRISPRi repression of respiratory functions enhances mitochondrial localized ethyl acetate biosynthesis in Kluyveromyces marxianusACS Synth Biol 7: 2647-2655. doi: 10.1021/acssynbio.8b00331
    [62] Rajkumar AS, Varela JA, Juergens H, et al. (2019) Biological parts for Kluyveromyces marxianus synthetic biology. Front Bioeng Biotechnol 7: 97. doi: 10.3389/fbioe.2019.00097
    [63] Echeverrigaray S, Randon M, daSilva K, et al. (2013) Identification and characterization of non-saccharomyces spoilage yeasts isolated from Brazilian wines. World J Microb Biot 29: 1019-1027. doi: 10.1007/s11274-013-1265-9
    [64] Rozpedowska E, Hellborg L, Ishchuk OP, et al. (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2: 302. doi: 10.1038/ncomms1305
    [65] Piskur J, Ling Z, Marcet-Houben M, et al. (2012) The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. Int J Food Microbiol 157: 202-209. doi: 10.1016/j.ijfoodmicro.2012.05.008
    [66] Conterno L, Joseph CML, Arvik TJ, et al. (2006) Genetic and physiological characterization of Brettanomyces bruxellensis strains isolated from wines. Am J Enol Viticult 57: 139-147.
    [67] Wijsman MR, van Dijken JP, van Kleeff BHA, et al. (1984) Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custers effect). Anton Leeuw 50: 183-192. doi: 10.1007/BF00400180
    [68] Brandam C, Castro-Martínez C, Délia ML, et al. (2008) Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects. Can J Microbiol 54: 11-18. doi: 10.1139/W07-126
    [69] Taillandier P, Lai QP, Julien-Ortiz A, et al. (2014) Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: influence of inoculation and nitrogen content. World J Microb Biot 30: 1959-1967. doi: 10.1007/s11274-014-1618-z
    [70] Blomqvist J, Passoth V (2015) Dekkera bruxellensis--spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness. FEMS Yeast Res 15: fov021. doi: 10.1093/femsyr/fov021
    [71] Woolfit M, Rozpedowska E, Piskur J, et al. (2007) Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensisEukaryot Cell 6: 721-733. doi: 10.1128/EC.00338-06
    [72] Curtin CD, Borneman AR, Chambers PJ, et al. (2012) Denovo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499. PLoS One 7: e33840. doi: 10.1371/journal.pone.0033840
    [73] Miklenic M, Stafa A, Bajic A, et al. (2013) Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with nonhomologous DNA. J Microbiol Biotechnol 23: 674-680. doi: 10.4014/jmb.1211.11047
    [74] Tiukova IA, Petterson ME, Tellgren-Roth C, et al. (2013) Transcriptome of the alternative ethanol production strain Dekkera bruxellensis CBS 11270 in sugar limited, low oxygen cultivation. PLoS One 8: e58455. doi: 10.1371/journal.pone.0058455
    [75] Oberoi HS, Babbar N, Sandhu SK, et al. (2012) Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biot 39: 557-566. doi: 10.1007/s10295-011-1060-2
    [76] Schnierda T, Bauer FF, Divol B, et al. (2014) Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts. Lett Appl Microbiol 58: 478-485. doi: 10.1111/lam.12217
    [77] Daniel HM, Vrancken G, Takrama JF, et al. (2009) Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res 9: 774-783. doi: 10.1111/j.1567-1364.2009.00520.x
    [78] Kitagawa T, Tokuhiro K (2010) Construction of a β-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalisAppl Microbiol Biot 87: 1841-1853. doi: 10.1007/s00253-010-2629-9
    [79] Kwon YJ, Ma A-Z, Li Q, et al. (2011) Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkia orientalisBioresour Technol 102: 8099-8104. doi: 10.1016/j.biortech.2011.06.035
    [80] Dandi ND, Dandi BN, Chaudhari AB (2013) Bioprospecting of thermos and osmo-tolerant fungi from mango pulp-peel compost for bioethanol production. Anton Leeuw 103: 723-736. doi: 10.1007/s10482-012-9854-4
    [81] Chan GF, Gan HM, Ling HL, et al. (2012) Genome sequence of Pichia kudriavzevii M12, a potential producer of bioethanol and phytase. Eukaryot Cell. 11: 1300-1301. doi: 10.1128/EC.00229-12
    [82] Finley KR, Huryta JM, Mastel BM, et al. (2013) Compositions and methods for succinate production. US patent 2013.
    [83] Rush BJ, Fosmer AM (2014) Methods for succinate production. US patent 2014.
    [84] Prista C, Michán C, Miranda IM, et al. (2016) The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 33: 523-533. doi: 10.1002/yea.3177
    [85] Almagro A, Prista C, Castro S, et al. (2000) Effects of salt on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56: 191-197. doi: 10.1016/S0168-1605(00)00220-8
    [86] Papouskova K, Sychrova H (2007) The co-action of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells. Int J Food Microbiol 118: 1-7. doi: 10.1016/j.ijfoodmicro.2007.04.005
    [87] Navarrete C, Siles A, Martínez JL, et al. (2009) Oxidative stress sensitivity in Debaryomyces hanseniiFEMS Yeast Res 9: 582-590. doi: 10.1111/j.1567-1364.2009.00500.x
    [88] Gustafsson L, Norkrans B (1976) On the mechanism of salt tolerance: production of glycerol and heat during growth of Debaryomyces hanseniiArch Microbiol 110: 177-183. doi: 10.1007/BF00690226
    [89] Adler L, Blomberg A, Nilsson A (1985) Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hanseniiJ Bacteriol 162: 300-306. doi: 10.1128/JB.162.1.300-306.1985
    [90] Breuer U, Harms H (2006) Debaryomyces hansenii—an extremophilic yeast with biotechnological potential. Yeast 23: 415-437. doi: 10.1002/yea.1374
    [91] Ramfrez-Orozco M, Hernandez-Saavedra N, Ochoa JL (2001) Debaryomyces hansenii growth in nonsterile seawater ClO2-peptone-containing medium. Can J Microbiol 47: 676-679. doi: 10.1139/w01-056
    [92] Ricaurte ML, Govind NS (1999) Construction of plasmid vectors and transformation of the marine yeast Debaryomyces hanseniiMar Biotechnol 1: 15-19. doi: 10.1007/PL00011745
    [93] Voronovsky A, Abbas C, Fayura L, et al. (2002) Development of a transformation system for the flavinogenic yeast. FEMS Yeast Res 2: 381-388.
    [94] Terentiev Y, Pico AH, Boer E, et al. (2004) A wide-range integrative yeast expression vector system based on Arxula adeninivorans-derived elements. J Ind Microbiol Biotechnol 31: 223-228. doi: 10.1007/s10295-004-0142-9
    [95] Dmytruk KV, Voronovsky AY, Sibirny AA (2006) Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet 50: 183-191. doi: 10.1007/s00294-006-0083-0
    [96] Minhas A, Biswas D, Mondal AK (2009) Development of host and vector for high-efficiency transformation and gene disruption in Debaryomyces hanseniiFEMS Yeast Res 9: 95-102. doi: 10.1111/j.1567-1364.2008.00457.x
    [97] Rhee SJ, Lee CYJ, Kim KK, et al. (2003) Comparison of the traditional (Samhaeju) and industrial (Chongju) rice wine brewing in Korea. Food Sci Biotechnol 12: 242-247.
    [98] Sahm H (1977) Metabolism of methanol by yeast. Adv Biochem Eng 6: 77-103.
    [99] Hansen H, Hollenberg CP (1996) Hansenula polymorpha (Pichia angusta). Nonconventional Yeasts in Biotechnology Heidelberg: Springer, 293-311. doi: 10.1007/978-3-642-79856-6_9
    [100] Voronovsky AY, Rohulya OV, Abbas CA, et al. (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11: 234-242. doi: 10.1016/j.ymben.2009.04.001
    [101] Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorphaFEMS Yeast Res 4: 157-164. doi: 10.1016/S1567-1356(03)00146-6
    [102] Dmytruk K, Kurylenko O, Ruchala J, et al. (2017) Development of the thermotolerant methylotrophic yeast Hansenula polymorpha as efficient ethanol producer. Yeast Diversity in Human Welfare Singapore: Springer, 257-282. doi: 10.1007/978-981-10-2621-8_11
    [103] van der Klei IJ, Yurimoto H, Sakai Y, et al. (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Bba-Mol Cell Res 1763: 1453-1462.
    [104] Siverio JM (2002) Assimilation of nitrate by yeasts. Fems Microbiol Rev 26: 277-284. doi: 10.1111/j.1574-6976.2002.tb00615.x
    [105] Gidijala L, Kiel JA, Douma RD, et al. (2009) An engineered yeast efficiently secreting penicillin. PLoS One 4: e8317. doi: 10.1371/journal.pone.0008317
    [106] Kunze G, Kang HA, Gellissen G, et al. (2009) Hansenula polymorpha (Pichia angusta): biology and applications. Yeast Biotechnology: Diversity and Applications Dordrecht: Springer, 47-64. doi: 10.1007/978-1-4020-8292-4_3
    [107] Brierley RA, Davis GR, Holtz GC, et al. (1997) Production of insulin-like growth factor-1 in methylotrophic yeast cells. US patent 1997.
    [108] Janowicz ZA, Melber K, Merckelbach A, et al. (1991) Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorphaYeast 7: 431-443. doi: 10.1002/yea.320070502
    [109] Kulkarni PS, Raut SK, Patki PS, et al. (2006) Immunogenicity of a new, low-cost recombinant hepatitis B vaccine derived from Hansenula polymorpha in adults. Vaccine 24: 3457-3460. doi: 10.1016/j.vaccine.2006.02.008
    [110] Ramenazi-Rad M, Hollenberg CP, Lauber J, et al. (2003) The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res 4: 207-215. doi: 10.1016/S1567-1356(03)00125-9
    [111] Krasovska O, Stasyk OG, Nahorny VO, et al. (2007) Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression. Biotechnol Bioeng 97: 858-870. doi: 10.1002/bit.21284
    [112] Saraya R, Krikken AM, Kiel JAKW, et al. (2012) Novel genetic tools for Hansenula polymorphaFEMS Yeast Res 12: 271-278. doi: 10.1111/j.1567-1364.2011.00772.x
    [113] Heo JH, Hong WK, Cho EY, et al. (2003) Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HAS reporter gene. FEMS Yeast Res 4: 175-184. doi: 10.1016/S1567-1356(03)00150-8
    [114] Bogdanova AI, Agaphonov MO, Ter-Avanesyan MD (1995) Plasmid reorganization during integrative transformation in Hansenula polymorphaYeast 11: 343-353. doi: 10.1002/yea.320110407
    [115] Numamoto M, Maekawa H, Kaneko Y (2017) Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorphaJ Biosci Bioeng 124: 487-492. doi: 10.1016/j.jbiosc.2017.06.001
    [116] Blazeck J, Hill A, Liu L, et al. (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5: 3131. doi: 10.1038/ncomms4131
    [117] Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15: 1-9. doi: 10.1016/j.ymben.2012.08.007
    [118] Förster A, Aurich A, Mauersberger S, et al. (2007) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolyticaAppl Microbiol Biotechnol 75: 1409-1417. doi: 10.1007/s00253-007-0958-0
    [119] Mironczuk AM, Furgala J, Rakicka M, et al. (2014) Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J Ind Microbiol Biotechnol 41: 57-64. doi: 10.1007/s10295-013-1380-5
    [120] Yovkova V, Otto C, Aurich A, et al. (2014) Engineering the α-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolyticaAppl Microbiol Biotechnol 98: 2003-2013. doi: 10.1007/s00253-013-5369-9
    [121] Matthäus F, Ketelhot M, Gatter M, et al. (2014) Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolyticaAppl Environ Microbiol 80: 1660-1669. doi: 10.1128/AEM.03167-13
    [122] Xue Z, Sharpe PL, Hong SP, et al. (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolyticaNat Biotechnol 31: 734-740. doi: 10.1038/nbt.2622
    [123] Cheon Y, Kim JS, Park JB, et al. (2014) A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianusJ Biotechnol 182: 30-36. doi: 10.1016/j.jbiotec.2014.04.010
    [124] Ramirez-Zavala B, Mercado-Flores Y, Hernandez-Rodriguez C, et al. (2004) Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianusFEMS Microbiol Lett 235: 369-375. doi: 10.1111/j.1574-6968.2004.tb09612.x
    [125] Ramirez-Zavala B, Mercado-Flores Y, Hernandez-Rodriguez C, et al. (2004) Purification and characterization of a serine carboxypeptidase from Kluyveromyces marxianusInt J Food Microbiol 91: 245-252. doi: 10.1016/S0168-1605(03)00409-4
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8431) PDF downloads(581) Cited by(23)

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog