Research article

Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an Antarctic Pseudomonas isolate

  • Received: 07 July 2017 Accepted: 11 August 2017 Published: 15 August 2017
  • Cold-adapted enzymes are generally derived from psychrophilic microorganisms and have features that make them very attractive for industrial and biotechnological purposes. In this work, we identified a 50 kDa extracellular protease (MP10) from the Antarctic isolate Pseudomonas sp. AU10. The enzyme was produced by recombinant DNA technology, purified using immobilized metal affinity chromatography and partially characterized. MP10 is an alkaline thermosensitive serine-metallo protease with optimal activity at pH 8.0 and 40 ℃, in the presence of 1.5 mM Ca2+. MP10 showed 100% residual activity and stability (up to 60 min) when incubated with 7% of non-ionic surfactants (Triton X-100, Tween-80 and Tween-20) and 1.5% of the oxidizing agent hydrogen peroxide. The 3D MP10 structure was predicted and compared with the crystal structure of mesophilic homologous protease produced by Pseudomonas aeruginosa PA01 (reference strain) and other proteases, showing similarity in surface area and volume of proteins, but a significantly higher surface pocket area and volume of MP10. The observed differences presumably may explain the enhanced activity of MP10 for substrate binding at low temperatures. These results give insight to the potential use of MP10 in developing new biotechnologically processes active at low to moderate temperatures, probably with focus in the detergent industry.

    Citation: Natalia Fullana, Victoria Braña, Juan José Marizcurrena, Danilo Morales, Jean-Michel Betton, Mónica Marín, Susana Castro-Sowinski. Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an Antarctic Pseudomonas isolate[J]. AIMS Bioengineering, 2017, 4(3): 386-401. doi: 10.3934/bioeng.2017.3.386

    Related Papers:

    [1] Silpak Biswas, Rintu Das, Ena Ray Banerjee . Role of free radicals in human inflammatory diseases. AIMS Biophysics, 2017, 4(4): 596-614. doi: 10.3934/biophy.2017.4.596
    [2] Andrew K. Martusevich, Alexander G. Galka, Konstantin A. Karuzin, Alexander N. Tuzhilkin, Svetlana L. Malinovskaya . Cold helium plasma as a modifier of free radical processes in the blood: in vitro study. AIMS Biophysics, 2021, 8(1): 34-40. doi: 10.3934/biophy.2021002
    [3] Nily Dan . Bilayer degradation in reactive environments. AIMS Biophysics, 2017, 4(1): 33-42. doi: 10.3934/biophy.2017.1.33
    [4] Mikayel Ginovyan, Svetlana Hovhannisyan, Hayarpi Javrushyan, Gohar Sevoyan, Zaruhi Karabekian, Narine Zakaryan, Naira Sahakyan, Nikolay Avtandilyan . Screening revealed the strong cytotoxic activity of Alchemilla smirnovii and Hypericum alpestre ethanol extracts on different cancer cell lines. AIMS Biophysics, 2023, 10(1): 12-22. doi: 10.3934/biophy.2023002
    [5] Domenico Lombardo . Scientific advance in biomembranes and biomimetic membranes of biophysical interest. AIMS Biophysics, 2022, 9(4): 341-345. doi: 10.3934/biophy.2022028
    [6] Gérald Gaibelet, François Tercé, Sophie Allart, Chantal Lebrun, Xavier Collet, Nadège Jamin, Stéphane Orlowski . Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell. AIMS Biophysics, 2017, 4(1): 121-151. doi: 10.3934/biophy.2017.1.121
    [7] Daniela Meleleo, Cesare Sblano . Influence of cholesterol on human calcitonin channel formation. Possible role of sterol as molecular chaperone. AIMS Biophysics, 2019, 6(1): 23-38. doi: 10.3934/biophy.2019.1.23
    [8] Mostean Bahreinipour, Hajar Zarei, Fariba Dashtestani, Jamal Rashidiani, Khadijeh Eskandari, Seyed Ali Moussavi Zarandi, Susan Kabudanian Ardestani, Hiroshi Watabe . Radioprotective effect of nanoceria and magnetic flower-like iron oxide microparticles on gamma radiation-induced damage in BSA protein. AIMS Biophysics, 2021, 8(2): 124-142. doi: 10.3934/biophy.2021010
    [9] Marcelina Cardoso Dos Santos, Cyrille Vézy, Hamid Morjani, Rodolphe Jaffol . Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy. AIMS Biophysics, 2017, 4(3): 438-450. doi: 10.3934/biophy.2017.3.438
    [10] Thi Minh Ngoc Ta, Cynthia Romero-Guido, Thi Hanh Phan, Hai Dang Tran, Hanh Tam Dinh, Yves Waché . Encapsulation of flavours into Yarrowia lipolytica active yeast cells. Fluorescence study of the lipid droplets morphology and steryl/sterol balance during the shock. AIMS Biophysics, 2022, 9(3): 257-270. doi: 10.3934/biophy.2022022
  • Cold-adapted enzymes are generally derived from psychrophilic microorganisms and have features that make them very attractive for industrial and biotechnological purposes. In this work, we identified a 50 kDa extracellular protease (MP10) from the Antarctic isolate Pseudomonas sp. AU10. The enzyme was produced by recombinant DNA technology, purified using immobilized metal affinity chromatography and partially characterized. MP10 is an alkaline thermosensitive serine-metallo protease with optimal activity at pH 8.0 and 40 ℃, in the presence of 1.5 mM Ca2+. MP10 showed 100% residual activity and stability (up to 60 min) when incubated with 7% of non-ionic surfactants (Triton X-100, Tween-80 and Tween-20) and 1.5% of the oxidizing agent hydrogen peroxide. The 3D MP10 structure was predicted and compared with the crystal structure of mesophilic homologous protease produced by Pseudomonas aeruginosa PA01 (reference strain) and other proteases, showing similarity in surface area and volume of proteins, but a significantly higher surface pocket area and volume of MP10. The observed differences presumably may explain the enhanced activity of MP10 for substrate binding at low temperatures. These results give insight to the potential use of MP10 in developing new biotechnologically processes active at low to moderate temperatures, probably with focus in the detergent industry.


    [1] Wu JW, Chen XL (2011) Extracellular metalloproteases from bacteria. Appl Microbiol Biot 92: 253–262. doi: 10.1007/s00253-011-3532-8
    [2] Rao MB, Tanksale AM, Ghatge MS, et al. (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62: 597–635.
    [3] Kasana RC (2010) Proteases from psychrotrophs: an overview. Crit Rev Microbiol 36: 134–145. doi: 10.3109/10408410903485525
    [4] Roulling F, Piette F, Cipolla A, et al. (2011) Psychrophilic enzymes: cool responses to chilly problems. In: Extremophiles Handbook. Koki Horikoshi (Ed.) Springer, 891–913.
    [5] Joshi S, Satyanarayana T (2013) Biotechnology of cold-active proteases. Biology 2: 755–783. doi: 10.3390/biology2020755
    [6] Martínezrosales C, Castrosowinski S (2011) Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res 30: 157–171.
    [7] Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expres Pur 41: 207–234. doi: 10.1016/j.pep.2005.01.016
    [8] Piñeyro MD, Parodi-Talice A, Portela M, et al. (2011) Molecular characterization and interactome analysis of Trypanosoma cruzi Tryparedoxin 1. J Proteomics 74: 1683–1692. doi: 10.1016/j.jprot.2011.04.006
    [9] Morel MA, Iriarte A, Jara E, et al. (2016) Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioeng 3: 156–175.
    [10] Aziz RK, Bartels D, Best AA, et al. (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. doi: 10.1186/1471-2164-9-75
    [11] Andrews BA, Asenjo JA (1986) Synthesis and regulation of extracellular β(1-3) glucanase and protease by Cytophaga sp. in batch and continuous culture. Biotechnol Bioeng 28: 1366–1375. doi: 10.1002/bit.260280911
    [12] D´Amico S, Claverie P, Collins T, et al. (2002) Molecular basis of cold adaptation. Philos T R Soc B 357: 917–925. doi: 10.1098/rstb.2002.1105
    [13] Martinez-Rosales C, Fullana N, Musto H, et al. (2012) Antarctic DNA moving forward: genomic plasticity and biotechnological potential. FEMS Microbiol Lett 331: 1–9. doi: 10.1111/j.1574-6968.2012.02531.x
    [14] De Vendittis E, Castellano I, Cotugno R, et al. (2008) Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition. J Theor Biol 250: 156–171. doi: 10.1016/j.jtbi.2007.09.006
    [15] Herrera LM, García-Laviña CX, Marizcurrena JJ, et al. (2016) Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biol 40: 947–953.
    [16] Zhou MY, Wang GL, Li D, et al. (2013) Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica. PLoS One 8: e79668. doi: 10.1371/journal.pone.0079668
    [17] Martínez-Rosales C, Marizcurrena JJ, Iriarte A, et al. (2015) Characterizing proteases in an Antarctic Janthinobacterium sp. isolate: evidence of a protease horizontal gene transfer event. Adv Polar Sci 26: 88–95.
    [18] Lenders MH, Reimann S, Smits SH, et al. (2013) Molecular insights into type I secretion systems. Biol Chem 394: 1371–1384.
    [19] De Maayer P, Anderson D, Cary C, et al. (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15: 508. doi: 10.1002/embr.201338170
    [20] Chessa JP, Petrescu I, Bentahir M, et al. (2000) Purification, physic-chemical characterization and sequence of a heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479: 265–274. doi: 10.1016/S0167-4838(00)00018-2
    [21] Nicodeme M, Grill JP, Humbert G, et al. (2005) Extracellular protease activity of different Pseudomonas strains: dependence of proteolytic activity on culture conditions. J Appl Microbiol 99: 641–648. doi: 10.1111/j.1365-2672.2005.02634.x
    [22] Dufour D, Nicodeme M, Perrin C, et al. (2008) Molecular typing of industrial strains of Pseudomonas spp. isolated from milk and genetical and biochemical characterization of an extracellular protease produced by one of them. Int J Food Microbiol 125: 188–196.
    [23] Liao CH, MaCcallus DE (1998) Biochemical and genetic characterization of an extracellular protease from Pseudomonas fluorescens CY 091. Appl Environ Microb 64: 914–921.
    [24] Ahn JH, Pan JG, Rhee JS (1999) Identification of the tliDEFABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. J Bacteriol 181: 1847–1852.
    [25] Kawai E, Idei A, Kumura H, et al. (1999) The ABC exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease, and serine protease homologues in Pseudomonas fluorescens. Biochim Biophys Acta 1446: 377–382. doi: 10.1016/S0167-4781(99)00094-9
    [26] Hege T, Feltzer RE, Gray RD, et al. (2001) Crystal structure of a complex between Pseudomonas aeruginosa alkaline protease and its cognate inhibitor: Inhibition by a zinc-NH2 coordinative bond. J Biol Chem 276: 35087–35092. doi: 10.1074/jbc.M104020200
    [27] Speed MA, Wang DIC, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14: 1283–1287. doi: 10.1038/nbt1096-1283
    [28] Ertan H, Cassel C, Verma A, et al. (2015) A new broad specificity alkaline metalloprotease from a Pseudomonas sp. isolated from refrigerated milk: Role of calcium in improving enzyme productivity. J Mol Catal B Enzym 113: 1–8.
    [29] Wu S, Liu G, Zhang D, et al. (2015) Purification and biochemical characterization of an alkaline protease from marine bacteria Pseudoalteromonas sp. 129-1. J Basic Microb 55: 1427–1434. doi: 10.1002/jobm.201500327
    [30] Niyonzima FN, More SS (2015) Purification and characterization of detergent-compatible protease from Aspergillus terreus gr. Biotech 5: 61–70.
    [31] Raval VH, Pillai S, Rawal CM, et al. (2014) Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem 49: 955–962. doi: 10.1016/j.procbio.2014.03.014
  • This article has been cited by:

    1. Kobra Hajizadeh, Kamal Hajisharifi, Hasan Mehdian, Morphological risk assessment of cold atmospheric plasma-based therapy: bone marrow mesenchymal stem cells in treatment zone proximity, 2019, 52, 0022-3727, 495203, 10.1088/1361-6463/ab3f65
    2. Suzan Kastamonuluoğlu, Kemal Büyükgüzel, Ender Büyükgüzel, Murray Isman, The Use of Dietary Antifungal Agent Terbinafine in Artificial Diet and Its Effects on Some Biological and Biochemical Parameters of the Model Organism Galleria mellonella (Lepidoptera: Pyralidae), 2020, 113, 0022-0493, 1110, 10.1093/jee/toaa039
    3. Jose Javier Garcia-Medina, Vicente Zanon-Moreno, Maria Dolores Pinazo-Duran, Elisa Foulquie-Moreno, Elena Rubio-Velazquez, Ricardo P. Casaroli-Marano, Monica del-Rio-Vellosillo, 2020, 9780128157763, 49, 10.1016/B978-0-12-815776-3.00005-X
    4. Edward Huang, Townshend White, Beibei Wang, Huanhuan Shi, Jiayang Liu, Disinfection of Escherichia coli by a Reactive Electrochemical Membrane System Involving Activated Carbon Fiber Cloth (ACFC), 2019, 11, 2073-4441, 430, 10.3390/w11030430
    5. Adi Prayitno, RA Oetari, Idin Shahiddin, Aldissa Yova Elmanda, Anita Dwi Septiarini, Hasriyani Hasriyani, Luky Dharmayanti, Yuneka Saristiana, Yunita Dian Permata Sari, α-Mangosteen from Garcinia Mangostana Linn and its Effect in Blood Insulin and Sugar Levels in Hyperglycemic Rat, 2021, 12, 13098578, em00770, 10.29333/jcei/9767
    6. Sabah Mohammad K, Adnan Saleem Jar, Taghleb Muhammad-F, Antimicrobial and Lipid Peroxidation Inhibition Potential of Ziziphus Spina-christi (Sedr), A Jordanian Medicinal Plant, 2019, 19, 17273048, 131, 10.3923/jbs.2019.131.136
    7. Eleazar Chukwuemeka Anorue, Grace Nneka Onwubiko, Henry Amaechi Onwubiko, Chinweike Norman Asogwa, Oxidative effects of cyanogenic glycosides residuals in cassava products on human haemoglobin, 2020, 22124292, 100846, 10.1016/j.fbio.2020.100846
    8. The analyze of lung’s GSH number in rats exposed by cigarette smoke and inducted by rambutan peel extract, 2018, 983, 1742-6588, 012179, 10.1088/1742-6596/983/1/012179
    9. Joanna Dulińska-Litewka, Yoav Sharoni, Przemysław Hałubiec, Agnieszka Łazarczyk, Oskar Szafrański, James A. McCubrey, Bartosz Gąsiorkiewicz, Piotr Laidler, Torsten Bohn, Recent Progress in Discovering the Role of Carotenoids and Their Metabolites in Prostatic Physiology and Pathology with a Focus on Prostate Cancer—A Review—Part I: Molecular Mechanisms of Carotenoid Action, 2021, 10, 2076-3921, 585, 10.3390/antiox10040585
    10. Murside Ayse Demirel, Mehmet Eray Alcigir, Ozcan Ozkan, Merve Biskin Turkmen, The effects of antivenom administrations on the brain tissue of experimentally envenomed pregnant rats and their pups with Androctonus crassicauda scorpion venom during organogenesis period, 2021, 200, 00410101, 13, 10.1016/j.toxicon.2021.06.011
    11. Anbu S, Boomiga S, Suresh A, Padma J, Phytochemical Screening and Antimicrobial Activity of Ziziphus oenoplia Seed Extract, 2022, 0974-360X, 615, 10.52711/0974-360X.2022.00101
    12. Masoud Soheili, Azam Alinaghipour, Mahmoud Salami, Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations, 2022, 301, 00243205, 120605, 10.1016/j.lfs.2022.120605
    13. Elizabeth M. Bolitho, Carlos Sanchez-Cano, Huayun Shi, Paul D. Quinn, Maria Harkiolaki, Cinzia Imberti, Peter J. Sadler, Single-Cell Chemistry of Photoactivatable Platinum Anticancer Complexes, 2021, 143, 0002-7863, 20224, 10.1021/jacs.1c08630
    14. R. Jamshidi, K. Hajizadeh, Cold atmospheric plasma risk assessment: stem cells, 2020, 7, 23760060, 93, 10.15406/jlprr.2020.07.00236
    15. Abimbola Motunrayo Folami, Samuel Ayodele Iwarere, Feroz Mahomed Swalaha, 2021, Chapter 791, 978-3-031-12917-9, 177, 10.1007/698_2021_791
    16. Shangtao Liang, Hui Lin, Mussie Habteselassie, Qingguo Huang, Electrochemical inactivation of bacteria with a titanium sub-oxide reactive membrane, 2018, 145, 00431354, 172, 10.1016/j.watres.2018.08.010
    17. Didik Priyandoko, Wahyu Widowati, Hanna Sari Widya Kusuma, Ervi Afifah, Cahyaning Riski Wijayanti, Cintani Dewi Wahyuni, Amannah Mutmainnah Idris, Rizka Amelia Putdayani, Rizal Rizal, 2021, Antioxidant Activity of Green Tea Extract and Myricetin, 978-1-6654-4181-0, 1, 10.1109/InHeNce52833.2021.9537285
    18. Dong Sub Kim, Hyo‐Jung Lee, Deok Yong Sim, Ji Eon Park, Youngsang Park, Bonglee Kim, Bumsang Shim, Sung‐Hoon Kim, The underlying hepatoprotective mechanism of PKC #963 in alcohol or carbon tetrachloride induced liver injury via inhibition of iNOS , COX ‐2, and p‐STAT3 and enhancement of SOD and catalase , 2023, 37, 0951-418X, 505, 10.1002/ptr.7630
    19. K. Dondoladze, M. Nikolaishvili, T. Museliani, G. Jikia, EFFECT OF RADIATION ON AGING PROCESSES AND TELOMERE LENGTH, 2022, 27, 23048336, 107, 10.33145/2304-8336-2022-27-107-119
    20. Osman V. Patel, Charlyn Partridge, Karen Plaut, Space Environment Impacts Homeostasis: Exposure to Spaceflight Alters Mammary Gland Transportome Genes, 2023, 13, 2218-273X, 872, 10.3390/biom13050872
    21. Alistair V. W. Nunn, Geoffrey W. Guy, Jimmy D. Bell, Informing the Cannabis Conjecture: From Life’s Beginnings to Mitochondria, Membranes and the Electrome—A Review, 2023, 24, 1422-0067, 13070, 10.3390/ijms241713070
    22. Oluwaseun Ruth Alara, Chinonso Ishmael Ukaegbu, Nour Hamid Abdurahman, John Adewole Alara, Hassan Alsaggaf Ali, Plant-sourced Antioxidants in Human Health: A State-of-Art Review, 2023, 19, 15734013, 817, 10.2174/1573401319666230109145319
    23. Feng Li, Yixin Mi, Ronn Zhi Ning Chen, Wei Liu, Ji Wu, Deyin Hou, Min Yang, Sui Zhang, A radical polymer membrane for simultaneous degradation of organic pollutants and water filtration, 2024, 121, 0027-8424, 10.1073/pnas.2315688121
    24. Siliang Liu, Chenyu Ding, Jixiang Sun, Yuxi Liu, Zhongkai Wang, Trabecular bone-inspired tung oil-derived spongy cellular networks with intelligent pH-responsive wettability and superelasticity for efficient multitasking separation, 2024, 488, 13858947, 150863, 10.1016/j.cej.2024.150863
    25. Saara Ahmad (Muddasir Khan), Farzana Abubakar Yousuf, 2024, 9780443188077, 17, 10.1016/B978-0-443-18807-7.00002-8
    26. O. S. Yaremkevych, O. M. Fedoryshyn , Research on the antioxidant properties of extracts from stemless carline thistle (Carlina acaulis l.), mountain arnica (Arnica montana l.) and pot marigold (Calendula officinalis l.), 2024, 7, 26177307, 103, 10.23939/ctas2024.01.103
    27. Fifi Fauziah Ramadhani, , Mulberry (Morus alba L.) leaf extract enhanced spermatozoa motility, viability, and plasma membrane integrity of rats (Rattus norvegicus) exposed to e-cigarette smoke, 2024, 13, 2722-967X, 120, 10.20473/ovz.v13i2.2024.120-128
    28. Marwa M. Attia, Sara S. Barsoum, Hanadi B. A. Baghdadi, Olfat A. Mahdy, Sohila M. EL Gameel, Evaluation of different inflammatory markers during the infection of domestic cats (Felis catus) by Cystoisospora felis (Coccidia: Apicomplexa), 2024, 20, 1746-6148, 10.1186/s12917-024-04295-2
    29. Meng Zhang, Doudou Shi, Mimi Cui, Jinyong Li, Wenjing Cheng, Chunhong Pu, Jiachan Zhang, Changtao Wang, Saccharomyces cerevisiae fermentation of high molecular weight hyaluronic acid enhanced the antioxidant capacity in skin fibroblasts, 2025, 207, 0302-8933, 10.1007/s00203-025-04274-7
    30. Melike Kücükkarapinar, Hans Reuter, 2025, 84, 9780443237522, 425, 10.1016/B978-0-443-23752-2.00010-4
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6715) PDF downloads(1231) Cited by(11)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog