Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Review

Bioenergy from wastewater-based biomass

  • The U.S. Department of Energy (DOE) has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would provide benefits to both industries. Two waste-based biomass production systems that currently have large nationwide infrastructures include: (1) wastewater treatment systems that can be used to cultivate algae biomass, and (2) land application/treatment systems for non-food terrestrial biomass. These existing infrastructures could be used in the relatively near future for waste-based biomass production and conversion to bioenergy, thereby reducing capital costs and scalability challenges while making a contribution to energy independence and national security.

    Citation: Ronald C. Sims, Sean K. Bedingfield, Reese Thompson, Judith L. Sims. Bioenergy from wastewater-based biomass[J]. AIMS Bioengineering, 2016, 3(1): 103-124. doi: 10.3934/bioeng.2016.1.103

    Related Papers:

    [1] Lucrezia Cossetti . Bounds on eigenvalues of perturbed Lamé operators with complex potentials. Mathematics in Engineering, 2022, 4(5): 1-29. doi: 10.3934/mine.2022037
    [2] Eleonora Cinti, Roberto Ognibene, Berardo Ruffini . A quantitative stability inequality for fractional capacities. Mathematics in Engineering, 2022, 4(5): 1-28. doi: 10.3934/mine.2022044
    [3] Luz Roncal . Hardy type inequalities for the fractional relativistic operator. Mathematics in Engineering, 2022, 4(3): 1-16. doi: 10.3934/mine.2022018
    [4] Fernando Farroni, Gioconda Moscariello, Gabriella Zecca . Lewy-Stampacchia inequality for noncoercive parabolic obstacle problems. Mathematics in Engineering, 2023, 5(4): 1-23. doi: 10.3934/mine.2023071
    [5] Maurizio Garrione . Beams with an intermediate pier: Spectral properties, asymmetry and stability. Mathematics in Engineering, 2021, 3(2): 1-21. doi: 10.3934/mine.2021016
    [6] Federico Cluni, Vittorio Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, Patrizia Pucci . A mixed operator approach to peridynamics. Mathematics in Engineering, 2023, 5(5): 1-22. doi: 10.3934/mine.2023082
    [7] Pier Domenico Lamberti, Michele Zaccaron . Spectral stability of the curlcurl operator via uniform Gaffney inequalities on perturbed electromagnetic cavities. Mathematics in Engineering, 2023, 5(1): 1-31. doi: 10.3934/mine.2023018
    [8] Alessia E. Kogoj, Ermanno Lanconelli, Enrico Priola . Harnack inequality and Liouville-type theorems for Ornstein-Uhlenbeck and Kolmogorov operators. Mathematics in Engineering, 2020, 2(4): 680-697. doi: 10.3934/mine.2020031
    [9] Serena Dipierro, Giovanni Giacomin, Enrico Valdinoci . The fractional Malmheden theorem. Mathematics in Engineering, 2023, 5(2): 1-28. doi: 10.3934/mine.2023024
    [10] Biagio Cassano, Lucrezia Cossetti, Luca Fanelli . Spectral enclosures for the damped elastic wave equation. Mathematics in Engineering, 2022, 4(6): 1-10. doi: 10.3934/mine.2022052
  • The U.S. Department of Energy (DOE) has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would provide benefits to both industries. Two waste-based biomass production systems that currently have large nationwide infrastructures include: (1) wastewater treatment systems that can be used to cultivate algae biomass, and (2) land application/treatment systems for non-food terrestrial biomass. These existing infrastructures could be used in the relatively near future for waste-based biomass production and conversion to bioenergy, thereby reducing capital costs and scalability challenges while making a contribution to energy independence and national security.


    Dedicatoria. Al Ingenioso Hidalgo Don Ireneo.

    In this paper we consider a nonlinear operator arising from the superposition of a classical $ p $-Laplace operator and a fractional $ p $-Laplace operator, of the form

    $ Lp,s=Δp+(Δ)sp $ (1.1)

    with $ s\in(0, 1) $ and $ p\in [2, +\infty) $. Here, as usual, $ \Delta_pu = \mathrm{div}(|\nabla u|^{p-2}\nabla u) $, while the fractional $ p $-Laplace operator is defined (up to a multiplicative constant that we neglect) as

    $ (-\Delta)^s_p u(x): = 2\, \mathrm{p.v.}\int_{{\mathbb{R}}^n}\frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))}{|x-y|^{n+ps}}\, dy $

    where $ \mathrm{p.v.} $ stands for the principal value notation.

    Given a bounded open set $ \Omega\subseteq{\mathbb{R}}^n $, we consider the eigenvalue problem for the operator $ \mathcal{L}_{p, s} $ with homogeneous Dirichlet boundary conditions (i.e., the eigenfunctions are prescribed to vanish in the complement of $ \Omega $). In particular, we define $ \lambda_1(\Omega) $ to be the smallest of such eigenvalues and $ \lambda_2(\Omega) $ to be the second smallest one (in the sense made precise in [8,29]).

    The main result that we present here is a version of the Hong–Krahn–Szegö inequality for the second Dirichlet eigenvalue $ \lambda_2(\Omega) $, according to the following statement:

    Theorem 1.1. Let $ \Omega\subseteq{\mathbb{R}}^n $ be a bounded open set. Let $ B $ be any Euclidean ball with volume $ |\Omega|/2 $. Then,

    $ λ2(Ω)>λ1(B). $ (1.2)

    Furthermore, equality is never attained in $(1.2)$; however, the estimate is sharp in the following sense: if $ \{x_j\}_j, \, \{y_j\}_j\subseteq{\mathbb{R}}^n $ are two sequences such that

    $ \lim\limits_{j\to+\infty}|x_j-y_j| = +\infty, $

    and if we define $ \Omega_j : = B_r(x_j)\cup B_r(y_j) $, then

    $ limj+λ2(Ωj)=λ1(Br). $ (1.3)

    To the best of our knowledge, Theorem 1.1 is new even in the linear case $ p = 2 $. Also, an interesting consequence of the fact that equality in (1.2) is never attained is that, for all $ c > 0 $, the shape optimization problem

    $ \inf\limits_{|\Omega| = c}\lambda_2(\Omega) $

    does not admit a solution.

    Remark 1.2. We stress that in this paper we deal with the case $ p\geq 2 $. As a matter of fact, as we shall see in Section 4, a key tool for the proof of Theorem 1.1 is the interior regularity of the $ {\mathcal{L}}_{p, s} $-Dirichlet eigenfunctions (see Section 2 for the relevant definitions); we establish this regularity result by adapting an idea already exploited by Brasco, Lindgren and Schikorra [12] in the purely non-local case, which requires the bound $ p\geq 2 $.

    On the other hand, after this paper was completed, the manuscript [28] appeared in the literature, in which the Authors mention a result implying the global Hölder regularity of the $ {\mathcal{L}}_{p, s} $-Dirichlet eigenfunctions for every $ p > 1 $; see, precisely, [28,Remark 2.4]. Using this result, one could possibly drop the assumption $ p\geq 2 $ and prove Theorem 1.1 for every $ p > 1 $.

    Before diving into the technicalities of the proof of Theorem 1.1, we devote Section 1.1 to showcase the available results on the shape optimization problems related to the first and the second eigenvalues of several elliptic operators.

    One of the classical shape optimization problems is related to the detection of the domain that minimizes the first eigenvalue of the Laplacian with homogeneous boundary conditions. This is the content of the Faber–Krahn inequality [24,32], whose result can be stated by saying that among all domains of fixed volume, the ball has the smallest first eigenvalue.

    In particular, as a physical application, one has that that among all drums of equal area, the circular drum possesses the lowest voice, and this somewhat corresponds to our intuition, since a very elongated rectangular drum produces a high pitch related to the oscillations along the short edge.

    Another physical consequence of the Faber–Krahn inequality is that among all the regions of a given volume with the boundary maintained at a constant temperature, the one which dissipates heat at the slowest possible rate is the sphere, and this also corresponds to our everyday life experience of spheres minimizing contact with the external environment thus providing the optimal possible insulation.

    From the mathematical point of view, the Faber–Krahn inequality also offers a classical stage for rearrangement methods and variational characterizations of eigenvalues.

    In view of the discussion in Section A, the subsequent natural question investigates the optimal shape of the second eigenvalue. This problem is addressed by the Hong–Krahn–Szegö inequality [31,33,37], which asserts that among all domains of fixed volume, the disjoint union of two equal balls has the smallest second eigenvalue.

    Therefore, for the case of the Laplacian with homogeneous Dirichlet data, the shape optimization problems related to both the first and the second eigenvalues are solvable and the solution has a simple geometry.

    It is also interesting to point out a conceptual connection between the Faber–Krahn and the Hong–Krahn–Szegö inequalities, in the sense that the proof of the second typically uses the first one as a basic ingredient. More specifically, the strategy to prove the Hong–Krahn–Szegö inequality is usually:

    ● Use that in a connected open set all eigenfunctions except the first one must change sign,

    ● Deduce that $ \lambda_2(\Omega) = \max\{\lambda_1(\Omega_+), \lambda_1(\Omega_-)\} $, for suitable subdomain $ \Omega_+ $ and $ \Omega_- $ which are either nodal domains for the second eigenfunction, if $ \Omega $ is connected, or otherwise connected components of $ \Omega $,

    ● Utilize the Faber–Krahn inequality to show that $ \lambda_1(\Omega_\pm) $ is reduced if we replace $ \Omega_\pm $ with a ball of volume $ |\Omega_\pm| $,

    ● Employ the homogeneity of the problem to deduce that the volumes of these two balls are equal.

    That is, roughly speaking, a cunning use of the Faber–Krahn inequality allows one to reduce to the case of disjoint balls, which can thus be addressed specifically.

    A natural extension of the optimal shape results for the Laplacian recalled in Section 1.1.1 is the investigation of the nonlinear operator setting and in particular the case of the $ p $-Laplacian. This line of research was carried out in [10] in which a complete analogue of the results of Section 1.1.1 have been established for the $ p $-Laplacian. In particular, the first Dirichlet eigenvalue of the $ p $-Laplacian is minimized by the ball and the second by any disjoint union of two equal balls.

    We stress that, in spite of the similarity of the results obtained, the nonlinear case presents its own specific peculiarities. In particular, in the case of the $ p $-Laplacian one can still define the first eigenvalue by minimization of a Rayleigh quotient, in principle the notion of higher eigenvalues become more tricky, since discreteness of the spectrum is not guaranteed and the eigenvalues theory for nonlinear operators offers plenty of open problems at a fundamental level. For the second eingevalue however one can obtain a variational characterization in terms of a mountain-pass result, still allowing the definition of a spectral gap between the smallest and the second smallest eigenvalue.

    We now consider the question posed by the minimization of the first and second eigenvalues in a nonlocal setting.

    The optimal shape problems for the first eigenvalue of the fractional Laplacian with homogeneous external datum was addressed in [3,9,11,41], showing that the ball is the optimizer.

    As for the nonlinear case, the spectral properties of the fractional $ p $-Laplacian possess their own special features, see [26], and they typically combine the difficulties coming from the nonlocal world with those arising from the theory of nonlinear operators. In [11] the optimal shape problem for the first Dirichlet eigenvalue of the fractional $ p $-Laplacian was addressed, by detecting the optimality of the ball as a consequence of a general Pólya–Szegö principle.

    For the second eigenvalue, however, the situation in the nonlocal case is quite different from the classical one, since in general nonlocal energy functionals are deeply influenced by the mutual position of the different connected components of the domain, see [35].

    In particular, the counterpart of the Hong–Krahn–Szegö inequality for the fractional Laplacian and the fractional $ p $-Laplacian was established in [13] and it presents significant differences with the classical case: in particular, the shape optimizer for the second eigenvalue of the fractional $ p $-Laplacian with homogeneous external datum does not exist and one can bound such an eigenvalue from below by the first eigenvalue of a ball with half of the volume of the given domain (and this is the best lower bound possible, since the case of a domain consisting of two equal balls drifting away from each other would attain such a bound in the limit).

    The study of mixed local/nonlocal operators has been recently received an increasing level of attention, both in view of their intriguing mathematical structure, which combines the classical setting and the features typical of nonlocal operators in a framework that is not scale-invariant [1,4,5,6,8,16,17,20,21,23,27,39], and of their importance in practical applications such as the animal foraging hypothesis [22,36].

    In regard to the shape optimization problem, a Faber–Krahn inequality for mixed local and nonlocal linear operators when $ p = 2 $ has been established in [7], showing the optimality of the ball in the minimization of the first eigenvalue. The corresponding inequality for the nonlinear setting presented in (1.1) will be given here in the forthcoming Theorem 4.1.

    The inequality of Hong–Krahn–Szegö type for mixed local and nonlocal linear operators presented in (1.1) would thus complete the study of the optimal shape problems for the first and second eigenvalues of the operator in (1.1).

    The rest of this paper is organized as follows. Section 2 sets up the notation and collects some auxiliary results from the existing literature.

    In Section 3 we discuss a regularity theory which, in our setting, plays an important role in the proof of Theorem 1.1 in allowing us to speak about nodal regions for the corresponding eigenfunction (recall the bullet point strategy presented on page 3). In any case, this regularity theory holds in a more general setting and can well come in handy in other situations as well.

    Section 4 introduces the corresponding Faber–Krahn inequality for the operator in (1.1) and completes the proof of Theorem 1.1.

    In Appendix A we also discuss the importance of first and second eigenvalues in general problems of applied mathematics (not necessarily related to partial differential equations, nor to integro-differential equations).

    To deal with the nonlinear and mixed local/nonlocal operator in (1.1), given an open and bounded set $ \Omega\subseteq{\mathbb{R}}^n $, it is convenient to introduce the space

    $ \mathcal{X}_0^{1, p}(\Omega)\subseteq W^{1, p}({\mathbb{R}}^n), $

    defined as the closure of $ C_0^{\infty}(\Omega) $ with respect to the global norm

    $ u\mapsto \Big(\int_{{\mathbb{R}}^n}|\nabla u|^p\, d x\Big)^{1/p}. $

    We highlight that, since $ \Omega $ is bounded, $ \mathcal{X}^{1, p}_0(\Omega) $ can be equivalently defined by taking the closure of $ C_0^\infty(\Omega) $ with respect to the full norm

    $ u\mapsto \bigg(\int_{{\mathbb{R}}^n}|u|^p\, d x\bigg)^{1/p} +\bigg(\int_{{\mathbb{R}}^n}|\nabla u|^p\, dx\bigg)^{1/p}; $

    however, we stress that $ \mathcal{X}_0^{1, p}(\Omega) $ is different from the usual space $ W^{1, p}_0(\Omega) $, which is defined as the closure of $ C_0^{\infty}(\Omega) $ with respect to the norm

    $ u\mapsto \Big(\int_{\Omega}|\nabla u|^p\, d x\Big)^{1/p}. $

    As a matter of fact, while the belonging of a function $ u $ to $ W^{1, p}_0(\Omega) $ only depends on its behavior inside of $ \Omega $ (actually, $ u $ does not even need to be defined outside of $ \Omega $), the belonging of $ u $ to $ \mathcal{X}_0^{1, p}(\Omega) $ is a global condition, and it depends on the behavior of $ u $ on the whole space $ {\mathbb{R}^n }$ (in particular, $ u $ has to be defined on $ {\mathbb{R}}^n $). Just to give an example of the difference between these spaces, let $ u\in C^\infty_0({\mathbb{R}}^n)\setminus\{0\} $ be such that

    $ \mathrm{supp}(u)\cap \overline{\Omega} = \varnothing. $

    Since $ u\equiv 0 $ inside of $ \Omega $, we clearly have that $ u\in W^{1, p}_0(\Omega) $; on the other hand, since $ u\not\equiv 0 $ in $ {\mathbb{R}}^n\setminus\Omega $, one has $ u\notin \mathcal{X}_0^{1, p}(\Omega) $ (even if $ u\in W^{1, p}({\mathbb{R}}^n) $).

    Although they do not coincide, the spaces $ \mathcal{X}_0^{1, p}(\Omega) $ and $ W^{1, p}_0(\Omega) $ are related: to be more precise, using [14,Proposition 9.18] and taking into account the definition of $ \mathcal{X}_0^{1, p}(\Omega) $, one can see that

    $ ({\rm{i}}) $ if $ u\in W_0^{1, p}(\Omega) $, then $ u\cdot{\bf{1}}_\Omega\in \mathcal{X}_0^{1, p}(\Omega) $;

    $ ({\rm{ii}}) $ if $ u\in \mathcal{X}_0^{1, p}(\Omega) $, then $ u\big|_{\Omega}\in W_0^{1, p}(\Omega) $.

    Moreover, we can actually characterize $ \mathcal{X}_0^{1, p}(\Omega) $ as follows:

    $ \mathcal{X}_0^{1, p}(\Omega) = \{u\in W^{1, p}({\mathbb{R}}^n):\, { u\big|_\Omega\in W^{1, p}_0(\Omega) \;{{\rm{and}}}\; u = 0 \;{\rm{a.e}}.\, {\rm{in}}\; {\mathbb{R}}^n\setminus\Omega }\}. $

    The main issue in trying to use (ⅰ)–(ⅱ) to identify $ W_0^{1, p}(\Omega) $ with $ \mathcal{X}_0^{1, p}(\Omega) $ is that, if $ u $ is globally defined and $ u\in W^{1, p}({\mathbb{R}}^n) $, then

    $ u\big|_{\Omega}\in W^{1, p}_0(\Omega)\, \, \Rightarrow \, \, u\cdot {\bf{1}}_\Omega\in \mathcal{X}_0^{1, p}(\Omega); $

    however, we cannot say in general that $ u = u\cdot{\bf{1}}_\Omega $. Even if they cannot allow to identify $ \mathcal{X}_0^{1, p}(\Omega) $ with $ W_0^{1, p}(\Omega) $, assertions (ⅰ)–(ⅱ) can be used to deduce several properties of the space $ \mathcal{X}_0^{1, p}(\Omega) $ starting from their analog in $ W_0^{1, p}(\Omega) $; for example, we have the following fact, which shall be used in the what follows:

    $ u\in \mathcal{X}_0^{1, p}(\Omega) \, \, \Rightarrow \, \, |u|, \, u^+, \, u^-\in \mathcal{X}_0^{1, p}(\Omega). $

    Remark 2.1. In the particular case when the open set $ \Omega $ is of class $ C^1 $, it follows from [14,Proposition 9.18] that, if $ u\in W^{1, p}({\mathbb{R}}^n) $ and $ u = 0 $ a.e. in $ {\mathbb{R}}^n\setminus\Omega $, then

    $ u\big|_{\Omega}\in W_0^{1, p}(\Omega). $

    As a consequence, we have

    $ \mathcal{X}_0^{1, p}(\Omega) = \{u\in W^{1, p}(\Omega):\, { u = 0 \;{\rm{a.e}}.\, {\rm{in}}\; {\mathbb{R}}^n\setminus\Omega }\}. $

    This fact shows that, when $ \Omega $ is sufficiently regular, $ \mathcal{X}_0^{1, p}(\Omega) $ coincides with the space $ \mathbb{X}_p(\Omega) $ introduced in [5] (for $ p = 2 $) and in [8] (for a general $ p > 1 $).

    For future reference, we introduce the following set

    $ M(Ω):={uX1,p0(Ω):Rn|u|pdx=1}. $ (2.1)

    After these preliminaries, we can turn our attention to the Dirichlet problem for the operator $ {\mathcal{L}}_{p, s} $. Throughout the rest of this paper, to simplify the notation we set

    $ Jp(t):=|t|p2t for all tR. $ (2.2)

    Moreover, we define

    $ p^* : = {npnpifp<n,+ifpn,\quad{{{\rm{and}}}}\quad (p^*)' : = {pp1ifp<n,1ifpn. $

    Definition 2.2. Let $ q\geq (p^*)' $, and let $ f\in L^q(\Omega) $. We say that a function $ u\in W^{1, p}({\mathbb{R}}^n) $ is a weak solution to the equation

    $ Lp,su=finΩ $ (2.3)

    if, for every $ \phi\in \mathcal{X}_0^{1, p}(\Omega) $, the following identity is satisfied

    $ Ω|u|p2u,ϕdx+R2nJp(u(x)u(y))(ϕ(x)ϕ(y))|xy|n+psdxdy=Ωfϕdx, $ (2.4)

    Moreover, given any $ g\in W^{1, p}({\mathbb{R}}^n) $, we say that a function $ u\in W^{1, p}({\mathbb{R}}^n) $ is a weak solution to the $ ({\mathcal{L}_{p, s})} $-Dirichlet problem

    $ {Lp,su=finΩ,u=ginRnΩ, $ (2.5)

    if $ u $ is a weak solution to (2.3) and, in addition,

    $ u- g\in\mathcal{X}_0^{1, p}(\Omega). $

    Remark 2.3. (1) We point out that the above definition is well-posed: indeed, if $ u, v\in W^{1, p}(\Omega) $, by Hölder's inequality and [19,Proposition 2.2] we get

    $ R2n|u(x)u(y)|p1|v(x)v(y)||xy|n+psdxdy (R2n|u(x)u(y)|p|xy|n+psdxdy)1/p(R2n|v(x)v(y)|p|xy|n+psdxdy)1/pc $

    Moreover, since $ f\in L^q(\Omega) $ and $ q\geq (p^*)' $, again by Hölder's inequality and by the Sobolev Embedding Theorem (applied here to $ v\in W^{1, p}({\mathbb{R}}^n) $), we have

    $ \begin{align*} \int_{\Omega}|f||v|\, dx \leq \|f\|_{L^{(p^*)'}(\Omega)}\, \|v\|_{L^{p^*}(\Omega)} < +\infty. \end{align*} $

    (2) If $ W^{1, p}({\mathbb{R}}^n) $ is is a weak solution to the $ ({\mathcal{L}}_{p, s}) $-Dirichlet problem (2.5), it follows from the definition of $ \mathcal{X}_0^{1, p}(\Omega) $ that

    $ (u-g)\big|_{\Omega}\in W^{1, p}_0(\Omega)\qquad{\rm{and}}\qquad { u = g \;{\rm{a.e}}.\, {\rm{in}}\; {\mathbb{R}}^n\setminus\Omega }. $

    Thus, $ \mathcal{X}_0^{1, p}(\Omega) $ is the 'right space' for the weak formulation of (2.5).

    With Definition 2.2 at hand, we now introduce the notion of Dirichlet eigenvalue/eigenfunction for the operator $ {\mathcal{L}}_{p, s} $.

    Definition 2.4. We say that $ \lambda\in{\mathbb{R}} $ is a Dirichlet eigenvalue for $ {\mathcal{L}}_{p, s} $ if there exists a solution $ u\in W^{1, p}(\Omega)\setminus\{0\} $ of the $ ({\mathcal{L}}_{p, s}) $-Dirichlet problem

    $ \begin{equation} \begin{cases} {\mathcal{L}}_{p, s}u = \lambda|u|^{p-2}u & {{\rm{in}} \;\Omega }, \\ u = 0 & {{\rm{in}}\; {\mathbb{R}}^n\setminus\Omega }. \end{cases} \end{equation} $ (2.6)

    In this case, we say that $ u $ is an eigenfunction associated with $ \lambda $.

    Remark 2.5. We note that Definition 2.4 is {well-posed}. Indeed, if $ u $ is any function in $ W^{1, p}({\mathbb{R}}^n) $, by the Sobolev Embedding Theorem we have

    $ f : = |u|^{p-2}u\in L^{\frac{p^*}{p-1}}(\Omega); $

    then, a direct computation shows that $ q : = p^*/(p-1)\geq (p^*)' $. As a consequence, the notion of weak solution for (2.6) agrees with the one contained in Definition 2.2. In particular, if $ u $ is an eigenfunction associated with some eigenvalue $ \lambda $, then

    $ u\in\mathcal{X}_0^{1, p}(\Omega), $

    and thus $ u\big|_\Omega\in W_0^{1, p}(\Omega) $ and $ u = 0 \; {\rm{a.e}}.\, {\rm{in}} \; {\mathbb{R}}^n\setminus\Omega $.

    After these definitions, we close the section by reviewing some results about eigenvalues/eigenfucntions for $ {\mathcal{L}}_{p, s} $ which shall be used here below.

    To begin with, we recall the following result proved in [8,Proposition 5.1] which establishes the existence of the smallest eigenvalue and detects its basic properties.

    Proposition 2.6. The smallest eigenvalue $ \lambda_1(\Omega) $ for the operator $ {\mathcal{L}}_{p, s} $ is strictly positive and satisfies the following properties:

    $ 1) $ $ \lambda_1(\Omega) $ is simple;

    $ 2) $ the eigenfunctions associated with $ \lambda_1(\Omega) $ do not change sign in $ {\mathbb{R}}^n $;

    $ 3) $ every eigenfunction associated to an eigenvalue

    $ \lambda > \lambda_1(\Omega) $

    is nodal, i.e., sign changing.

    Moreover, $ \lambda_1(\Omega) $ admits the following variational characterization

    $ \begin{equation} \lambda_1(\Omega) = \min\limits_{u\in\mathcal{M}(\Omega)} \bigg(\int_\Omega|\nabla u|^p\, dx + \iint_{{\mathbb{R}}^{2n}} \frac{|u(x)-u(y)|^p}{|x-y|^{n+ps}}\, dx\, dy\bigg)\, , \end{equation} $ (2.7)

    where $ \mathcal{M}(\Omega) $ is as in $(2.1)$. The minimum is always attained, and the eigenfunctions for $ {\mathcal{L}}_{p, s} $ associated with $ \lambda_1(\Omega) $ are precisely the minimizers in $(2.7)$.

    We observe that, on account of Proposition 2.6, there exists a unique non-negative eigenfunction $ u_0\in\mathcal{M}(\Omega)\subseteq\mathcal{X}_0^{1, p}(\Omega) $ associated with $ \lambda_1(\Omega) $; in particular, $ u_0 $ is a minimizer in (2.7), so that

    $ \begin{equation} \lambda_1(\Omega) = \int_\Omega|\nabla u_0|^p\, dx + \iint_{{\mathbb{R}}^{2n}} \frac{|u_0(x)-u_0(y)|^p}{|x-y|^{n+ps}}\, dx\, dy. \end{equation} $ (2.8)

    We shall refer to $ u_0 $ as the principal eigenfunction of $ {\mathcal{L}}_{p, s} $.

    The next result was proved in [29,Section 5] and concerns the second eigenvalue for $ {\mathcal{L}}_{p, s} $.

    Theorem 2.7. We define:

    $ \begin{equation} \lambda_2(\Omega) : = \inf\limits_{f\in \mathcal{K}}\max\limits_{u\in \mathrm{Im}(f)} \bigg\{\int_{\Omega}|\nabla u|^p\, d x + \iint_{{\mathbb{R}}^{2n}}\frac{|u(x)-u(y)|^p}{|x-y|^{n+ps}}\, dx\, dy\bigg\}, \end{equation} $ (2.9)

    where $ \mathcal{K} : = \{f:S^1\to\mathcal{M}(\Omega):\, {{f \; is \; continuous \; and \; odd}}\} $, with $ \mathcal{M}(\Omega) $ as in (2.1).

    Then:

    $ 1) $ $ \lambda_2(\Omega) $ is an eigenvalue for $ {\mathcal{L}}_{p, s} $;

    $ 2) $ $ \lambda_2 (\Omega) > \lambda_1(\Omega) $;

    $ 3) $ If $ \lambda > \lambda_1(\Omega) $ is an eigenvalue for $ {\mathcal{L}}_{p, s} $, then $ \lambda \geq \lambda_2(\Omega) $.

    In the rest of this paper, we shall refer to $ \lambda_1(\Omega) $ and $ \lambda_2(\Omega) $ as, respectively, the first and second eigenvalue of $ {\mathcal{L}}_{p, s} $ (in $ \Omega $). We notice that, as a consequence of (2.7)–(2.9), both $ \lambda_1(\cdot) $ and $ \lambda_2(\cdot) $ are translation-invariant, that is,

    $ \lambda_1(x_0+\Omega) = \lambda_1(\Omega)\qquad{\mbox{ and }} \qquad \lambda_2(x_0+\Omega) = \lambda_2(\Omega). $

    To proceed further, we now recall the following global boundedness result for the eigenfunctions of $ {\mathcal{L}}_{p, s} $ (associated with any eigenvalue $ \lambda $) established in [8,Theorem 4.4].

    Theorem 2.8. Let $ u\in \mathcal{X}_0^{1, p}(\Omega)\setminus\{0\} $ be an eigenfunction for $ {\mathcal{L}}_{p, s} $, associated with an eigenfunction $ \lambda \geq \lambda_1(\Omega) $. Then, $ u\in L^\infty({\mathbb{R}}^n) $.

    Remark 2.9. Actually, in [8,Theorem 4.4] it is proved the global boundedness of any non-negative weak solution to the more general Dirichlet problem

    $ \begin{cases} {\mathcal{L}}_{p, s} = f(x, u) & {{\rm{in}}\; \Omega }, \\ u \equiv 0 & {{\rm{a.e}}.\, {\rm{in}}\; {\mathbb{R}}^n\setminus\Omega }, \end{cases} $

    where $ f:\Omega\times{\mathbb{R}}\to{\mathbb{R}} $ is a Carathéodory function satisfying the properties

    $ (a) $ $ f(\cdot, t)\in L^\infty(\Omega) $ for every $ t\geq 0 $;

    $ (b) $ There exists a constant $ c_p > 0 $ such that

    $ |f(x, t)| \leq c_p(1+t^{p-1})\qquad{{\rm{for}}\; {\rm{a.e}}.\; x\in\Omega\; {\rm{and}} \;{\rm{every}} \;t\geq 0 }. $

    However, by scrutinizing the proof of the theorem, it is easy to check that the same argument can be applied to our context, where we have

    $ f(x, t) = \lambda|t|^{p-2}t\qquad {\rm{ for}} \;{\rm{ all }} \;x\in\Omega \;{\rm{ and }} \;t\in{\mathbb{R}}, $

    but we do not make any assumption on the sign of $ u $ (see also [40,Proposition 4]).

    Finally, we state here an algebraic lemma which shall be useful in the forthcoming computations.

    Lemma 2.10. Let $ 1 < p < +\infty $ be fixed. Then, the following facts hold.

    $ 1) $ For every $ a, b\in \mathbb{R} $ such that $ ab\leq 0 $, it holds that

    $ \begin{equation*} J_p(a-b)a \geq \begin{cases} |a|^p - (p-1)|a-b|^{p-2}ab, & {{if \;1 < p\leq 2 }}, \\[0.1cm] |a|^p - (p-1)|a|^{p-2}ab, & {{if \;p > 2 }}. \end{cases} \end{equation*} $

    $ 2) $ There exists a constant $ c_p > 0 $ such that

    $ |a-b|^p \leq |a|^p+|b|^p + c_p\big(|a|^2+|b|^2\big)^{\frac{p-2}{2}}|ab|, \qquad \forall\, \, a, b\in{\mathbb{R}}. $

    In this section we prove the interior Hölder regularity of the eigenfunctions for $ {\mathcal{L}}_{p, s} $, which is a fundamental ingredient for the proof of Theorem 1.1. As a matter of fact, on account of Theorem 2.8, we establish the interior Hölder regularity for any bounded weak solution of the non-homogeneous equation (2.3), when

    $ f\in L^\infty(\Omega). $

    In what follows, we tacitly understand that

    $ { 2\leq p \leq n \;{\rm{and}}\; s\in (0, 1) }; $

    moreover, $ \Omega\subseteq{\mathbb{R}}^n $ is a bounded open set and $ f\in L^\infty(\Omega) $.

    Remark 3.1. The reason why we restrict ourselves to consider $ 2\leq p\leq n $ follows from the definition of weak solution to (2.3).

    Indeed, if $ u $ is a weak solution to (2.3), then by definition we have $ u\in W^{1, p}({\mathbb{R}}^n) $; as a consequence, if $ p > n $, by the classical Sobolev Embedding Theorem we can immediately conclude that $ u\in C^{0, \gamma}({\mathbb{R}}^n) $, where $ \gamma = 1-n/p $.

    In order to state (and prove) the main result of this section, we need to fix a notation: for every $ z\in{\mathbb{R}}^n, \, \rho > 0 $ and $ u\in L^p({\mathbb{R}}^n) $, we define

    $ \mathrm{Tail}(u, z, \rho) : = \bigg(\rho^p\int_{{\mathbb{R}}^n\setminus B_\rho(z)}\frac{|u|^{p}}{|x-z|^{n+ps}}\, dx\bigg)^{1/p}. $

    The quantity $ \mathrm{Tail}(u, z, \rho) $ is referred to as the $ ({\mathcal{L}_{p, s})} $-tail of $ u $, see e.g., [18,34].

    Theorem 3.2. Let $ f\in L^\infty(\Omega) $, and let $ u\in W^{1, p}({\mathbb{R}}^n)\cap L^\infty({\mathbb{R}}^n) $ be a weak solution to $(2.3)$. Then, there exists some $ \beta = \beta(n, s, p)\in (0, 1) $ such that $ u\in C^{0, \, \beta}_{{\mathrm{loc}}}(\Omega) $.

    More precisely, for every ball $ B_{R_0}(z)\Subset\Omega $ we have the estimate

    $ \begin{equation} [u]_{C^{0, \, \beta}(B_{R_0}(z))}^p \leq C\Big(\|f\|_{L^\infty(\Omega)} + \|u\|_{L^\infty(\Omega)}^p+ \mathrm{Tail}(u, z, R_1)^p+1\Big), \end{equation} $ (3.1)

    where

    $ R_1 : = R_0 + \frac{\mathrm{dist}(B_{R_0}(z), {\partial}\Omega)}{2} $

    and $ C > 0 $ is a constant independent of $ u $ and $ R_1 $.

    In order to prove Theorem 3.2, we follow the approach in [12]; broadly put, the main idea behind this approach is to transfer to the solution $ u $ the oscillation estimates proved in [27] for the $ {\mathcal{L}_{p, s}} $-harmonic functions.

    To begin with, we establish the following basic existence/uniqueness result for the weak solutions to the $ ({\mathcal{L}}_{p, s}) $-Dirichlet problem (2.5).

    Proposition 3.3. Let $ f\in L^\infty(\Omega) $ and $ g\in W^{1, p}({\mathbb{R}}^n) $ be fixed. Then, there exists a unique solution $ u = u_{f, \, g}\in W^{1, p}({\mathbb{R}}^n) $ to the Dirichlet problem (2.5).

    Proof. We consider the space

    $ \mathbb{W}(g) : = \{u\in W^{1, p}({\mathbb{R}}^n):\, u-g\in\mathcal{X}_0^{1, p}(\Omega)\}, $

    and the functional $ J:\mathbb{W}(g)\to{\mathbb{R}} $ defined as follows:

    $ \begin{align*} J(u) : = \frac{1}{p}\int_{\Omega} |\nabla u|^{p}\, d x + \frac{1}{p}\iint_{\Omega\times\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{n+ps}} + \frac{2}{p}\iint_{\Omega\times({\mathbb{R}}^n\setminus\Omega)}\frac{|u(x)-g(y)|^p}{|x-y|^{n+ps}} -\int_{\Omega}fu\, dx. \end{align*} $

    On account of [12,Remark 2.13], we have that $ J $ is strictly convex; hence, by using the Direct Methods in the Calculus of Variations, we derive that $ J $ has a unique minimizer $ u = u_{f, \, g} $ on $ \mathbb{W}(g) $, which is the unique weak solution to (2.5).

    Thanks to Proposition 3.3, we can prove the following result. Throughout the rest of this paper, if $ u\in L^1_{\mathrm{loc}}(\Omega) $ and if $ A\subseteq \Omega $ is a measurable set with positive measure, we adopt the classical notation

    $ -\!\!\!\!\!\!\!\int_Au(x)\, d x : = \frac{1}{|A|}\int_Au(x)\, d x. $

    In particular, if $ A = B(x_0, r) $, we set

    $ \overline{u}_{x_0, r} : = -\!\!\!\!\!\!\!\int_{B(x_0, r)}u(x)\, d x. $

    Lemma 3.4. Let $ f\in L^\infty(\Omega) $ and let $ u\in W^{1, p}({\mathbb{R}}^n) $ be a weak solution to $(2.3)$. Moreover, let $ B $ be a given Euclidean ball such that $ B\Subset\Omega $, and let $ v\in W^{1, p}({\mathbb{R}}^n) $ be the unique weak solution to the Dirichlet problem

    $ \begin{equation} \begin{cases} {\mathcal{L}}_{p, s}v = 0 & {{in\; \Omega }}, \\ v = u & {{in\; {\mathbb{R}}^n\setminus\Omega }}. \end{cases} \end{equation} $ (3.2)

    Then, there exists a constant $ C = C(n, s, p) > 0 $ such that

    $ \begin{equation} [u-v]_{W^{s, p}({\mathbb{R}}^n)}^p \leq C|B|^{p'-\frac{p'(n-sp)}{np}}\|f\|_{L^\infty(\Omega)}^{p'}. \end{equation} $ (3.3)

    In particular, we have

    $ \begin{equation} -\!\!\!\!\!\!\!\int_B|u-v|^p\, dx \leq C|B|^{p'-\frac{p'(n-sp)}{np}+\frac{sp}{n}-1}\|f\|_{L^\infty(\Omega)}^{p'}. \end{equation} $ (3.4)

    Proof. We observe that the existence of $ v $ is ensured by Proposition 3.3. Then, taking into account that $ u $ is a weak solution to (2.3) and $ v $ is the weak solution to (3.2), for every $ \phi\in \mathcal{X}^{1, p}_0(B) $ we get

    $ \begin{align*} & \int_{B}\big(|\nabla u|^{p-2}\langle \nabla u, \nabla\phi\rangle- |\nabla v|^{p-2}\langle \nabla v, \nabla\phi\rangle\big)dx \\ & \quad + \iint_{{\mathbb{R}}^{2n}}\frac{\big(J_p(u(x)-u(y))-J_p(v(x)-v(y))\big)(\phi(x)-\phi(y))}{|x-y|^{n+ps}} \, dx\, dy = \int_B f\phi. \end{align*} $

    Choosing, in particular, $ \phi : = u-v $ (notice that, since $ v $ is a weak solution of (3.2), by definition we have $ v-u\in\mathcal{X}_0^{1, p}(\Omega) $), we obtain

    $ \begin{equation} \begin{split} & \int_{\Omega}\mathcal{B}(\nabla u, \nabla v)\, dx + \iint_{{\mathbb{R}}^{2n}} \frac{\big(J_p(t_1)-J_p(t_2)\big)(t_1-t_2)}{|x-y|^{n+ps}} \, dx\, dy = \int_B f(u-v)\, d x, \end{split} \end{equation} $ (3.5)

    where $ t_1: = u(x)-u(y), \, t_2 : = v(x)-v(y) $ and

    $ \mathcal{B}(a, b) : = |a|^p+|b|^p-(|a|^{p-2}+|b|^{p-2})\langle a, b\rangle \qquad {\text{ for all }} \;a, b\in{\mathbb{R}}. $

    Now, an elementary computation based on Cauchy-Schwarz's inequality gives

    $ \begin{equation} \mathcal{B}(a, b)\geq 0\qquad{\text{ for all }}\; a, b\in{\mathbb{R}}. \end{equation} $ (3.6)

    Moreover, since $ p\geq 2 $, by exploiting [12,Remark A.4] we have

    $ \begin{equation} \big(J_p(t_1)-J_p(t_2)\big)(t_1-t_2)\geq \frac{1}{C}|t_1-t_2|^p, \end{equation} $ (3.7)

    where $ C = C(p) > 0 $ is a constant only depending on $ p $. Thus, by combining (3.5), (3.6) and (3.7), we obtain the following estimate:

    $ \begin{align*} [u-v]_{W^{s, p}({\mathbb{R}}^n)}^p & = \iint_{{\mathbb{R}}^{2n}}\frac{|t_1-t_2|^p}{|x-y|^{n+ps}}\, dx\, dy \\ & \leq C\bigg(\int_{\Omega}\mathcal{B}(\nabla u, \nabla v)\, dx + \iint_{{\mathbb{R}}^{2n}} \frac{\big(J_p(t_1)-J_p(t_2)\big)(t_1-t_2)}{|x-y|^{n+ps}} \, dx\, dy\bigg) \\[0.1cm] & \leq C\int_B f(u-v)\, dx \\&\leq C\|f\|_{L^\infty(\Omega)}\int_B|u-v|\, dx \\ & \leq C\, |B|^{1-\frac{1}{p^*_s}}\, \|f\|_{L^\infty(\Omega)}\, \|u-v\|_{L^{p^*_s}(B)}, \end{align*} $

    where we have also used the Hölder's inequality and $ p^*_s > 1 $ is the so-called fractional critical exponent, that is,

    $ p^*_s : = \frac{np}{n-sp}. $

    Finally, by applying the fractional Sobolev inequality to $ \phi = u-v $ (notice that $ \phi $ is compactly supported in $ B $), we get

    $ [u-v]_{W^{s, p}({\mathbb{R}}^n)}^p \leq C\, |B|^{1-\frac{1}{p^*_s}}\|f\|_{L^\infty(\Omega)} [u-v]_{W^{s, p}({\mathbb{R}}^n)}, $

    and this readily yields the desired (3.3). To prove (3.4) we observe that, by using the Hölder inequality and again the fractional Sobolev inequality, we have

    $ \begin{align*} -\!\!\!\!\!\!\!\int_B|u-v|^p\, dx & \leq \bigg( -\!\!\!\!\!\!\!\int_B|u-v|^{p^*_s}\, dx\bigg)^{\frac{p}{p^*_s}} \leq C\, |B|^{-\frac{p^*_s}{p}}\, [u-v]_{W^{s, p}({\mathbb{R}}^n)}^{p}; \end{align*} $

    thus, estimate (3.4) follows directly from (3.3).

    Using Lemma 3.4, we can prove the following excess decay estimate.

    Lemma 3.5. Let $ f\in L^\infty(\Omega) $ and let $ u\in W^{1, p}({\mathbb{R}}^n) $ be a weak solution to $(2.3)$. Moreover, let $ x_0\in\Omega $ and let $ R \in (0, 1) $ be such that $ B_{4R}(x_0)\Subset \Omega $.

    Then, for every $ 0 < r\leq R $ we have the estimate

    $ \begin{equation} \begin{split} & -\!\!\!\!\!\!\!\int_{B_r(x_0)} |u-\overline{u}_{x_0, r}|^p\, dx \\&\qquad \leq C\bigg(\frac{R}{r}\bigg)^n\, R^{\gamma}\, \|f\|_{L^\infty(\Omega)}^{p'} +C\bigg(\frac{r}{R}\bigg)^{\alpha p} \bigg(R^\gamma\, \|f\|_{L^\infty(\Omega)}^{p'} + -\!\!\!\!\!\!\!\int_{B_{4R}(x_0)}|u|^p\, dx + \mathrm{Tail}(u, x_0, 4R)^p\bigg)\, , \end{split} \end{equation} $ (3.8)

    where $ C, \, \gamma $ and $ \alpha $ are positive constants only depending on $ n $, $ s $ and $ p $.

    Proof. Let $ v\in W^{1, p}({\mathbb{R}}^n) $ be the unique weak solution to the problem

    $ \begin{equation} \begin{cases} {\mathcal{L}}_{p, s}v = 0 & {{\rm{in}}\; B_{3R}(x_0) }, \\ v = u & {{\rm{on}} \;{\mathbb{R}}^n\setminus B_{3R}(x_0) }. \end{cases} \end{equation} $ (3.9)

    We stress that the existence of $ v $ is guaranteed by Proposition 3.3. We also observe that, for every $ r\in(0, R] $, we have that

    $ \begin{equation*} |\overline{u}_{x_0, r}-\overline{v}_{x_0, r}|^p = \bigg| -\!\!\!\!\!\!\!\int_{B_r(x_0)}(u-v)\, dx\bigg|^p\leq -\!\!\!\!\!\!\!\int_{B_r(x_0)}|u-v|^p\, dx. \end{equation*} $

    As a consequence, we obtain

    $ \begin{equation} \begin{split} -\!\!\!\!\!\!\!\int_{B_r(x_0)} |u-\overline{u}_{x_0, r}|^p\, dx & \leq \kappa -\!\!\!\!\!\!\!\int_{B_r(x_0)} |u-v|^p\, dx + \kappa -\!\!\!\!\!\!\!\int_{B_r(x_0)} |v-\overline{v}_{x_0, r}|^p\, dx + \kappa -\!\!\!\!\!\!\!\int_{B_r(x_0)} |\overline{u}_{x_0, r}-\overline{v}_{x_0, r}|^p\, dx \\[0.2cm] & \leq \kappa\bigg( -\!\!\!\!\!\!\!\int_{B_r(x_0)} |u-v|^p\, dx+ -\!\!\!\!\!\!\!\int_{B_r(x_0)} |v-\overline{v}_{x_0, r}|^p\, dx\bigg)\, , \end{split} \end{equation} $ (3.10)

    where $ \kappa = \kappa_p > 0 $ is a constant only depending on $ p $.

    Now, since $ B_{3R}(x_0)\Subset \Omega $ and $ v $ is the weak solution to (3.9), by Lemma 3.4 we have

    $ \begin{equation} \begin{split} -\!\!\!\!\!\!\!\int_{B_r(x_0)} |u-v|^p\, dx & \leq C\, r^{np'-\frac{p'(n-sp)}{p}+sp-n}\|f\|_{L^\infty(\Omega)}^{p'} \\ & \leq C\, \bigg(\frac{R}{r}\bigg)^n\, R^{np'-\frac{p'(n-sp)}{p}+sp-n} \|f\|_{L^\infty(\Omega)}^{p'}. \end{split} \end{equation} $ (3.11)

    On the other hand, since $ v\in W^{1, p}({\mathbb{R}}^n) $ and $ v $ is $ {\mathcal{L}}_{p, s} $-harmonic in $ B_{3R}(x_0) $ (that is, $ {\mathcal{L}}_{p, s}v = 0 $ in the weak sense), we can apply [27,Theorem 5.1], obtaining

    $ \begin{equation} \begin{split} -\!\!\!\!\!\!\!\int_{B_r(x_0)} |v-\overline{v}_{x_0, r}|^p\, dx = \, & -\!\!\!\!\!\!\!\int_{B_r(x_0)} \bigg| -\!\!\!\!\!\!\!\int_{B_r(x_0)}(v(x)-v(y))\, dy\bigg|^p\, dx \\ \leq \, & -\!\!\!\!\!\!\!\int_{B_r(x_0)}\bigg( -\!\!\!\!\!\!\!\int_{B_r(x_0)}|v(x)-v(y)|^p\, dy\bigg)dx \\ \leq\, & \big(\mathrm{osc}_{B_r(x_0)}v\big)^p \\[0.2cm] \leq\, & C\bigg(\frac{r}{R}\bigg)^{\alpha p}\bigg( \mathrm{Tail}(v, x_0, R)^p+ -\!\!\!\!\!\!\!\int_{B_{2R}(x_0)}|v|^p\, dx\bigg)\, , \end{split} \end{equation} $ (3.12)

    where $ C $ and $ \alpha $ are positive constants only depending on $ n $, $ s $ and $ p $. By combining estimates (3.11)-(3.12) with (3.10), we then get

    $ \begin{equation} \begin{split} -\!\!\!\!\!\!\!\int_{B_r(x_0)} |u-\overline{u}_{x_0, r}|^p\, dx & \leq C\, \bigg(\frac{R}{r}\bigg)^n\, R^{\gamma} \|f\|_{L^\infty(\Omega)}^{p'} + C\bigg(\frac{r}{R}\bigg)^{\alpha p}\bigg( \mathrm{Tail}(v, x_0, R)^p+ -\!\!\!\!\!\!\!\int_{B_{2R}(x_0)}|v|^p\, dx\bigg)\, , \end{split} \end{equation} $ (3.13)

    where we have set

    $ \begin{equation} \gamma : = np'-\frac{p'(n-sp)}{p}+sp-n > 0. \end{equation} $ (3.14)

    To complete the proof of (3.8) we observe that, since $ u \equiv v $ a.e. on $ {\mathbb{R}}^n\setminus B_{3R}(x_0) $ (and $ 0 < R \leq 1 $), by definition of $ \mathrm{Tail}(v, x_0, R) $ we have

    $ \begin{equation} \begin{split} \mathrm{Tail}(v, x_0, R)^p & = R^p\int_{{\mathbb{R}}^n\setminus B_R(x_0)}\frac{|v|^{p}}{|x-x_0|^{n+ps}}\, dx \\ & = R^p\int_{{\mathbb{R}}^n\setminus B_{4R}(x_0)}\frac{|v|^{p}}{|x-x_0|^{n+ps}}\, dx + R^p\int_{ B_{4R}(x_0)\setminus B_R(x_0)}\frac{|v|^{p}}{|x-x_0|^{n+ps}}\, dx \\[0.2cm] & \leq C\bigg( \mathrm{Tail}(u, x_0, 4R)^p + -\!\!\!\!\!\!\!\int_{B_{4R}(x_0)} |v|^p\, dx\bigg)\, . \end{split} \end{equation} $ (3.15)

    Moreover, by using again Lemma 3.4, we get

    $ \begin{equation} \begin{split} -\!\!\!\!\!\!\!\int_{B_{4R}(x_0)} |v|^p\, dx & \leq C -\!\!\!\!\!\!\!\int_{B_{4R}(x_0)}|u-v|^p\, dx + C -\!\!\!\!\!\!\!\int_{B_{4R}(x_0)}|u|^p\, dx \\ & \leq C\bigg(R^{\gamma}\|f\|_{L^\infty(\Omega)}^{p'} + -\!\!\!\!\!\!\!\int_{B_{4R}(x_0)}|u|^p\, dx\bigg)\, . \end{split} \end{equation} $ (3.16)

    Thus, by inserting (3.15)-(3.16) into (3.13), we obtain the desired (3.8).

    By combining Lemmata 3.4 and 3.5, we can provide the

    Proof of Theorem 3.2. The proof follows the lines of [12,Theorem 3.6]. First, we consider a ball $ B_{R_0}(z) \subset\subset \Omega $ and we define the quantities

    $ \begin{equation} d: = \mathrm{dist}(B_{R_0}(z), \partial \Omega) > 0 \quad {\rm{and }} \quad R_1: = \dfrac{d}{2}+R_0. \end{equation} $ (3.17)

    Thus, we can choose a point $ x_0 \in B_{R_0}(z) $ and the ball $ B_{4R}(x_0) $, where $ R < \min\{1, \tfrac{d}{8}\} $. In particular, this implies that $ B_{4R}(x_0)\subset B_{R_1}(z) $. Since $ R < 1 $, we can then apply Lemma 3.5: this gives, for every $ 0 < r \leq R $,

    $ \begin{equation} \begin{aligned}& -\!\!\!\!\!\!\!\int_{B_{r}(x_0)}|u-\overline{u}_{x_0, r}|^p\, dx \\&\qquad\leq C \left(\dfrac{R}{r}\right)^{n}R^{\gamma} \|f\|^{p'}_{L^{\infty}(\Omega)}+ C\left(\dfrac{r}{R}\right)^{\alpha \, p}\left( R^{\gamma}\|f\|^{p'}_{L^{\infty}(\Omega)} + -\!\!\!\!\!\!\!\int_{B_{4R}(x_0)}|u|^p \, dx + \mathrm{Tail}(u, x_0, 4R)^p\right)\\ &\qquad\leq C \left(\dfrac{R}{r}\right)^{n}R^{\gamma} \|f\|^{p'}_{L^{\infty}(\Omega)} + C\left(\dfrac{r}{R}\right)^{\alpha \, p}\left( d^{\gamma}\|f\|^{p'}_{L^{\infty}(\Omega)} + \|u\|_{L^{\infty}(\Omega)}^p \, dx + \mathrm{Tail}(u, x_0, 4R)^p\right), \end{aligned} \end{equation} $ (3.18)

    where $ \gamma > 0 $ is as in (3.14). Now, we notice that for every $ x \notin B_{R_1}(z) $ it holds that

    $ \begin{equation*} |x-x_0| \geq |x-z|-|z-x_0| \geq \dfrac{R_1 - |z-x_0|}{R_1}|x-z|. \end{equation*} $

    Therefore, we have

    $ \begin{equation*} \begin{split} \mathrm{Tail}(u, x_0, 4R)^p & = (4R)^p \int_{\mathbb{R}^n \setminus B_{R_1}(z)} \dfrac{|u|^p}{|x-x_0|^{n+ps}}\, dx + (4R)^p \int_{B_{R_1}(z)\setminus B_{4R}(x_0)} \dfrac{|u|^p}{|x-x_0|^{n+ps}}\, dx\\ & \leq \left(\dfrac{4R}{R_1}\right)^{p}\left(\dfrac{R_1}{R_1 - |z-x_0|}\right)^{n+ps} \mathrm{Tail}(u, z, R_1)^p + C \|u\|^p_{L^{\infty}(\Omega)} \\[0.2cm] & \leq \mathrm{Tail}(u, z, R_1)^p + C \|u\|^p_{L^{\infty}(\Omega)} \end{split} \end{equation*} $

    for a constant $ C $ depending on $ n $, $ s $ and $ p $. We recall that in the last estimate we exploited that

    $ \begin{equation*} \dfrac{4R}{R_1} < \dfrac{\tfrac{d}{2}}{R_0 + \tfrac{d}{2}} < 1 \quad {\rm{and }} \quad \dfrac{4R}{R_1 - |x_0-z|}\leq \dfrac{4R}{R_1-R_0} < 1. \end{equation*} $

    Consequently, continuing the estimate started with (3.18), we find that

    $ \begin{equation} \begin{aligned}& -\!\!\!\!\!\!\!\int_{B_{r}(x_0)}|u-\overline{u}_{x_0, r}|^p\, dx\\&\qquad \leq C \left(\dfrac{R}{r}\right)^{n}R^{\gamma} \|f\|^{p'}_{L^{\infty}(\Omega)}+ C\left(\dfrac{r}{R}\right)^{\alpha \, p}\left( d^{\gamma}\|f\|^{p'}_{L^{\infty}(\Omega)} + \|u\|_{L^{\infty}(\Omega)}^p \, dx + \mathrm{Tail}(u, z, R_1)^p\right). \end{aligned} \end{equation} $ (3.19)

    We can now define the positive number

    $ \theta : = 1 + \dfrac{\gamma}{n+\alpha \, p}, $

    and take $ r: = R^{\theta} $ in (3.19), which yields

    $ \begin{equation*} \begin{split} & r^{-\beta p} -\!\!\!\!\!\!\!\int_{B_{r}(x_0)\cap B_{R_0}(z)} |u-\overline{u}_{x_0, r}|^p\, dx \leq C \left( (d^{\gamma}+1)\|f\|^{p'}_{L^{\infty}(\Omega} + \|u\|^{p}_{L^{\infty}(\Omega)} + \mathrm{Tail}(u, z, R_1)^p\right), \end{split} \end{equation*} $

    where we have set

    $ \beta: = \dfrac{\gamma \alpha}{n+\alpha p + \gamma} > 0. $

    This shows that $ u \in \mathcal{L}^{p, n+\beta\gamma}(B_{R_0}(z)) $, the Campanato space isomorphic to the Hölder space $ C^{0, \, \beta}(\overline{B_{R_0}(z)}) $. This completes the proof of Theorem 3.2.

    By gathering together Theorems 2.8 and 3.2, we can easily prove the needed interior Hölder regularity of the eigenfunctions of $ {\mathcal{L}}_{p, s} $.

    Theorem 3.6. Let $ \lambda\geq \lambda_1(\Omega) $ be an eigenvalue of $ {\mathcal{L}}_{p, s} $, and let $ \phi_\lambda\in \mathcal{X}_0^{1, p}(\Omega)\setminus\{0\} $ be an eigenfunction associated with $ \lambda $. Then, $ \phi_\lambda\in C(\Omega) $.

    Proof. On account of Theorem 2.8, we know that $ \phi_\lambda\in L^\infty({\mathbb{R}}^n) $. As a consequence, $ \phi_\lambda $ is a globally bounded weak solution to (2.3), with

    $ f : = \lambda|\phi_\lambda|^{p-2}\phi_\lambda\in L^\infty(\Omega). $

    We are then entitled to apply Theorem 3.2, which ensures that $ \phi_\lambda\in C^{0, \, \beta}_{{\mathrm{loc}}}(\Omega) $ for some $ \beta = \beta(n, s, p)\in (0, 1) $. This ends the proof of Theorem 3.6.

    In this last section of the paper we provide the proof of Theorem 1.1. Before doing this, we establish two preliminary results.

    First of all, we prove the following Faber-Krahn type inequality for $ {\mathcal{L}_{p, s} }$.

    Theorem 4.1. Let $ \Omega\subseteq{\mathbb{R}}^n $ be a bounded open set, and let $ m: = |\Omega|\in (0, \infty) $. Then, if $ B^{(m)} $ is any Euclidean ball with volume $ m $, one has

    $ \begin{equation} \lambda_1(\Omega)\geq \lambda_1 (B^{(m)}). \end{equation} $ (4.1)

    Moreover, if the equality holds in $(4.1)$, then $ \Omega $ is a ball.

    Proof. The proof is similar to that in the linear case, see [7,Theorem 1.1]; however, we present it here in all the details for the sake of completeness.

    To begin with, let $ \widehat{B}^{(m)} $ be the Euclidean ball with centre $ 0 $ and volume $ m $. Moreover, let $ u_0\in\mathcal{M}(\Omega) $ be the principal eigenfunction for $ {\mathcal{L}}_{p, s} $. We recall that, by definition, $ u_0 $ is the unique non-negative eigenfunction associated with the first eigenvalue $ \lambda_1(\Omega) $; in particular, we have (see (2.8))

    $ \begin{equation} \lambda_1(\Omega) = \int_\Omega|\nabla u_0|^p\, dx + \iint_{{\mathbb{R}}^{2n}} \frac{|u_0(x)-u_0(y)|^p}{|x-y|^{n+ps}}\, dx\, dy. \end{equation} $ (4.2)

    Then, we define $ u_0^\ast:{\mathbb{R}}^n\to{\mathbb{R}} $ as the (decreasing) Schwarz symmetrization of $ u_0 $. Now, since $ u_0\in\mathcal{M}(\Omega) $, from the well-known inequality by Pólya and Szegö (see e.g., [38]) we deduce that

    $ \begin{equation} u_0^\ast\in \mathcal{M}(\widehat{B}^{(m)})\qquad{\rm{and}}\qquad \int_{\widehat{B}^{(m)}}|\nabla u_0^\ast|^p\, dx \leq \int_{\Omega}|\nabla u|^p\, dx. \end{equation} $ (4.3)

    Furthermore, by [2,Theorem 9.2] (see also [25,Theorem A.1]), we also have

    $ \begin{equation} \iint_{{\mathbb{R}}^{2n}}\frac{|u_0^\ast(x)-u_0^\ast(y)|^p}{|x-y|^{n+ps}}\, d x\, dy \leq \iint_{{\mathbb{R}}^{2n}}\frac{|u_0(x)-u_0(y)|^p}{|x-y|^{n+ps}}\, d x\, dy. \end{equation} $ (4.4)

    Gathering all these facts and using (4.2), we get

    $ \begin{equation} \begin{split} \lambda_{1}(\Omega) & = \int_{\Omega}|\nabla u_0|^2\, dx +\iint_{{\mathbb{R}}^{2n}}\frac{|u_0(x)-u_0(y)|^2}{|x-y|^{n+2s}}\, d x\, dy \\ & \geq \int_{\widehat{B}^{(m)}}|\nabla u_0^\ast|^2\, dx + \iint_{{\mathbb{R}}^{2n}}\frac{|u_0^\ast(x)-u_0^\ast(y)|^2}{|x-y|^{n+2s}}\, d x\, dy\\& \geq \lambda_{1}(\widehat {B}^{(m)}). \end{split} \end{equation} $ (4.5)

    From this, since $ \lambda_{1}(\cdot) $ is translation-invariant, we derive the validity of (4.1) for every Euclidean ball $ B^{(m)} $ with volume $ m $.

    To complete the proof of Theorem 4.1, let us suppose that

    $ \lambda_{1}(\Omega) = \lambda_{1}(B^{(m)}) $

    for some (and hence, for every) ball $ B^{(m)} $ with $ |B^{(m)}| = m $. By (4.5) we have

    $ \begin{align*} & \int_{\Omega}|\nabla u_0|^p\, dx +\iint_{{\mathbb{R}}^{2n}}\frac{|u_0(x)-u_0(y)|^p}{|x-y|^{n+ps}}\, d x\, dy = \lambda_1(\Omega) \\ & \qquad = \lambda_1(\widehat{B}^{(m)}) = \int_{\widehat{B}^{(m)}}|\nabla (u_0)^\ast|^p\, dx + \iint_{{\mathbb{R}}^{2n}}\frac{|u_0^\ast(x)-u_0^\ast(y)|^p}{|x-y|^{n+ps}}\, d x\, dy. \end{align*} $

    In particular, by (4.3) and (4.4) we get

    $ \iint_{{\mathbb{R}}^{2n}}\frac{|u_0(x)-u_0(y)|^p}{|x-y|^{n+ps}}\, d x\, dy = \iint_{{\mathbb{R}}^{2n}}\frac{|u_0^\ast(x)-u_0^\ast(y)|^p}{|x-y|^{n+ps}}\, d x\, dy. $

    We are then in the position to apply once again [25,Theorem A.1], which ensures that $ u_0 $ must be proportional to a translation of a symmetric decreasing function. As a consequence of this fact, we immediately deduce that

    $ \Omega = \{x\in{\mathbb{R}}^n:\, u_0(x) > 0\} $

    must be a ball (up to a set of zero Lebesgue measure). This completes the proof of Theorem 4.1.

    Then, we establish the following lemma on nodal domains.

    Lemma 4.2. Let $ \lambda > \lambda_1(\Omega) $ be an eigenvalue of $ {\mathcal{L}}_{p, s} $, and let $ \phi_\lambda\in \mathcal{X}_0^{1, p}(\Omega)\setminus\{0\} $ be an eigenfunction associated with $ \lambda $. We define the sets

    $ \begin{equation*} \Omega^+ : = \left\{ x \in \Omega: \phi_{\lambda}(x) > 0\right\} \quad {{and}} \quad \Omega^- : = \left\{ x \in \Omega: \phi_{\lambda}(x) < 0\right\}. \end{equation*} $

    Then $ \lambda > \max\left\{\lambda_1(\Omega^{+}), \lambda_1(\Omega^-)\right\} $.

    The proof of Lemma 4.2 takes inspiration from [13,Lemma 6.1] (see also [29,Lemma 4.2]).

    Proof of Lemma 4.2. First of all, on account of Theorem 3.6 we have that the sets $ \Omega^+ $ and $ \Omega^- $ are open, and therefore the eigenvalues $ \lambda_{1}(\Omega^{\pm}) $ are well–defined.

    Moreover, thanks to Proposition 2.6, we know that $ \phi_\lambda $ changes sign in $ \Omega $, and therefore it is convenient to write $ \phi_{\lambda} = \phi_{\lambda}^+ - \phi_{\lambda}^-, $ where $ \phi_{\lambda}^+ $ and $ \phi_{\lambda}^- $ denote, respectively, the positive and negative parts of $ \phi_{\lambda} $, with the convention that both the functions $ \phi_{\lambda}^+ $ and $ \phi_{\lambda}^- $ are non-negative.

    Let us now prove that $ \lambda > \lambda_{1}(\Omega^+) $. By using the fact that $ \phi_{\lambda} $ is an eigenfuction of $ {\mathcal{L}}_{p, s} $ corresponding to $ \lambda $, it follows that

    $ \begin{equation*} \begin{aligned} & \int_{\Omega}|\nabla \phi_{\lambda}|^{p-2}\langle \nabla \phi_{\lambda}, v\rangle \, dx + \iint_{\mathbb{R}^{2n}}\dfrac{|\phi_{\lambda}(x)-\phi_{\lambda}(y)|^{p-2}(\phi_{\lambda}(x)-\phi_{\lambda}(y))(v(x)-v(y)}{|x-y|^{n+ps}}\, dxdy\\ & \qquad = \lambda \int_{\Omega}|\phi_{\lambda}|^{p-2}\phi_{\lambda}v \, dx, \quad \text{ for all }\; v \in \mathcal{X}_{0}^{1, p}(\Omega). \end{aligned} \end{equation*} $

    In consideration of the fact that $ \phi_{\lambda}^{+} \in \mathcal{X}_{0}^{1, p}(\Omega) $, we can take $ v = \phi_{\lambda}^+ $ as a test function.

    Now, since

    $ { \phi_{\lambda}^{+}(x)\phi_{\lambda}^{-}(x) = 0 \;{\text{for a.e}}.\; x \in \Omega }, $

    we easily get that

    $ (\phi_{\lambda}^+ (x) - \phi_{\lambda}^{+}(y))(\phi_{\lambda}^- (x) - \phi_{\lambda}^{-}(y))\leq 0. $

    Moreover, since both $ \Omega_+ $ and $ \Omega_- $ are non-void open set (remind that $ \phi_\lambda $ is continuous on $ \Omega $ and it changes sign in $ \Omega $), we have

    $ \begin{eqnarray*} &&\iint_{{\mathbb{R}}^{2n}}\frac{|\phi_\lambda(x)-\phi_\lambda(y)|^{p-2} (\phi_{\lambda}^+ (x) - \phi_{\lambda}^{+}(y))(\phi_{\lambda}^- (x) - \phi_{\lambda}^{-}(y))} {|x-y|^{n+ps}}\, d x\, d y \\ && \qquad\qquad\qquad\leq -\int_{\Omega_+}\int_{\Omega_-} \frac{|\phi_\lambda(x)-\phi_\lambda(y)|^{p-2} \phi_{\lambda}^+ (x)\phi_{\lambda}^{-}(y)} {|x-y|^{n+ps}}\, d x\, d y < 0 \end{eqnarray*} $

    and

    $ \begin{eqnarray*} &&\iint_{{\mathbb{R}}^{2n}}\frac{|\phi_\lambda^+(x)-\phi_\lambda^+(y)|^{p-2} (\phi_{\lambda}^+ (x) - \phi_{\lambda}^{+}(y))(\phi_{\lambda}^- (x) - \phi_{\lambda}^{-}(y))} {|x-y|^{n+ps}}\, d x\, d y \\ && \qquad\qquad\qquad\leq -\int_{\Omega_+}\int_{\Omega_-} \frac{|\phi^+_\lambda(x)|^{p-2} \phi_{\lambda}^+ (x)\phi_{\lambda}^{-}(y)} {|x-y|^{n+ps}}\, d x\, d y < 0. \end{eqnarray*} $

    We can therefore exploit Lemma 2.10-(1) with

    $ a : = \phi_{\lambda}^+ (x) - \phi_{\lambda}^{+}(y)\qquad{\rm{and}}\qquad b : = \phi_{\lambda}^- (x) - \phi_{\lambda}^{-}(y), $

    obtaining (remind that, by assumption, $ p\geq 2 $)

    $ \begin{equation*} \begin{aligned}& \lambda \int_{\Omega^+}|\phi_{\lambda}^+|^{p}\, dx\\ = & \lambda \int_{\Omega}|\phi_{\lambda}|^{p-2}\phi_{\lambda}\phi_{\lambda}^+ \, dx \\ = &\int_{\Omega}|\nabla \phi_{\lambda}|^{p-2}\langle \nabla \phi_{\lambda}, \nabla \phi_{\lambda}^{+}\rangle \, dx + \iint_{\mathbb{R}^{2n}}\dfrac{|\phi_{\lambda}(x)-\phi_{\lambda}(y)|^{p-2}(\phi_{\lambda}(x)-\phi_{\lambda}(y))(\phi_{\lambda}^{+}(x)-\phi_{\lambda}^{+}(y)}{|x-y|^{n+ps}}\, dxdy\\ = & \int_{\Omega^+} |\nabla \phi_{\lambda}^{+}|^{p}\, dx + \iint_{\mathbb{R}^{2n}}\dfrac{|\phi_{\lambda}(x)-\phi_{\lambda}(y)|^{p-2}(\phi_{\lambda}(x)-\phi_{\lambda}(y))(\phi_{\lambda}^{+}(x)-\phi_{\lambda}^{+}(y)}{|x-y|^{n+ps}}\, dxdy\\ > & \int_{\Omega^+}|\nabla \phi_{\lambda}^{+}|^{p}\, dx + \iint_{\mathbb{R}^{2n}}\dfrac{|\phi_{\lambda}^{+}(x)-\phi_{\lambda}^{+}(y)|^p}{|x-y|^{n+ps}}\, dxdy \\ \geq&\, \lambda_{1}(\Omega^+) \int_{\Omega^+}|\phi_{\lambda}^+|^{p}\, dx, \end{aligned} \end{equation*} $

    where we used the variational characterization of $ \lambda_{1}(\Omega^+) $, see (2.7). In particular, this gives that $ \lambda > \lambda_{1}(\Omega^+) $. With a similar argument (see e.g., [13,Lemma 6.1]), one can show that $ \lambda > \lambda_{1}(\Omega^-) $ as well, and this closes the proof of Lemma 4.2.

    By virtue of Theorem 4.1 and Lemma 4.2, we can provide the

    Proof of Theorem 1.1. We split the proof into two steps.

    Step Ⅰ: In this step, we prove inequality (1.2). To this end, let $ \phi\in\mathcal{M}(\Omega) $ be a $ L^p $-normalized eigenfunction associated with $ \lambda_2(\Omega) $ (recall the definition of the space $ \mathcal{M}(\Omega) $ in (2.1)). On account of Theorem 2.7, we know that $ \phi\in C(\Omega) $.

    Moreover, since $ \phi $ changes sign in $ \Omega $ (see Proposition 2.6), we can define the non-void open sets

    $ \Omega_+ : = \{u > 0\}\qquad{\rm{and}}\qquad \Omega_- : = \{u < 0\}. $

    Then, by combining Lemma 4.2 with Theorem 4.1, we get

    $ \begin{equation} \lambda_2(\Omega) > \max\big\{\lambda_1(B_+), \lambda_1(B_-)\big\}, \end{equation} $ (4.6)

    where $ B_+ $ is a Euclidean ball with volume equal to $ |\Omega_+| $ and $ B_- $ is a Euclidean ball with volume $ |\Omega_-| $.

    Now, since $ \Omega_+\cup\Omega_- = \Omega $, we have

    $ |B_+|+|B_-| = |\Omega_+|+|\Omega_-| \leq |\Omega| = m. $

    Taking into account this inequality, we claim that

    $ \begin{equation} \max\big\{\lambda_1(B_+), \lambda_1(B_-)\big\} \geq \lambda_1(B), \end{equation} $ (4.7)

    being $ B $ a ball of volume $ |\Omega|/2 $. In order to prove (4.7), we distinguish three cases.

    $ ({\rm{i}}) $ $ |B_+|, \, |B_-|\leq m/2 $. In this case, since $ \lambda_1(\cdot) $ is translation-invariant, we can assume without loss of generality that $ B\subseteq B_+, \, B_- $; as a consequence, since $ \lambda_1(\cdot) $ is non-increasing, we obtain

    $ \lambda_1(B_+), \, \lambda_1(B_-)\geq \lambda_1(B), $

    and this proves the claimed (4.7).

    $ ({\rm{ii}}) $ $ |B_-| < m/2 < |B_+| $. In this case, we can assume that $ B_-\subseteq B\subseteq B_+ $; from this, since $ \lambda_1(\cdot) $ is non-increasing, we obtain

    $ \lambda_1(B_+)\geq \lambda_1(B)\geq \lambda_1(B_-), $

    and this immediately implies the claimed (4.7).

    $ ({\rm{iii}}) $ $ |B_+| < m/2 < |B_-| $. In this last case, it suffices to interchange the roles of the balls $ B_- $ and $ B_+ $, and to argue exactly as in case $({\rm{ii}})$.

    Gathering (4.6) and (4.7), we obtain the claim in (1.2).

    Step Ⅱ: Now we prove the sharpness of (1.2). To this end, according to the statement of the theorem, we fix $ r > 0 $ and we define

    $ \Omega_j : = B_r(x_j)\cup B_r(y_j), $

    where $ \{x_j\}_j, \, \{y_j\}_j\subseteq{\mathbb{R}}^n $ are two sequences satisfying

    $ \begin{equation} \lim\limits_{j\to+\infty}|x_j-y_j| = +\infty. \end{equation} $ (4.8)

    On account of (4.8), we can assume that

    $ \begin{equation} B_r(x_j)\cap B_r(y_j) = \varnothing\qquad{\text{ for all }}\; j\geq 1. \end{equation} $ (4.9)

    Let now $ u_0\in \mathcal{M}(B_r) $ be a $ L^p $-normalized eigenfunction associated with $ \lambda_1(B_r) $ (here, $ B_r = B_r(0) $). For every natural number $ j\geq 1 $, we set

    $ \begin{equation} \phi_{j}(x) : = u_0(x-x_j)\qquad{\rm{and}}\qquad \psi_{j}(x) : = u_0(x-y_j). \end{equation} $ (4.10)

    Since $ \lambda_1(\cdot) $ is translation-invariant, it is immediate to check that $ \phi_j $ and $ \psi_j $ are normalized eigenfunctions associated with $ \lambda_1(B_r(x_j)) $ and $ \lambda_1(B_r(y_j)) $, respectively.

    Moreover, taking into account (4.9), it is easy to see that

    $ \begin{equation} {{ \phi_j\equiv 0 on {\mathbb{R}}^n\setminus B_r(x_j)\supseteq B_r(y_j) \;{\rm{and}}\; \psi_j\equiv 0 \;{\rm{on}}\; {\mathbb{R}}^n\setminus B_r(y_j)\supseteq B_r(x_j) }} \end{equation} $ (4.11)

    and $ \phi_j\psi_j\equiv 0 $ on $ {\mathbb{R}}^n $.

    We then consider the function $ f $ defined as follows:

    $ f(z_1, z_2) : = |z_1|^{\frac{2-p}{p}}z_1\phi_{j}- |z_2|^{\frac{2-p}{p}}z_2\psi_j\qquad {{\rm{with}}\; z = (z_1, z_2)\in S^1 }. $

    Taking into account that $ B_r(x_j), \, B_r(y_j)\subseteq\Omega_j $ and $ u_0\in \mathcal{M}(B_r) $, it is readily seen that $ f(S_1)\subseteq \mathcal{X}_0^{1, p}(\Omega_j) $.

    Furthermore, the function $ f $ is clearly odd and continuous. Also, using (4.9) and the fact that $ \phi\equiv 0 $ out of $ B_r $, one has

    $ \begin{align*} \|f(z_1, z_2)\|^p_{L^p(\Omega_j)} & = \big\||z_1|^{\frac{2-p}{p}}z_1\phi_{j}- |z_2|^{\frac{2-p}{p}}z_2\psi_j\big\|^p_{L^p(\Omega_j)} \\ & = |z_1|^2\|\phi_j\|^p_{L^p(B_r(x_j))} + |z_2|^2\|\psi_j\|^p_{L^p(B_r(y_j))} \\ & = (|z_1|^2+|z_2|^2)\|u_0\|_{L^p(B_r)}^p \\& = 1. \end{align*} $

    We are thereby entitled to use $ f $ in the definition of $ \lambda_2(\Omega) $, see (2.9): setting $ a_j: = \phi_j(x)-\phi_j(y) $ and $ b_j: = \psi_j(x)-\psi_j(y) $ to simplify the notation, this gives, together with (4.9) and (4.11), that

    $ \begin{align*} \lambda_2(\Omega_j) & \leq \max\limits_{v\in\mathrm{Im}(f)} \bigg\{\int_{\Omega_j} |\nabla v|^p\, dx + \iint_{{\mathbb{R}}^{2n}}\frac{|v(x)-v(y)|^p}{|x-y|^{n+ps}} \, dx\, dy\bigg\} \\ & = \max\limits_{|\omega_1|^p+|\omega_2|^p = 1} \bigg\{\int_{\Omega_j} |\nabla(\omega_1\phi_{j}- \omega_2\psi_j)|^{p}\, dx + \iint_{{\mathbb{R}}^{2n}}\frac{|\omega_1a_j-\omega_2b_j |^p}{|x-y|^{n+ps}} \, dx\, dy\bigg\} \\ & = \max\limits_{|\omega_1|^p+|\omega_2|^p = 1} \bigg\{|\omega_1|^p\int_{B_r(x_j)}|\nabla\phi_j|^p\, dx + |\omega_2|^p\int_{B_r(y_j)}|\nabla\psi_j|^p\, dx + \iint_{{\mathbb{R}}^{2n}}\frac{|\omega_1a_j-\omega_2b_j |^p}{|x-y|^{n+ps}} \, dx\, dy\bigg\} \\ & = \max\limits_{|\omega_1|^p+|\omega_2|^p = 1} \bigg\{\int_{B_r}|\nabla u_0|^p\, d x + \iint_{{\mathbb{R}}^{2n}}\frac{|\omega_1a_j-\omega_2b_j |^p}{|x-y|^{n+ps}}\bigg\} . \end{align*} $

    On the other hand, by applying Lemma 2.10-(2), we get

    $ \begin{align*} & \max\limits_{|\omega_1|^p+|\omega_2|^p = 1} \bigg\{\int_{B_r}|\nabla u_0|^p\, d x + \iint_{{\mathbb{R}}^{2n}}\frac{|\omega_1a_j-\omega_2b_j |^p}{|x-y|^{n+ps}}\bigg\}\\& \leq \max\limits_{|\omega_1|^p+|\omega_2|^p = 1} \bigg\{\int_{B_r}|\nabla u_0|^p\, d x + |\omega_1|^p\iint_{{\mathbb{R}}^{2n}}\frac{|\phi_j(x)-\phi_j(y)|^p}{|x-y|^{n+ps}}\, dx\, d y \\ & \qquad\qquad + |\omega_2|^p\iint_{{\mathbb{R}}^{2n}}\frac{|\psi_j(x)-\psi_j(y)|^p}{|x-y|^{n+ps}}\, dx\, d y \\ & \qquad\qquad+ c_p\iint_{{\mathbb{R}}^{2n}}\frac{|(\omega_1a_j)^2+(\omega_2b_j)^2|^{\frac{p-2}{2}}|\omega_1\omega_2a_jb_j|} {|x-y|^{n+ps}}\, dx\, d y\bigg\} \\ & = \max\limits_{|\omega_1|^p+|\omega_2|^p = 1} \bigg\{\int_{B_r}|\nabla u_0|^p\, d x + \iint_{{\mathbb{R}}^{2n}}\frac{|u_0(x)-u_0(y)|^p}{|x-y|^{n+ps}}\, dx\, d y \\ & \qquad\qquad+ c_p\iint_{{\mathbb{R}}^{2n}}\frac{|(\omega_1a_j)^2+(\omega_2b_j)^2|^{\frac{p-2}{2}}|\omega_1\omega_2a_jb_j|} {|x-y|^{n+ps}}\, dx\, d y\bigg\} \\ & = \lambda_1(B_r)+c_p\, \max\limits_{|\omega_1|^p+|\omega_2|^p}\iint_{{\mathbb{R}}^{2n}}\frac{|(\omega_1a_j)^2+(\omega_2b_j)^2|^{\frac{p-2}{2}}|\omega_1\omega_2a_jb_j|} {|x-y|^{n+ps}}\, dx\, d y, \end{align*} $

    where we have also used that $ u_0 $ is a normalized eigenfunction associated with the first eigenvalue $ \lambda_1(B_r) $.

    Summarizing, we have proved that

    $ \begin{equation} \begin{split} & \lambda_2(\Omega_j) \leq \lambda_1(B_r) + c_p\, \max\limits_{|\omega_1|^p+|\omega_2|^p}\iint_{{\mathbb{R}}^{2n}}\frac{|(\omega_1a_j)^2+(\omega_2b_j)^2|^{\frac{p-2}{2}}|\omega_1\omega_2a_jb_j|} {|x-y|^{n+ps}}\, dx\, d y. \end{split} \end{equation} $ (4.12)

    We now set

    $ \mathcal{R}_j : = \max\limits_{|\omega_1|^p+|\omega_2|^p = 1}\iint_{{\mathbb{R}}^{2n}} \frac{|(\omega_1a_j)^2+(\omega_2b_j)^2|^{\frac{p-2}{2}}|\omega_1\omega_2a_jb_j|} {|x-y|^{n+ps}}\, dx\, d y $

    and we claim that $ \mathcal{R}_j\to 0 $ as $ j\to+\infty $.

    Indeed, since $ \phi_j\psi_j\equiv 0 $ on $ {\mathbb{R}}^n $, we have that

    $ a_jb_j = -\psi_j(x)\psi_j(y) -\phi_j(y)\psi_j(x). $

    As a consequence, recalling (4.11)

    $ \begin{align*} 0\leq \mathcal{R}_j & \leq 2\max\limits_{|\omega_1|^p+|\omega_2|^p = 1}\int_{B_r(x_j)}\int_{B_r(y_j)} \frac{|(\omega_1a_j)^2+(\omega_2b_j)^2|^{\frac{p-2}{2}}|\omega_1\omega_2a_jb_j|} {|x-y|^{n+ps}}\, dx\, d y \\ & \leq \frac{2}{|x_j-y_j|-2r}\; \max\limits_{|\omega_1|^p+|\omega_2|^p = 1}\int_{B_r(x_j)}\int_{B_r(y_j)} |(\omega_1a_j)^2+(\omega_2b_j)^2|^{\frac{p-2}{2}}|\omega_1\omega_2a_jb_j|\, dx\, d y \\ & = \frac{2}{|x_j-y_j|-2r} \int_{B_r}\int_{B_r} |u_0(x)^2+u_0(y)^2|^{\frac{p-2}{2}} |u_0(x)u_0(y)|\, dx\, d y \\[0.1cm] & = : \frac{2c_0}{|x_j-y_j|-2r}. \end{align*} $

    Taking into account (4.8), we thereby conclude that

    $ \begin{equation} \lim\limits_{j\to+\infty}\mathcal{R}_j = 0. \end{equation} $ (4.13)

    Gathering together (4.12) and (4.13), we obtain the desired result in (1.3).

    The authors are members of INdAM. S. Biagi is partially supported by the INdAM-GNAMPA project Metodi topologici per problemi al contorno associati a certe classi di equazioni alle derivate parziali. S. Dipierro and E. Valdinoci are members of AustMS. S. Dipierro is supported by the Australian Research Council DECRA DE180100957 PDEs, free boundaries and applications. E. Valdinoci is supported by the Australian Laureate Fellowship FL190100081 Minimal surfaces, free boundaries and partial differential equations. E. Vecchi is partially supported by the INdAM-GNAMPA project Convergenze variazionali per funzionali e operatori dipendenti da campi vettoriali.

    The authors declare no conflict of interest.

    [1] Adey WH, Luckett C, Jensen K (1993) Phosphorus removal from natural waters using controlled algal production. Restor Ecol 1: 29–39. doi: 10.1111/j.1526-100X.1993.tb00006.x
    [2] Alvén B, Eriksson L, Persson S, et al. (2003) Salix As A Metal Remediator - An Exciting Challenge (Salix Som Metallsanerare - En Spännande Utmaning). Svenskt Vatten 1/2003, Swedish Water and Wastewater Association (SWWA), Stockholm, Sweden (In Swedish), 32–33.
    [3] Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biot 77(1): 23–35.
    [4] Argun H, Kargi F, Kapdan IK, et al. (2008) Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrogen Energ 33(7): 1813–1819.
    [5] Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energ Combust 34(5): 551–573.
    [6] Balat M, Kırtay E, Balat H (2009a) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energ Convers Manage 50(12): 3158–3168.
    [7] Balat M, Kırtay E, Balat H (2009b) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energ Convers Manage 50(12): 3147–3157.
    [8] Börjesson P, Berndes G, Fredriksson F, et al. (2002) Multi.functional bioenergy plantations (Multifunktionella bioenergiodlingar). Report EO-02/4 (In Swedish, English summary), National Swedish Energy Agency, Eskilstuna, Sweden.
    [9] Borjesson P, Goran B (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenerg 30 (5): 428–438.
    [10] Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. Prog Ind Microbiol 35: 313–21. doi: 10.1016/S0079-6352(99)80123-4
    [11] Bridgwater T (2006) Biomass for energy. J Sci Food Agr 86(12): 1755–1768.
    [12] Carvalho A, Meireles L, Malcata F (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Progr 22: 1490–506. doi: 10.1002/bp060065r
    [13] Chatzaki MK, Tzanakakis VA, Mara DD, et al. (2011) Irrigation of castor bean (Ricinus communis L.) and sunflower (Helianthus annus L.) plant species with municipal wastewater effluent: impacts on soil properties and seed yield. Water 3(4): 1112–1127.
    [14] Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294–306. doi: 10.1016/j.biotechadv.2007.02.001
    [15] Christenson L, Sims RC (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29: 686–702. doi: 10.1016/j.biotechadv.2011.05.015
    [16] Claassen PAM, Van Lier JB, Contreras AML, et al. (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biot 52(6): 741–755.
    [17] Del Porto D, Steinfeld C (2008) The green paradigm. Reusing the Resource, Concord: Ecowaters Books.
    [18] Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energ Convers Manage 49(8): 2106–2116.
    [19] Dürre (2008) Fermentative Butanol Production. Ann NY Acad Sci 1125(1): 353–362.
    [20] EISA (2007) Energy Independence and Security Act of 2007. Washington, DC. H.R. 6 (110th). Last Updated June 1, 2015. Available from: http://www2.epa.gov/laws-regulations/summary-energy-independence-and-security-act.
    [21] Elitzak H (2001) Food marketing costs at a glance. Food Rev 24(3): 47–48.
    [22] Ellis JT, Hengge HH, Sims RC, et al. (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresource Technol 111: 491–495. doi: 10.1016/j.biortech.2012.02.002
    [23] Friedman AA, Peaks DA, Nichols RL (1977) Algae separation from oxidation pond effluents. J Water Pollut Con F 49: 111–119.
    [24] Goldstein R, Smith W (2002) Water & Sustainability (Volume 4): US Electricity Consumption For Water Supply & Treatment - The Next Half Century. Electric Power Research Institute (EPRI), Palo Alto, CA.
    [25] Gray NF (2004) Biology of Wastewater Treatment 2nd Edition. London: Imperial College Press, 1444.
    [26] Griffiths E (2009) Removal and utilization of wastewater nutrients for algae biomass and biofuels. [MS Thesis], Logan: Utah State University.
    [27] Gu B, Liu D, Wu X, et. al. (2011) Utilization of waste nitrogen for biofuel production in China. Renew Sust Energ Rev 15: 4910–4916. doi: 10.1016/j.rser.2011.07.062
    [28] Gupta RB, Demirbas A (2010) Gasoline, Diesel and Ethanol Biofuels from Grasses and Plants, 1st ed. Cambridge: Cambridge University Press, 246.
    [29] Hartmann H, Strehler A (1995) The role of biomass (Die Stellung der Biomasse). Schriften-reihe ‘Nachwachsende Rohstoffe’, Band 3. Abschluβbericht für das Bundesministerium für Ernähr-ung, Landwirtschaft und Forsten, Landwirtschaftsverlag Gmbh, Münster, Germany (In German).
    [30] Hasselgren, K (2003). Use and Treatment of Municipal Waste Products in Willow Biomass Plantations. Report No. 3242, Dept. of Water Resources Engineering, Lund Institute of Technology, Lund: Lund University, 67.
    [31] Hasselgren K, Larsson S, Ahman I, et al. (2007) Short-rotation willow biomass plantations irrigated and fertilized with wastewaters—results from a four year multi-disciplinary field project in Sweden, France, Northern Ireland, and Greece. SWECO VIAK AB, Malmo, Sweden. Summary Report to the European Commission DG VI, Agriculture, 48.
    [32] Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34: 757–63. doi: 10.1046/j.1529-8817.1998.340757.x
    [33] IPCC (2006) Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. World Health Organization and the United Nations Environment Program. Available from: http://www.ipcc nggip.iges.or.jp/public/2006gl/index.html.
    [34] Kalia VC (2007) Microbial Treatment of Domestic and Industrial Wastes for Bioenergy Production. Applied Microbiology (e-Book) NISCAIR, CSIR, New Delhi. Available from: http://nsdl.niscair.res.in/bitstream/123456789/650/1/DomesticWaste.pdf.
    [35] Klausmeier CA, Litchman E, Daufresne T, et al. (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429: 171–174. doi: 10.1038/nature02454
    [36] Knud-Hansen CF, McElwee K, Baker J, et al. (1998) Pond fertilization: ecological approach and practical application. Pond Dynamics/Aquaculture Collaborative Research Support Program, Oregon State University, Corvallis, OR.
    [37] Liu SX (2007) Food and Agricultural Wastewater Utilization and Treatment, 1st ed. Hoboken: Wiley-Blackwell, 296.
    [38] Lundquist TJ, Woertz IC, Quinn NWT, et al. (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, Berkeley, CA, 178.
    [39] Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14: 217–32. doi: 10.1016/j.rser.2009.07.020
    [40] McGinley S (2007) Sweet sorghum into ethanol. Arizona Agricultural Experiment Station Research Report, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ.
    [41] McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresource Technol, 83(1): 47–54.
    [42] McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenerg 14: 317–324. doi: 10.1016/S0961-9534(97)10066-6
    [43] Meher Kotay S, Das D (2008) Biohydrogen as a renewable energy resource–Prospects and potentials. Int J Hydrogen Energ, 33(1): 258–263.
    [44] Middlebrooks EJ, Porcella DB, Gearheart RA, et al. (1974) Techniques for algae removal from wastewater stabilization ponds. J Water Pollut Con F: 2676–95.
    [45] Molina Grima E, Belarbi E, Acién Fernández FG, et al. (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20: 491–515. doi: 10.1016/S0734-9750(02)00050-2
    [46] Mondala A, Liang K, Toghiani H, et al. (2009) Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource Technol, 100(3): 1203–1210.
    [47] Mulbry WW, Wilkie AC (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13: 301–6. doi: 10.1023/A:1017545116317
    [48] Mulbry W, Westhead EK, Pizarro C, et al. (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technol.96: 451–8.
    [49] Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20: 1079–85.
    [50] NAS (2009) Liquid transportation fuels from coal and biomass: technological status, costs, and environmental impacts. National Academy of Science, Washington, DC: National Academies Press. Available from: http://sites.nationalacademies.org/xpedio/groups/energysite/documents/webpage/energy_054519.pdf on January 14, 2013.
    [51] Niyogi KK (2003) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Phys 50: 333–345.
    [52] Patwardhan AW (2003) Rotating biological contactors: a review. Ind Eng Chem Res 42: 2035–51. doi: 10.1021/ie0200104
    [53] Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technol 102: 17–25. doi: 10.1016/j.biortech.2010.06.035
    [54] Rawat R, Kumar RT, Mutanda T, et al. (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energ 88 (10): 3411–3424.
    [55] Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis..Appl Energ 88(10): 3507–3514.
    [56] Round FE (1984) The Ecology of Algae. Cambridge: Cambridge University Press, 664.
    [57] Salerno M, Nurdogan Y, Lundquist TJ (2009) Biogas production from algae biomass harvested at wastewater treatment ponds. 2009 Bioenergy Engineering Conference. ASABE conference presentation; Oct. Paper No. Bio098023.
    [58] Sheehan J, Dunahay T, Benemann J, et al. (1998) A look back at the US Department of energy's aquatic species programbiodiesel from algae. Report No. NREL/TP-580-24190, prepared for U.S. Department of Energy's Office of Fuels Development. National Renewable Energy Laboratory (NREL), Golden, CO.
    [59] Shen Y, Yuan W, Pei ZJ, et al. (2009) Microalgae mass production methods. T ASABE 52: 1275–87. doi: 10.13031/2013.27771
    [60] Stumm W, Morgan J (1996) Aquatic chemistry: an introduction emphasizing chemical equilibria. In Natural Waters. 3rd Ed., New York: Wiley-Interscience, 1040.
    [61] Tchobanoglous G, Burto FL, Stensel HD (2015) Wastewater Engineering: Treatment and Reuse, 5th Ed., McGraw-Hill Science/Engineering/Math, Hightstown, NJ, 1848.
    [62] Teixeira MR, Rosa MJ (2006) Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: part I: the key operating conditions. Sep Purif Technol 52: 84–94. doi: 10.1016/j.seppur.2006.03.017
    [63] The Raleigh Telegram (2012) Sunflower seeds to partially power Raleigh’s wastewater plant’s biodiesel needs. The Raleigh Telegram, July 11, 2012, Raleigh, NC.
    [64] Torpey WN, Heukelekian H, Kaplovsky AJ, et al. (1971) Rotating disks with biological growths prepare wastewater for disposal or reuse. J Water Pollut Con F 43: 2181–8.
    [65] U.S. CBO (2002) Future investment in drinking water and wastewater infrastructure. Washington D.C: U.S. Congressional Budget Office, Nov 2002. Available from: http://www.cbo.gov/doc.cfm?index=3983.
    [66] U.S. DOE (1985) Review and evaluation of immobilized algae systems for the production of fuels from microalgae. Report No. SERI/STR-231-2798. Solar Energy Research Institute, U.S. Department of Energy, Alexandria, VA.
    [67] U.S. DOE (2011) U.S. Biomass as feedstock for a bioenergy and bioproducts industry: an update to the billion-ton annual supply. Perlack B, Stokes B, et al., USDA/DOE, DOE/GO-102005-2135, U.S. Department of Energy, Washington, DC. Available from: http://www.biomassboard.gov/pdfs/btu_board_june.pdf.
    [68] IRENA (2014) Global bioenergy supply and demand projections. A Working Paper for REmap 2030. International Renewable Energy Agency. Available from: http://www.irena.org/remap/IRENA_REmap_2030_Biomass_paper_2014.pdf.
    [69] U. S. DOE (2014) Bioenergy Technologies Office Multi-Year Program Plan. Energy Efficiency & Renewable Energy. DOE/EE-1108. Available from: http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf.
    [70] U.S. EIA (2010) EIA Annual Energy Outlook 2010 with Projections to 2035. DOE/EIA-0383, U.S. Energy Information Administration, Washington, DC.
    [71] U.S. EIA (2011) Annual Energy Review 2011. DOE/EIA-0384. U.S. Energy Information Administration, Washington, DC.
    [72] U.S.EIA (2012a) Annual Energy Outlook 2012. U.S. Energy Information Administration, Washington, DC.
    [73] U.S. EIA (2012b). EIA’s annual energy outlook 2012 - a comprehensive assessment of the U.S. energy picture, by Howard Gruenspecht, Acting Administrator of the U.S. EIA. National Governors Association, May 30, Washington, DC. Available from: http://www.nga.org/files/live/sites/NGA/files/pdf/1206PolicyInstituteGruenspecht.pdf.
    [74] EPA (2013) Emerging technologies for wastewater treatment and in-plant wet weather management. Tetra Tech, Inc. Fairfax, Virginia. EPA 832-R-12-011. Available from: http://water.epa.gov/scitech/wastetech/upload/Emerging-Technologies-Report-2.pdf.
    [75] Fligger K (2011) Clean watersheds needs survey 2012 update. U.S. EPA, Office of Wastewater Management. Available from: http://www.cifanet.org/documents/11work/KarenFligger.pdf.
    [76] EPA (2015) Municipal wastewater treatment facilities. combined heat and power partnership. Last updated on 2/14/2015. Available from: http://www.epa.gov/chp/markets/wastewater.html.
    [77] EPA (2015) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013. EPA 430-R-15-004. U.S. Environmental Protection Agency, Washington, DC. Available from: http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2015-Main-Text.pdf.
    [78] USDA (2015) Cattle. National Agricultural Statistics Service, Agricultural Statistics Board, U.S. Department of Agriculture, Washington, DC. Available from: http://usda.mannlib.cornell.edu/usda/current/Catt/Catt-07-24-2015.pdf.
    [79] Wang B, Lan C, Courchesne N, et al. (2010) Microalgae for biofuel production and CO2 sequestration. Nova Science Publishers, Hauppauge, NY.
    [80] Wiesmann U, Choi IS, Dombrowski, EM (2006) Fundamentals of biological wastewater treatment, 1st ed. Wiley-VCH, Weinheim, Germany, 362 pp.
    [81] Wigmosta MS, Coleman AM, Skaggs RJ, et al. (2011) National microalgae biofuel productio.  potential and resource demand. Water Resour Res 47: 13.
    [82] Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresource Technol 84: 81–91. doi: 10.1016/S0960-8524(02)00003-2
    [83] Williams C, Biswas, TK, Black I, et al. (2008) Pathways to prosperity: second generation biomass crops for biofuels using saline lands and wastewater. J Agric Sci 21: 28–34.
    [84] Wuertz S, Bishop PL, Wilderer PA (2003) Biofilms in wastewater treatment: an interdisciplinary approach. London: IWA Publishing, 401.
    [85] Zeevalkink J, Kelderman P, Visser D, et al. (1979) Physical mass transfer in a rotating disc gas-liquid contactor. Water Res 13: 913–9. doi: 10.1016/0043-1354(79)90228-8
    [86] U.S. EIA (2015) Annual energy outlook 2015 with projections to 2040. DOE/EIA-0383, U.S. Energy Information Administration, Washington, DC.
    [87] IEA (2011) Technology roadmaps biofuels for transport, international energy agency. 9 rue de la Fédération 75739 Paris Cedex 15, France. Available from: http://www.iea.org/publications/freepublications/publication/biofuels_roadmap_web.pdf.
    [88] Multi-Year Program Plan (2014) Bioenergy Technologies Office. U. S. Department of Energy, Energy Efficiency & Renewable Energy. Available from: http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf.
  • This article has been cited by:

    1. Stefano Biagi, Dimitri Mugnai, Eugenio Vecchi, Necessary condition in a Brezis–Oswald-type problem for mixed local and nonlocal operators, 2022, 132, 08939659, 108177, 10.1016/j.aml.2022.108177
    2. Cristiana De Filippis, Giuseppe Mingione, Gradient regularity in mixed local and nonlocal problems, 2022, 0025-5831, 10.1007/s00208-022-02512-7
    3. Xiangrui Li, Shuibo Huang, Meirong Wu, Canyun Huang, Existence of solutions to elliptic equation with mixed local and nonlocal operators, 2022, 7, 2473-6988, 13313, 10.3934/math.2022735
    4. Prashanta Garain, Erik Lindgren, Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations, 2023, 62, 0944-2669, 10.1007/s00526-022-02401-6
    5. G.C. Anthal, J. Giacomoni, K. Sreenadh, A Choquard type equation involving mixed local and nonlocal operators, 2023, 527, 0022247X, 127440, 10.1016/j.jmaa.2023.127440
    6. Serena Dipierro, Kanishka Perera, Caterina Sportelli, Enrico Valdinoci, An existence theory for superposition operators of mixed order subject to jumping nonlinearities, 2024, 37, 0951-7715, 055018, 10.1088/1361-6544/ad3793
    7. Alberto Maione, Dimitri Mugnai, Eugenio Vecchi, Variational methods for nonpositive mixed local–nonlocal operators, 2023, 26, 1311-0454, 943, 10.1007/s13540-023-00147-2
    8. Sabri Bahrouni, Symmetrization for Mixed Operators, 2024, 2391-4238, 10.2478/amsil-2024-0013
    9. João Vitor da Silva, Alessio Fiscella, Victor A. Blanco Viloria, Mixed local-nonlocal quasilinear problems with critical nonlinearities, 2024, 408, 00220396, 494, 10.1016/j.jde.2024.07.028
    10. Gianmarco Giovannardi, Dimitri Mugnai, Eugenio Vecchi, An Ahmad-Lazer-Paul-type result for indefinite mixed local-nonlocal problems, 2023, 527, 0022247X, 127442, 10.1016/j.jmaa.2023.127442
    11. Serena Dipierro, Edoardo Proietti Lippi, Enrico Valdinoci, Some maximum principles for parabolic mixed local/nonlocal operators, 2024, 0002-9939, 10.1090/proc/16899
    12. Sun-Sig Byun, Deepak Kumar, Ho-Sik Lee, Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities, 2024, 63, 0944-2669, 10.1007/s00526-023-02631-2
    13. Xifeng Su, Enrico Valdinoci, Yuanhong Wei, Jiwen Zhang, On some regularity properties of mixed local and nonlocal elliptic equations, 2025, 416, 00220396, 576, 10.1016/j.jde.2024.10.003
    14. Nicolò Cangiotti, Maicol Caponi, Alberto Maione, Enzo Vitillaro, Klein–Gordon–Maxwell Equations Driven by Mixed Local–Nonlocal Operators, 2023, 91, 1424-9286, 375, 10.1007/s00032-023-00387-0
    15. Prashanta Garain, Wontae Kim, Juha Kinnunen, On the regularity theory for mixed anisotropic and nonlocal p-Laplace equations and its applications to singular problems, 2024, 36, 0933-7741, 697, 10.1515/forum-2023-0151
    16. Shuibo Huang, Hichem Hajaiej, Lazer-mckenna type problem involving mixed local and nonlocal elliptic operators, 2025, 32, 1021-9722, 10.1007/s00030-024-01007-5
    17. Lovelesh Sharma, Brezis Nirenberg type results for local non-local problems under mixed boundary conditions, 2024, 16, 2836-3310, 872, 10.3934/cam.2024038
    18. Dimitri Mugnai, Edoardo Proietti Proietti Lippi, Quasilinear Fractional Neumann Problems, 2024, 13, 2227-7390, 85, 10.3390/math13010085
    19. Carlo Alberto Antonini, Matteo Cozzi, Global gradient regularity and a Hopf lemma for quasilinear operators of mixed local-nonlocal type, 2025, 425, 00220396, 342, 10.1016/j.jde.2025.01.030
    20. Tuhina Mukherjee, Lovelesh Sharma, On singular problems associated with mixed operators under mixed boundary conditions, 2025, 27, 1661-7738, 10.1007/s11784-025-01183-6
    21. R. Lakshmi, Sekhar Ghosh, Mixed local and nonlocal eigenvalue problems in the exterior domain, 2025, 1311-0454, 10.1007/s13540-025-00416-2
    22. Stefano Biagi, Serena Dipierro, Enrico Valdinoci, Eugenio Vecchi, A Brezis-Nirenberg type result for mixed local and nonlocal operators, 2025, 32, 1021-9722, 10.1007/s00030-025-01068-0
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8126) PDF downloads(1587) Cited by(1)

Figures and Tables

Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog