Citation: Paula García-Fraile, Esther Menéndez, Raúl Rivas. Role of bacterial biofertilizers in agriculture and forestry[J]. AIMS Bioengineering, 2015, 2(3): 183-205. doi: 10.3934/bioeng.2015.3.183
[1] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[2] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[3] | Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141 |
[4] | Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058 |
[5] | Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013 |
[6] | Neşet Deniz Turgay . On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050 |
[7] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[8] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[9] | Baoling Guan, Xinxin Tian, Lijun Tian . Induced 3-Hom-Lie superalgebras. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237 |
[10] | Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017 |
The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the $ \mathcal{N} = 8 $ supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.
In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].
On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, $ n $-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.
Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.
This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.
All vector spaces and algebras considered in this paper are on the field $ \mathbb{K} $ with the characteristic of 0.
This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].
Definition 2.1. (see [13]) A 3-Lie algebra is a pair $ (L, [−, −, −]_L) $ consisting of a vector space $ L $ and a skew-symmetric ternary operation $ [−, −, −]_L: \wedge^3 L\rightarrow L $ such that
$ [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, $ | (2.1) |
for all $ l_i\in L, \; 1\leq i\leq 5 $.
A homomorphism between two 3-Lie algebras $ (L_1, [−, −, −]_{L_1}) $ and $ (L_2, [−, −, −]_{L_2}) $ is a linear map $ f: L_1\rightarrow L_2 $ that satisfies $ f([l_1, l_2, l_3]_{L_1}) = [f(l_1), f(l_2), f(l_3)]_{L_2}, $ for all $ l_1, l_2, l_3\in L_1. $
Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra $ (L, [−, −, −]_L) $ on a vector space $ H $ is a skew-symmetric linear map $ \rho: \wedge^2 L \rightarrow \mathrm{End}(H) $, such that
$ ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), $ | (2.2) |
$ ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), $ | (2.3) |
for all $ l_1, l_2, l_3, l_4\in L $. We also denote a representation of $ L $ on $ H $ by $ (H; \rho) $.
2) A coherent action of a 3-Lie algebra $ (L, [−, −, −]_L) $ on another 3-Lie algebra $ (H, [−, −, −]_H) $ is defined by a skew-symmetric linear map $ \rho: \wedge^2 L \rightarrow \mathrm{Der}(H) $ that satisfies Eqs (2.2) and (2.3), along with the condition that
$ [ρ(l1,l2)h1,h2,h3]H=0, $ | (2.4) |
for all $ l_1, l_2\in L $ and $ h_1, h_2, h_3\in H $. We denote a coherent action of $ L $ on $ H $ by $ (H, [−, −, −]_H; \rho^{\dagger}). $
Note that Eq (2.4) and $ \rho(l_1, l_2)\in \mathrm{Der}(H) $ imply that
$ ρ(l1,l2)[h1,h2,h3]H=0. $ | (2.5) |
Example 2.3. Let $ (H, [−, −, −]_H) $ be a 3-Lie algebra. Define $ ad: \wedge^2 H \rightarrow \mathrm{Der}(H) $ by
$ ad(h_1, h_2)h: = [h_1, h_2, h]_H, \; \; \ {for\ all}\; \ h_1, h_2, h\in H. $ |
Then $ (H; ad) $ is a representation of $ (H, [−, −, −]_H) $, which is called the adjoint representation. Furthermore, if the $ ad $ satisfies
$ [ad(h_1, h_2)h'_1, h'_2, h'_3]_H = 0, \; \; \ {for\ all}\; h'_1, h'_2, h'_3\in H, $ |
then $ (H, [−, −, −]_H; ad^{\dagger}) $ is a coherent adjoint action of $ (H, [−, −, −]_H) $.
Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space $ \mathcal{L} $ together with a ternary operation $ [−, −, −]_{\mathcal{L}}: \mathcal{L}\otimes \mathcal{L}\otimes \mathcal{L} \rightarrow \mathcal{L} $ such that
$ [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, $ |
for all $ l_i\in \mathcal{L}, 1\leq i\leq 5 $.
Proposition 2.5. Let $ (L, [−, −, −]_L) $ and $ (H, [−, −, −]_H) $ be two 3-Lie algebras, and let $ \rho $ be a coherent action of $ L $ on $ H $. Then, $ L \oplus H $ is a 3-Leibniz algebra under the following map:
$ [l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H, $ |
for all $ l_1, l_2, l_3\in L $ and $ h_1, h_2, h_3\in H $. This 3-Leibniz algebra $ (L \oplus H, [−, −, −]_{\rho}) $ is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by $ L\ltimes_{\rho}H $.
Proof. For any $ l_1, l_2, l_3, l_4, l_5 \in L $ and $ h_1, h_2, h_3, h_4, h_5\in H $, by Eqs (2.1)–(2.5), we have
$ [l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ−[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ−[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ−[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H−[[l1,l2,l3]L,l4,l5]L−ρ([l1,l2,l3]L,l4)h5−[ρ(l1,l2)h3,h4,h5]H−[[h1,h2,h3]H,h4,h5]H−[l3,[l1,l2,l4]L,l5]L−ρ(l3,[l1,l2,l4]L)h5−[h3,ρ(l1,l2)h4,h5]H−[h3,[h1,h2,h4]H,h5]H−[l3,l4,[l1,l2,l5]L]L−ρ(l3,l4)ρ(l1,l2)h5−ρ(l3,l4)[h1,h2,h5]H−[h3,h4,ρ(l1,l2)h5]H−[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]H−ρ(l3,l4)[h1,h2,h5]H=0. $ |
Thus, $ (L \oplus H, [−, −, −]_{\rho}) $ is a 3-Leibniz algebra.
Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra $ (L, [−, −, −]_L) $ with respect to a coherent action $ (H, [−, −, −]_H; \rho^{\dagger}) $ is a linear map $ \Lambda: H\rightarrow L $ that satisfies the following equation:
$ [Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), $ | (2.6) |
for all $ h_1, h_2, h_3\in H $.
2) A nonabelian embedding tensor 3-Lie algebra is a triple $ (H, L, \Lambda) $ consisting of a 3-Lie algebra $ (L, [−, −, −]_L) $, a coherent action $ (H, [−, −, −]_H; \rho^{\dagger}) $ of $ L $ and a nonabelian embedding tensor $ \Lambda: H\rightarrow L $. We denote a nonabelian embedding tensor 3-Lie algebra $ (H, L, \Lambda) $ by the notation $ H\stackrel{\Lambda}{\longrightarrow}L $.
3) Let $ H\stackrel{\Lambda_1}{\longrightarrow}L $ and $ H\stackrel{\Lambda_2}{\longrightarrow}L $ be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from $ H\stackrel{\Lambda_1}{\longrightarrow}L $ to $ H\stackrel{\Lambda_2}{\longrightarrow}L $ consists of two 3-Lie algebras homomorphisms $ f_L:L\rightarrow L $ and $ f_{H}:H\rightarrow H $, which satisfy the following equations:
$ Λ2∘fH=fL∘Λ1, $ | (2.7) |
$ fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), $ | (2.8) |
for all $ l_1, l_2\in L $ and $ h\in H. $ Furthermore, if $ f_L $ and $ f_{H} $ are nondegenerate, $ (f_L, f_{H}) $ is called an isomorphism from $ H\stackrel{\Lambda_1}{\longrightarrow}L $ to $ H\stackrel{\Lambda_2}{\longrightarrow}L $.
Remark 2.7. If $ (H, [−, −, −]_H) $ is an abelian 3-Lie algebra, then we can get that $ \Lambda $ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If $ \rho = 0 $, then $ \Lambda $ is a 3-Lie algebra homomorphism from $ H $ to $ L $.
Example 2.8. Let $ H $ be a 4-dimensional linear space spanned by $ \alpha_1, \alpha_2, \alpha_3 $ and $ \alpha_4 $. We define a skew-symmetric ternary operation $ [−, −, −]_H:\wedge^3 H\rightarrow H $ by
$ [\alpha_1, \alpha_2, \alpha_3]_H = \alpha_4. $ |
Then $ (H, [−, −, −]_H) $ is a 3-Lie algebra. It is obvious that $ (H, [−, −, −]_H; ad^{\dagger}) $ is a coherent adjoint action of $ (H, [−, −, −]_H) $. Moreover,
$ \Lambda = \left( 1000010000000000 \right) $ |
is a nonabelian embedding tensor on $ (H, [−, −, −]_H) $.
Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.
Theorem 2.9. A linear map $ \Lambda: H\rightarrow L $ is a nonabelian embedding tensor on a 3-Lie algebra $ (L, [−, −, −]_L) $ with respect to the coherent action $ (H, [−, −, −]_H; \rho^{\dagger}) $ if and only if the graph $ Gr(\Lambda) = \{\Lambda h+h\; |\; h\in H\} $ forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra $ L\ltimes_{\rho}H $.
Proof. Let $ \Lambda: H\rightarrow L $ be a linear map. Then, for any $ h_1, h_2, h_3\in H $, we have
$ [Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H, $ |
Thus, the graph $ Gr(\Lambda) = \{\Lambda h+h \; |\; h\in H\} $ is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra $ L\ltimes_{\rho}H $ if and only if $ \Lambda $ satisfies Eq (2.6), which implies that $ \Lambda $ is a nonabelian embedding tensor on $ L $ with respect to the coherent action $ (H, [−, −, −]_H; \rho^{\dagger}) $.
Because $ H $ and $ Gr(\Lambda) $ are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on $ H $.
Corollary 2.10. Let $ H\stackrel{\Lambda}{\longrightarrow}L $ be a nonabelian embedding tensor 3-Lie algebra. If a linear map $ [−, −, −]_\Lambda: \wedge^3 H\rightarrow H $ is given by
$ [h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, $ | (2.9) |
for all $ h_1, h_2, h_3\in H $, then $ (H, [−, −, −]_\Lambda) $ is a 3-Leibniz algebra. Moreover, $ \Lambda $ is a homomorphism from the 3-Leibniz algebra $ (H, [−, −, −]_\Lambda) $ to the 3-Lie algebra $ (L, [−, −, −]_L) $. This 3-Leibniz algebra $ (H, [−, −, −]_\Lambda) $ is called the descendent 3-Leibniz algebra.
Proposition 2.11. Let $ (f_L, f_{H}) $ be a homomorphism from $ H\stackrel{\Lambda_1}{\longrightarrow}L $ to $ H\stackrel{\Lambda_2}{\longrightarrow}L $. Then $ f_{H} $ is a homomorphism of descendent 3-Leibniz algebra from $ (H, [−, −, −]_{\Lambda_1}) $ to $ (H, [−, −, −]_{\Lambda_2}) $.
Proof. For any $ h_1, h_2, h_3\in H, $ by Eqs (2.7)–(2.9), we have
$ fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2. $ |
The proof is finished.
In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.
Definition 3.1. A 3-Leibniz-Lie algebra $ (H, [−, −, −]_H, \{-, -, -\}_H) $ encompasses a 3-Lie algebra $ (H, [−, −, −]_H) $ and a ternary operation $ \{-, -, -\}_H: \wedge^3 H\rightarrow H $, which satisfies the following equations:
$ {h1,h2,h3}H=−{h2,h1,h3}H, $ | (3.1) |
$ {h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, $ | (3.2) |
$ {h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, $ | (3.3) |
for all $ h_1, h_2, h_3, h_4, h_5\in H $.
A homomorphism between two 3-Leibniz-Lie algebras $ (H_1, [−, −, −]_{H_1}, \{-, -, -\}_{H_1}) $ and $ (H_2, [−, −, −]_{H_2}, \{-, -, -\}_{H_2}) $ is a 3-Lie algebra homomorphism $ f: (H_1, [−, −, −]_{H_1})\rightarrow (H_2, [−, −, −]_{H_2}) $ such that $ f(\{h_1, h_2, h_3\}_{H_1}) = \{f(h_1), f(h_2), f(h_3)\}_{H_2}, $ for all $ h_1, h_2, h_3\in H_1. $
Remark 3.2. A 3-Lie algebra $ (H, [−, −, −]_H) $ naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation $ \{h_1, h_2, h_3\}_H = 0 $, for all $ h_1, h_2, h_3\in H $.
Example 3.3. Let $ (H, [−, −, −]_H) $ be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation $ \{-, -, -\}_H: \wedge^3 H\rightarrow H $ by
$ {α1,α2,α3}H=−{α2,α1,α3}H=α4. $ |
Then $ (H, [−, −, −]_H, \{-, -, -\}_H) $ is a 3-Leibniz-Lie algebra.
The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.
Theorem 3.4. Let $ (H, [−, −, −]_H, \{-, -, -\}_H) $ be a 3-Leibniz-Lie algebra. Then the ternary operation $ \langle-, -, -\rangle_H: \wedge^3 H\rightarrow H $, defined as
$ ⟨h1,h2,h3⟩H:=[h1,h2,h3]H+{h1,h2,h3}H, $ | (3.4) |
for all $ h_1, h_2, h_3\in H, $ establishes a 3-Leibniz algebra structure on $ H $. This structure is denoted by $ (H, \langle-, -, -\rangle_H) $ and is referred to as the subadjacent 3-Leibniz algebra.
Proof. For any $ h_1, h_2, h_3, h_4, h_5\in H $, according to $ (H, [−, −, −]_H) $ is a 3-Lie algebra and Eqs (3.2)–(3.4), we have
$ ⟨h1,h2,⟨h3,h4,h5⟩H⟩H−⟨⟨h1,h2,h3⟩H,h4,h5⟩H−⟨h3,⟨h1,h2,h4⟩H,h5⟩H−⟨h3,h4,⟨h1,h2,h5⟩H⟩H=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H−[[h1,h2,h3]H,h4,h5]H−[{h1,h2,h3}H,h4,h5]H−{[h1,h2,h3]H,h4,h5}H−{{h1,h2,h3}H,h4,h5}H−[h3,[h1,h2,h4]H,h5]H−[h3,{h1,h2,h4}H,h5]H−{h3,[h1,h2,h4]H,h5}H−{h3,{h1,h2,h4}H,h5}H−[h3,h4,[h1,h2,h5]H]H−[h3,h4,{h1,h2,h5}H]H−{h3,h4,[h1,h2,h5]H}H−{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H−{[h1,h2,h3]H,h4,h5}H−{{h1,h2,h3}H,h4,h5}H−{h3,[h1,h2,h4]H,h5}H−{h3,{h1,h2,h4}H,h5}H−{h3,h4,{h1,h2,h5}H}H=0. $ |
Hence, $ (H, \langle-, -, -\rangle_H) $ is a 3-Leibniz algebra.
The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.
Theorem 3.5. Let $ H\stackrel{\Lambda}{\longrightarrow}L $ be a nonabelian embedding tensor 3-Lie algebra. Then $ (H, [−, −, −]_H, \{-, -, -\}_{\Lambda}) $ is a 3-Leibniz-Lie algebra, where
$ {h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, $ | (3.5) |
for all $ h_1, h_2, h_3\in H $.
Proof. For any $ h_1, h_2, h_3, h_4, h_5\in H $, by Eqs (2.3), (2.6), and (3.5), we have
$ {h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=−ρ(Λh2,Λh1)h3=−{h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ−{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L−Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L−Λρ(Λh1,Λh2)h4)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0. $ |
Furthermore, by Eqs (2.4), (2.5), and (3.5), we have
$ [{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0. $ |
Thus, $ (H, [−, −, −]_H, \{-, -, -\}_\Lambda) $ is a 3-Leibniz-Lie algebra.
Proposition 3.6. Let $ (f_L, f_{H}) $ be a homomorphism from $ H\stackrel{\Lambda_1}{\longrightarrow}L $ to $ H\stackrel{\Lambda_2}{\longrightarrow}L $. Then $ f_{H} $ is a homomorphism of 3-Leibniz-Lie algebras from $ (H, [−, −, −]_H, \{-, -, -\}_{\Lambda_1}) $ to $ (H, [−, −, −]_H, \{-, -, -\}_{\Lambda_2}) $.
Proof. For any $ h_1, h_2, h_3\in H $, by Eqs (2.7), (2.8), and (3.5), we have
$ fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2. $ |
The proof is finished.
Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.
Definition 3.7. (see [9]) A Leibniz-Lie algebra $ (H, [-, -]_H, \rhd) $ encompasses a Lie algebra $ (H, [-, -]_H) $ and a binary operation $ \rhd:H\otimes H\rightarrow H $, ensuring that
$ h1⊳(h2⊳h3)=(h1⊳h2)⊳h3+h2⊳(h1⊳h3)+[h1,h2]H⊳h3,h1⊳[h2,h3]H=[h1⊳h2,h3]H=0, $ |
for all $ h_1, h_2, h_3\in H $.
Theorem 3.8. Let $ (H, [-, -]_H, \rhd) $ be a Leibniz-Lie algebra, and let $ \varsigma\in H^\ast $ be a trace map, which is a linear map that satisfies the following conditions:
$ \varsigma([h_1, h_2]_H) = 0, \; \; \; \varsigma(h_1\rhd h_2) = 0, \; \; \; \mathit{\text{for all}}\; h_1, h_2\in H. $ |
Define two ternary operations by
$ [h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2⊳h3−ς(h2)h1⊳h3,for allh1,h2,h3∈H. $ |
Then $ (H, [−, −, −]_{H_\varsigma}, \{-, -, -\}_{H_\varsigma}) $ is a 3-Leibniz-Lie algebra.
Proof. First, we know from [17] that $ (H, [−, −, −]_{H_\varsigma}) $ is a 3-Lie algebra. Next, for any $ h_1, h_2, h_3, h_4, h_5\in H $, we have
$ {h1,h2,h3}Hς=ς(h1)h2⊳h3−ς(h2)h1⊳h3=−(ς(h2)h1⊳h3−ς(h1)h2⊳h3)=−{h2,h1,h3}Hς $ |
and
$ {{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς−{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2⊳h3)h4⊳h5−ς(h4)ς(h1)(h2⊳h3)⊳h5−ς(h2)ς(h1⊳h3)h4⊳h5+ς(h4)ς(h2)(h1⊳h3)⊳h5+ς(h3)ς(h1)(h2⊳h4)⊳h5−ς(h1)ς(h2⊳h4)h3⊳h5−ς(h3)ς(h2)(h1⊳h4)⊳h5+ς(h2)ς(h1⊳h4)h3⊳h5+ς(h1)ς(h3)h4⊳(h2⊳h5)−ς(h1)ς(h4)h3⊳(h2⊳h5)−ς(h2)ς(h3)h4⊳(h1⊳h5)+ς(h2)ς(h4)h3⊳(h1⊳h5)+ς(h1)ς([h2,h3]H)h4⊳h5−ς(h4)ς(h1)[h2,h3]H⊳h5+ς(h2)ς([h3,h1]H)h4⊳h5−ς(h4)ς(h2)[h3,h1]H⊳h5+ς(h3)ς([h1,h2]H)h4⊳h5−ς(h4)ς(h3)[h1,h2]H⊳h5+ς(h3)ς(h1)[h2,h4]H⊳h5−ς(h1)ς([h2,h4]H)h3⊳h5+ς(h3)ς(h2)[h4,h1]H⊳h5−ς(h2)ς([h4,h1]H)h3⊳h5+ς(h3)ς(h4)[h1,h2]H⊳h5−ς(h4)ς([h1,h2]H)h3⊳h5−ς(h1)ς(h3)h2⊳(h4⊳h5)+ς(h2)ς(h3)h1⊳(h4⊳h5)+ς(h1)ς(h4)h2⊳(h3⊳h5)−ς(h2)ς(h4)h1⊳(h3⊳h5)=−ς(h4)ς(h1)(h2⊳h3)⊳h5+ς(h4)ς(h2)(h1⊳h3)⊳h5+ς(h3)ς(h1)(h2⊳h4)⊳h5−ς(h3)ς(h2)(h1⊳h4)⊳h5+ς(h1)ς(h3)h4⊳(h2⊳h5)−ς(h1)ς(h4)h3⊳(h2⊳h5)−ς(h2)ς(h3)h4⊳(h1⊳h5)+ς(h2)ς(h4)h3⊳(h1⊳h5)−ς(h4)ς(h1)[h2,h3]H⊳h5−ς(h4)ς(h2)[h3,h1]H⊳h5+ς(h3)ς(h1)[h2,h4]H⊳h5+ς(h3)ς(h2)[h4,h1]H⊳h5−ς(h1)ς(h3)h2⊳(h4⊳h5)+ς(h2)ς(h3)h1⊳(h4⊳h5)+ς(h1)ς(h4)h2⊳(h3⊳h5)−ς(h2)ς(h4)h1⊳(h3⊳h5)=0. $ |
Similarly, we obtain
$ {h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2⊳[h4,h5]H−ς(h2)ς(h3)h1⊳[h4,h5]H+ς(h1)ς(h4)h2⊳[h5,h3]H−ς(h2)ς(h4)h1⊳[h5,h3]H+ς(h1)ς(h5)h2⊳[h3,h4]H−ς(h2)ς(h5)h1⊳[h3,h4]H=0 $ |
and
$ [{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2⊳h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2⊳h3]H+ς(h5)ς(h1)[h2⊳h3,h4]H−ς(h2)ς(h1⊳h3)[h4,h5]H−ς(h4)ς(h2)[h5,h1⊳h3]H−ς(h5)ς(h2)[h1⊳h3,h4]H=0. $ |
Hence Eqs (3.1)–(3.3) hold and we complete the proof.
In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra $ (H, [−, −, −]_\Lambda) $ on the vector space $ L $ and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.
Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra $ (\mathcal{H}, [−, −, −]_{\mathcal{H}}) $ is a vector space $ V $ equipped with 3 actions
$ l:H⊗H⊗V→V,m:H⊗V⊗H→V,r:V⊗H⊗H→V, $ |
satisfying for any $ a_1, a_2, a_3, a_4, a_5\in \mathcal{H} $ and $ u\in V $
$ l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), $ | (4.1) |
$ l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), $ | (4.2) |
$ l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), $ | (4.3) |
$ m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), $ | (4.4) |
$ r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). $ | (4.5) |
For $ n\geq 1 $, denote the $ n $-cochains of 3-Leibniz algebra $ (\mathcal{H}, [−, −, −]_{\mathcal{H}}) $ with coefficients in a representation $ (V; \mathfrak{l}, \mathfrak{m}, \mathfrak{r}) $ by
$ \mathcal{C}^n_{\mathrm{3Leib}}(\mathcal{H}, V) = \mathrm{Hom}(\overbrace{\wedge^2\mathcal{H}\otimes\cdots \otimes \wedge^2 \mathcal{H}}^{n-1}\otimes \mathcal{H}, V). $ |
The coboundary map $ \delta:\mathcal{C}^n_{\mathrm{3Leib}}(\mathcal{H}, V)\rightarrow \mathcal{C}^{n+1}_{\mathrm{3Leib}}(\mathcal{H}, V) $, for $ A_i = a_i\wedge b_i\in \wedge^2 \mathcal{H}, 1\leq i\leq n $ and $ c\in \mathcal{H} $, as
$ (δφ)(A1,A2,…,An,c)=∑1≤j<k≤n(−1)jφ(A1,…,^Aj,…,Ak−1,ak∧[aj,bj,bk]H+[aj,bj,ak]H∧bk,…,An,c)+n∑j=1(−1)jφ(A1,…,^Aj,…,An,[aj,bj,c]H)+n∑j=1(−1)j+1l(Aj,φ(A1,…,^Aj,…,An,c))+(−1)n+1(m(an,φ(A1,…,An−1,bn),c)+r(φ(A1,…,An−1,an),bn,c)). $ |
It was proved in [23,24] that $ \delta^2 = 0 $. Therefore, $ (\oplus_{n = 1}^{+\infty}\mathcal{C}^n_{\mathrm{3Leib}}(\mathcal{H}, V), \delta) $ is a cochain complex.
Let $ H\stackrel{\Lambda}{\longrightarrow}L $ be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, $ (H, [−, −, −]_\Lambda) $ is a 3-Leibniz algebra. Next we give a representation of $ (H, [−, −, −]_\Lambda) $ on $ L $.
Lemma 4.2. With the above notations. Define 3 actions
$ lΛ:H⊗H⊗L→L,mΛ:H⊗L⊗H→L,rΛ:L⊗H⊗H→L, $ |
by
$ lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]L−Λρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]L−Λρ(l,Λh1)h2, $ |
for all $ h_1, h_2\in H, l\in L. $ Then $ (L; \mathfrak{l}_\Lambda, \mathfrak{m}_\Lambda, \mathfrak{r}_\Lambda) $ is a representation of the descendent 3-Leibniz algebra $ (H, [−, −, −]_\Lambda) $.
Proof. For any $ h_1, h_2, h_3, h_4, h_5\in H $ and $ l\in L $, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have
$ lΛ(h1,h2,lΛ(h3,h4,l))−lΛ([h1,h2,h3]Λ,h4,l)−lΛ(h3,[h1,h2,h4]Λ,l)−lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L−[[Λh1,Λh2,Λh3]L,Λh4,l]L−[Λh3,[Λh1,Λh2,Λh4]L,l]L−[Λh3,Λh4,[Λh1,Λh2,l]L]L=0 $ |
and
$ lΛ(h1,h2,mΛ(h3,l,h5))−mΛ([h1,h2,h3]Λ,l,h5)−mΛ(h3,lΛ(h1,h2,l),h5)−mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L−[Λh1,Λh2,Λρ(Λh3,l)h5]L−[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5−[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5−[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=−[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=−Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=−Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0, $ |
which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.
Proposition 4.3. Let $ H\stackrel{\Lambda_1}{\longrightarrow}L $ and $ H\stackrel{\Lambda_2}{\longrightarrow}L $ be two nonabelian embedding tensor 3-Lie algebras and $ (f_L, f_{H}) $ a homomorphism from $ H\stackrel{\Lambda_1}{\longrightarrow}L $ to $ H\stackrel{\Lambda_2}{\longrightarrow}L $. Then the induced representation $ (L; \mathfrak{l}_{\Lambda_1}, \mathfrak{m}_{\Lambda_1}, \mathfrak{r}_{\Lambda_1}) $ of the descendent 3-Leibniz algebra $ (H, [−, −, −]_{\Lambda_1}) $ and the induced representation $ (L; \mathfrak{l}_{\Lambda_2}, \mathfrak{m}_{\Lambda_2}, \mathfrak{r}_{\Lambda_2}) $ of the descendent 3-Leibniz algebra $ (H, [−, −, −]_{\Lambda_2}) $ satisfying the following equations:
$ fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), $ | (4.6) |
$ fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), $ | (4.7) |
$ fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), $ | (4.8) |
for all $ h_1, h_2\in H, l\in L. $ In other words, the following diagrams commute:
![]() |
Proof. For any $ h_1, h_2\in H, l\in L, $ by Eqs (2.7) and (2.8), we have
$ fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]L−Λ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]L−fL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]L−Λ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]L−Λ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)). $ |
And the other equation is similar to provable.
For $ n\geq 1 $, let $ \delta_\Lambda: \mathcal{C}^n_{\mathrm{3Leib}}(H, L)\rightarrow \mathcal{C}^{n+1}_{\mathrm{3Leib}}(H, L) $ be the coboundary operator of the 3-Leibniz algebra $ (H, [−, −, −]_\Lambda) $ with coefficients in the representation $ (L; \mathfrak{l}_\Lambda, \mathfrak{m}_\Lambda, \mathfrak{r}_\Lambda) $. More precisely, for all $ \phi\in \mathcal{C}^n_{\mathrm{3Leib}}(H, L), \mathfrak{H}_i = u_i\wedge v_i\in \wedge^2 H, 1\leq i\leq n $ and $ w\in H $, we have
$ (δΛϕ)(H1,H2,…,Hn,w)=∑1≤j<k≤n(−1)jϕ(H1,…,^Hj,…,Hk−1,uk∧[uj,vj,vk]Λ+[uj,vj,uk]Λ∧vk,…,Hn,w)+n∑j=1(−1)jϕ(H1,…,^Hj,…,Hn,[uj,vj,w]Λ)+n∑j=1(−1)j+1lΛ(Hj,ϕ(H1,…,^Hj,…,Hn,w))+(−1)n+1(mΛ(un,ϕ(H1,…,Hn−1,vn),w)+rΛ(ϕ(H1,…,Hn−1,un),vn,w)). $ |
In particular, for $ \phi\in \mathcal{C}^1_{\mathrm{3Leib}}(H, L): = \mathrm{Hom}(H, L) $ and $ u_1, v_1, w\in H, $ we have
$ (δΛϕ)(u1,v1,w)=−ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=−ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]L−Λρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]L−Λρ(ϕ(u1),Λv1)w. $ |
For any $ (a_1, a_2)\in \mathcal{C}^0_{\mathrm{3Leib}}(H, L): = \wedge^2 L $, we define $ \delta_\Lambda: \mathcal{C}^0_{\mathrm{3Leib}}(H, L)\rightarrow \mathcal{C}^1_{\mathrm{3Leib}}(H, L), (a_1, a_2)\mapsto \delta_\Lambda(a_1, a_2) $ by
$ \delta_\Lambda(a_1, a_2)u = \Lambda\rho(a_1, a_2)u-[a_1, a_2, \Lambda u]_L, \forall u\in H. $ |
Proposition 4.4. Let $ H\stackrel{\Lambda}{\longrightarrow}L $ be a nonabelian embedding tensor 3-Lie algebra. Then $ \delta_\Lambda(\delta_\Lambda(a_1, a_2)) = 0 $, that is, the composition $ \mathcal{C}^0_{\mathrm{3Leib}}(H, L)\stackrel{\delta_\Lambda}{\longrightarrow} \mathcal{C}^1_{\mathrm{3Leib}}(H, L)\stackrel{\delta_{\Lambda}}{\longrightarrow} \mathcal{C}^2_{\mathrm{3Leib}}(H, L) $ is the zero map.
Proof. For any $ u_1, v_1, w\in V, $ by Eqs (2.1)–(2.6) and (2.9) we have
$ δΛ(δΛ(a1,a2))(u1,v1,w)=−δΛ(a1,a2)([u1,v1,w]Λ)+[Λu1,Λv1,δΛ(a1,a2)(w)]L+[Λu1,δΛ(a1,a2)(v1),Λw]L−Λρ(Λu1,δΛ(a1,a2)(v1))w+[δΛ(a1,a2)(u1),Λv1,Λw]L−Λρ(δΛ(a1,a2)(u1),Λv1)w=−Λρ(a1,a2)[u1,v1,w]Λ+[a1,a2,[Λu1,Λv1,Λw]L]L+[Λu1,Λv1,Λρ(a1,a2)w]L−[Λu1,Λv1,[a1,a2,Λw]L]L+[Λu1,Λρ(a1,a2)v1,Λw]L−[Λu1,[a1,a2,Λv1]L,Λw]L−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+[Λρ(a1,a2)u1,Λv1,Λw]L−[[a1,a2,Λu1]L,Λv1,Λw]L−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w−Λρ(a1,a2)[u1,v1,w]H+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λ[u1,v1,ρ(a1,a2)w]H+Λρ(Λu1,Λρ(a1,a2)v1)w+Λ[u1,ρ(a1,a2)v1,w]H−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w+Λ[ρ(a1,a2)u1,v1,w]H−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,Λρ(a1,a2)v1)w−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λρ([a1,a2,Λu1]L,Λv1)w=0. $ |
Therefore, we deduce that $ \delta_\Lambda (\delta_\Lambda(a_1, a_2)) = 0. $
Now we develop the cohomology theory of a nonabelian embedding tensor $ \Lambda $ on the 3-Lie algebra $ (L, [−, −, −]_L) $ with respect to the coherent action $ (H, [−, −, −]_H; \rho^{\dagger}) $.
For $ n\geq 0 $, define the set of $ n $-cochains of $ \Lambda $ by $ \mathcal{C}^n_\Lambda(H, L): = \mathcal{C}^n_{\mathrm{3Leib}}(H, L). $ Then $ (\oplus_{n = 0}^{\infty}\mathcal{C}^n_\Lambda(H, L), \delta_\Lambda) $ is a cochain complex.
For $ n\geq 1 $, we denote the set of $ n $-cocycles by $ {\bf Z}^n_\Lambda(H, L) $, the set of $ n $-coboundaries by $ {\bf B}^n_\Lambda(H, L) $, and the $ n $-th cohomology group of the nonabelian embedding tensor $ \Lambda $ by
$ \mathrm{H}\mathrm{H}^n_\Lambda(H, L) = \frac{{\bf Z}^n_\Lambda(H, L)}{{\bf B}^n_\Lambda(H, L)}. $ |
Proposition 4.5. Let $ H\stackrel{\Lambda_1}{\longrightarrow}L $ and $ H\stackrel{\Lambda_2}{\longrightarrow}L $ be two nonabelian embedding tensor 3-Lie algebras and let $ (f_L, f_{H}) $ be a homomorphism from $ H\stackrel{\Lambda_1}{\longrightarrow}L $ to $ H\stackrel{\Lambda_2}{\longrightarrow}L $ in which $ f_H $ is invertible. We define a map $ \Psi:\mathcal{C}^{n}_{\Lambda_1}(H, L)\rightarrow \mathcal{C}^{n}_{\Lambda_2}(H, L) $ by
$ Ψ(ϕ)(H1,H2,…,Hn−1,w)=fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(w))), $ |
for all $ \phi\in \mathcal{C}^{n}_{\mathrm{\Lambda_1}}(H, L), \mathfrak{H}_i = u_i\wedge v_i\in \wedge^2 H, 1\leq i\leq {n-1} $, and $ w\in H $. Then $ \Psi: (\mathcal{C}^{n+1}_{\mathrm{\Lambda_1}}(H, L), \delta_{\Lambda_1})\rightarrow (\mathcal{C}^{n+1}_{\mathrm{\Lambda_2}}(H, L), \delta_{\Lambda_2}) $ is a cochain map.
That is, the following diagram commutes:
![]() |
Consequently, it induces a homomorphism $ \Psi^* $ from the cohomology group $ \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_1}}(H, L) $ to $ \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_2}}(H, L) $.
Proof. For any $ \phi\in \mathcal{C}^{n}_{\mathrm{\Lambda_1}}(H, L), \mathfrak{H}_i = u_i\wedge v_i\in \wedge^2 H, 1\leq i\leq {n} $, and $ w\in H $, by Eqs (4.6)–(4.8) and Proposition 2.11, we have
$ (δΛ2Ψ(ϕ))(H1,H2,…,Hn,w)=∑1≤j<k≤n(−1)jΨ(ϕ)(H1,…,^Hj,…,Hk−1,uk∧[uj,vj,vk]Λ2+[uj,vj,uk]Λ2∧vk,…,Hn,w)+n∑j=1(−1)jΨ(ϕ)(H1,…,^Hj,…,Hn,[uj,vj,w]Λ2)+n∑j=1(−1)j+1lΛ2(Hj,Ψ(ϕ)(H1,…,^Hj,…,Hn,w))+(−1)n+1mΛ2(un,Ψ(ϕ)(H1,…,Hn−1,vn),w)+(−1)n+1rΛ2(Ψ(ϕ)(H1,…,Hn−1,un),vn,w)=∑1≤j<k≤n(−1)jfL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(uk−1)∧f−1H(vk−1),f−1H(uk)∧f−1H([uj,vj,vk]Λ2)+f−1H([uj,vj,uk]Λ2)∧f−1H(vk),…,f−1H(un)∧f−1H(vn),f−1H(w)))+n∑j=1(−1)jfL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H([uj,vj,w]Λ2)))+n∑j=1(−1)j+1lΛ2(Hj,fL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H(w))))+(−1)n+1mΛ2(un,fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(vn))),w)+(−1)n+1rΛ2(fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(un))),vn,w)=fL(∑1≤j<k≤n(−1)jϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(uk−1)∧f−1H(vk−1),f−1H(uk)∧[f−1H(uj),f−1H(vj),f−1H(vk)]Λ1+[f−1H(uj),f−1H(vj),f−1H(uk)]Λ1∧f−1H(vk),…,f−1H(un)∧f−1H(vn),f−1H(w))+n∑j=1(−1)jϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),[f−1H(uj),f−1H(vj),f−1H(w)]Λ1)+n∑j=1(−1)j+1lΛ1(f−1H(uj),f−1H(vj),ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H(w)))+(−1)n+1mΛ1(f−1H(un),ϕ(f−1H(u1),f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(vn)),f−1H(w))+(−1)n+1rΛ1(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(un)),f−1H(vn),f−1H(w)))=fL(δΛ1ϕ)(f−1H(u1)∧f−1H(v1),…,f−1H(un)∧f−1H(vn),f−1H(w))=Ψ(δΛ1ϕ)(H1,H2,…,Hn,w). $ |
Hence, $ \Psi $ is a cochain map and induces a cohomology group homomorphism $ \Psi^*: \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_1}}(H, L) $ $ \rightarrow \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_2}}(H, L) $.
At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.
Definition 4.6. Let $ \Lambda: H\rightarrow L $ be a nonabelian embedding tensor on a 3-Lie algebra $ (L, [−, −, −]_L) $ with respect to a coherent action $ (H, [−, −, −]_H; \rho^\dagger) $. An infinitesimal deformation of $ \Lambda $ is a nonabelian embedding tensor of the form $ \Lambda_t = \Lambda+t\Lambda_1 $, where $ t $ is a parameter with $ t^2 = 0. $
Let $ \Lambda_t = \Lambda+t\Lambda_1 $ be an infinitesimal deformation of $ \Lambda $, then we have
$ [Λtu1,Λtu2,Λtu3]L=Λtρ(Λtu1,Λtu2)u3+Λt[u1,u2,u3]H, $ |
for all $ u_1, u_2, u_3\in H. $ Therefore, we obtain the following equation:
$ [Λ1u1,Λu2,Λu3]L+[Λu1,Λ1u2,Λu3]L+[Λu1,Λu2,Λ1u3]L=Λ1ρ(Λu1,Λu2)u3+Λρ(Λ1u1,Λu2)u3+Λρ(Λu1,Λ1u2)u3+Λ1[u1,u2,u3]H. $ | (4.9) |
It follows from Eq (4.9) that $ \Lambda_1\in \mathcal{C}_\Lambda^1(H, L) $ is a 1-cocycle in the cohomology complex of $ \Lambda $. Thus the cohomology class of $ \Lambda_1 $ defines an element in $ \mathrm{H}\mathrm{H}_\Lambda^1(H, L) $.
Let $ \Lambda_t = \Lambda+t\Lambda_1 $ and $ \Lambda'_t = \Lambda+t\Lambda'_1 $ be two infinitesimal deformations of $ \Lambda $. They are said to be equivalent if there exists $ a_1\wedge a_2\in \wedge^2 L $ such that the pair $ (id_L+tad(a_1, a_2), id_H+t\rho(a_1, a_2)) $ is a homomorphism from $ H\stackrel{\Lambda_t}{\longrightarrow}L $ to $ H\stackrel{\Lambda'_t}{\longrightarrow}L $. That is, the following conditions must hold:
1) The maps $ id_L+tad(a_1, a_2):L\rightarrow L $ and $ id_H+t\rho(a_1, a_2): H\rightarrow H $ are two 3-Lie algebra homomorphisms,
2) The pair $ (id_L+tad(a_1, a_2), id_H+t\rho(a_1, a_2)) $ satisfies:
$ (idH+tρ(a1,a2))(ρ(a,b)u)=ρ((idL+tad(a1,a2))a,(idL+tad(a1,a2))b)(idH+tρ(a1,a2))(u),(Λ+tΛ′1)(idH+tρ(a1,a2))(u)=(idL+tad(a1,a2))((Λ+tΛ1)u), $ | (4.10) |
for all $ a, b\in L, u\in H. $ It is easy to see that Eq (4.10) gives rise to
$ \Lambda_1 u-\Lambda'_1u = \Lambda\rho(a_1, a_2)u-[a_1, a_2, \Lambda u] = \delta_\Lambda(a_1, a_2)u\in \mathcal{C}_\Lambda^1(H, L). $ |
This shows that $ \Lambda_1 $ and $ \Lambda'_1 $ are cohomologous. Thus, their cohomology classes are the same in $ \mathrm{H}\mathrm{H}_\Lambda^1(H, L) $.
Conversely, any 1-cocycle $ \Lambda_1 $ gives rise to the infinitesimal deformation $ \Lambda+t\Lambda_1 $. Furthermore, we have arrived at the following result.
Theorem 4.7. Let $ \Lambda: H\rightarrow L $ be a nonabelian embedding tensor on $ (L, [−, −, −]_L) $ with respect to $ (H, [−, −, −]_H; \rho^{\dagger}) $. Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of $ \Lambda $ and the first cohomology group $ \mathrm{H}\mathrm{H}_\Lambda^1(H, L) $.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).
The authors declare there is no conflicts of interest.
[1] |
Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37: 395-412. doi: 10.1016/j.soilbio.2004.08.030
![]() |
[2] | Khalid A, Arshad M, Shaharoona B, et al. (2009) Plant Growth Promoting Rhizobacteria and Sustainable Agriculture. Microbial Strategies for Crop Improvement: Berlin: Springer; 133-160. |
[3] |
Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98: 6599-6607. doi: 10.1007/s00253-014-5828-y
![]() |
[4] | Lloret L, Martinez-Romero E (2005) [Evolution and phylogeny of rhizobia]. Rev Latinoam Microbiol 47: 43-60. |
[5] | Raymond J, Siefert JL, Staples CR, et al. (2004) The natural history of nitrogen fixation. Mol Biol Evol 21: 541-554. |
[6] | De Felipe MR (2006) Fijación biológica de dinitrógeno atmosférico en vida libre. In: Bedmar E, Gonzálo J, Lluch C et al., editors. Fijación de Nitrógeno: Fundamentos y Aplicaciones. Granada: Sociedad Española de Microbiología (SEFIN): 9-16. |
[7] | Tejera N, Lluch C, Martínez-Toledo MV, et al. (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere Plant Soil 270: 223-232. |
[8] |
Sahoo RK, Ansari MW, Dangar TK, et al. (2014) Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma 251: 511-523. doi: 10.1007/s00709-013-0547-2
![]() |
[9] |
Sahoo RK, Ansari MW, Pradhan M, et al. (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251: 943-953. doi: 10.1007/s00709-013-0607-7
![]() |
[10] |
Dobereiner J (1961) Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugar cane. Plant Soil 15: 211-216. doi: 10.1007/BF01400455
![]() |
[11] |
Wani SA, Chand S, Ali T (2013) Potential Use of Azotobacter Chroococcum in Crop Production: An Overview. Curr Agri Res J 1: 35-38. doi: 10.12944/CARJ.1.1.04
![]() |
[12] |
Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46: 454-464. doi: 10.1007/s00248-003-0110-3
![]() |
[13] | Berg RH, Tyler ME, Novick NJ, et al. (1980) Biology of azospirillum-sugarcane association: enhancement of nitrogenase activity. Appl Environ Microbiol 39: 642-649. |
[14] | Vargas C, Pádua VLM, Nogueira EM,, et al. (2003) Signaling pathways mediating the association between sugarcane and endophytic diazotrophic bacteria: A genomic approach. Symbiosis 35: 159-180. |
[15] | Elbeltagy A, Nishioka K, Sato T, et al. (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67: 5285-5293. |
[16] |
Reis VM, Baldani JI, Baldani VLD, et al. (2000) Biological Dinitrogen Fixation in Gramineae and Palm Trees. Crit Rev Plant Sci 19: 227-247. doi: 10.1016/S0735-2689(00)80003-9
![]() |
[17] |
Pereira JAR, Cavalcante VA, Baldani JI, et al. (1988) Field inoculation of sorghum and rice with Azospirillum spp. and Herbaspirillum seropedicae. Plant Soil 110: 269-274. doi: 10.1007/BF02226807
![]() |
[18] | Valverde A, Velazquez E, Gutierrez C, et al. (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53: 1979-1983. |
[19] | Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106: 169-178. |
[20] | Reinhold-Hurek B, Hurek T (1998) Interactions of Gramineous Plants with Azoarcus spp. and Other Diazotrophs: Identification, Localization, and Perspectives to Study their Function. Crit Rev Plant Sci 17: 29-54. |
[21] | Govindarajan M, Balandreau J, Kwon SW, et al. (2007) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55: 21-37. |
[22] |
Kao CM, Chen SC, Chen YS, et al. (2003) Detection of Burkholderia pseudomallei in rice fields with PCR-based technique. Folia Microbiol (Praha) 48: 521-524. doi: 10.1007/BF02931334
![]() |
[23] |
Sabry SRS, Saleh SA, Batchelor CA, et al. (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc Biol Sci 264: 341-346. doi: 10.1098/rspb.1997.0049
![]() |
[24] | Tan Z, Hurek T, Vinuesa P, et al. (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67: 3655-3664. |
[25] | Yanni Y, Rizk R, Abd-El Fattah F, et al. (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28: 845-870. |
[26] |
Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186: 45-52. doi: 10.1007/BF00035054
![]() |
[27] |
Moulin L, Munive A, Dreyfus B, et al. (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411: 948-950. doi: 10.1038/35082070
![]() |
[28] |
Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107: 115-120. doi: 10.1111/j.1574-6968.1993.tb06014.x
![]() |
[29] |
Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133: 87-94. doi: 10.1111/j.1469-8137.1996.tb04344.x
![]() |
[30] | Kaschuk G, Hungria M, Andrade DS, et al. (2006) Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 32: 210-220. |
[31] | Acosta-Durán C, Martínez-Romero E (2002) Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici Arch Microb 178: 161-164. |
[32] |
Wei HG, Tan ZY, Zhu ME, et al. (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53: 1575-1583. doi: 10.1099/ijs.0.02031-0
![]() |
[33] |
De Lajudie P, Willems A, Nick G, et al. (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48: 369-382. doi: 10.1099/00207713-48-2-369
![]() |
[34] |
Yao ZY, Kan FL, Wang ET, et al. (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52: 2219-2230. doi: 10.1099/ijs.0.01408-0
![]() |
[35] | Amarger N (2001) Rhizobia in the field. Advances in Agronomy. London (UK): Academic Press. |
[36] | Bedmar E, Gonzálo J, Lluch C, et al. (2006) Fijación de Nitrógeno: Fundamentos y Aplicaciones. Granada: Sociedad Española de Microbiología (SEFIN). |
[37] | Benson DR, Stephens DW, Clawson ML, et al. (1996) Amplification of 16S rRNA genes from Frankia strains in root nodules of Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. Appl Environ Microbiol 62: 2904-2909. |
[38] | Ganesh G, Misra AK, Chapelon C, et al. (1994) Morphological and molecular characterization of Frankia sp. isolates from nodules of Alnus nepalensis Don. Arch Microbiol 161: 152-155. |
[39] |
Kaneko T, Nakamura Y, Sato S, et al. (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7: 331-338. doi: 10.1093/dnares/7.6.331
![]() |
[40] |
Simonet P, Normand P, Moiroud A, et al. (1990) Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes. Arch Microb 153: 235-240. doi: 10.1007/BF00249074
![]() |
[41] |
Zimpfer JF, Igual JM, McCarty B, et al. (2004) Casuarina cunninghamiana tissue extracts stimulate the growth of Frankia and differentially alter the growth of other soil microorganisms. J Chem Ecol 30: 439-452. doi: 10.1023/B:JOEC.0000017987.19225.86
![]() |
[42] |
Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21: 1-18. doi: 10.3109/10408419509113531
![]() |
[43] | Spaepen S (2015) Plant Hormones Produced by Microbes. In: Lugtenberg B, editor. Principles of Plant-Microbe Interactions. Switzerland: Springer International Publishing; 247-256. |
[44] | Tanimoto E (2005) Regulation and root growth by plant hormones-roles for auxins and gibberellins. Crit Rev Plant Sci 24: 249-265. |
[45] |
Ouzari H, Khsairi A, Raddadi N, et al. (2008) Diversity of auxin-producing bacteria associated to Pseudomonas savastanoi -induced olive knots. J Basic Microbiol 48: 370-377. doi: 10.1002/jobm.200800036
![]() |
[46] | Ahmed A, Hasnain S (2010) Auxin producing Bacillus sp. : Auxin quantification and effect on the growth Solanum tuberosum. Pure Appl Chem 82: 313-319. |
[47] |
Hayat R, Ali S, Amara U, et al. (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60: 579-598. doi: 10.1007/s13213-010-0117-1
![]() |
[48] |
Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microb 51: 550-556. doi: 10.1002/jobm.201000155
![]() |
[49] |
Bent E, Tuzun S, Chanway CP, et al. (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47: 793-800. doi: 10.1139/w01-080
![]() |
[50] |
Garcia-Fraile P, Carro L, Robledo M, et al. (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7: e38122. doi: 10.1371/journal.pone.0038122
![]() |
[51] |
Flores-Felix JD, Menendez E, Rivera LP, et al. (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sc 176: 876-882. doi: 10.1002/jpln.201300116
![]() |
[52] |
Aloni R, Aloni E, Langhans M, et al. (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97: 883-893. doi: 10.1093/aob/mcl027
![]() |
[53] | Sokolova MG, Akimova GP, Vaishlia OB (2011) Effect of phytohormones synthesized by rhizosphere bacteria on plants. Prikl Biokhim Mikrobiol 47: 302-307. |
[54] |
Ortiz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3: 263-265. doi: 10.4161/psb.3.4.5204
![]() |
[55] |
Liu F, Xing S, Ma H, et al. (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97: 9155-9164. doi: 10.1007/s00253-013-5193-2
![]() |
[56] | Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65: 497-503. |
[57] | Joo GJ, Kim YM, Kim JT, et al. (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43: 510-515. |
[58] | Khan AL, Waqas M, Kang SM, et al. (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52: 689-695. |
[59] |
Reid MS, Mor Y, Kofranek AM (1981) Epinasty of Poinsettias-the Role of Auxin and Ethylene. Plant Physiol 67: 950-952. doi: 10.1104/pp.67.5.950
![]() |
[60] |
KeÇpczyński J, KeÇpczyńska E (1997) Ethylene in seed dormancy and germination. Physiologia Plantarum 101: 720-726. doi: 10.1111/j.1399-3054.1997.tb01056.x
![]() |
[61] |
Galland M, Gamet L, Varoquaux F, et al. (2012) The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196. Plant Sci 190: 74-81. doi: 10.1016/j.plantsci.2012.03.008
![]() |
[62] | Jackson MB (1991) Ethylene in root growth and development. In: Matoo AK, Suttle JC, editors. The Plant Hormone Ethylene. Boca Raton, Florida: CRC Press; 159-181. |
[63] |
Ahmad M, Zahir ZA, Khalid M, et al. (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer's fields. Plant Physiol Biochem 63: 170-176. doi: 10.1016/j.plaphy.2012.11.024
![]() |
[64] |
Yang SF, Hoffman NE (1984) Ethylene Biosynthesis and its Regulation in Higher Plants. Ann Rev Plant Physiol 35: 155-189. doi: 10.1146/annurev.pp.35.060184.001103
![]() |
[65] |
Klee HJ, Hayford MB, Kretzmer KA, et al. (1991) Control of Ethylene Synthesis by Expression of a Bacterial Enzyme in Transgenic Tomato Plants. Plant Cell 3: 1187-1193 doi: 10.1105/tpc.3.11.1187
![]() |
[66] |
Saleem M, Arshad M, Hussain S, et al. (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34: 635-648. doi: 10.1007/s10295-007-0240-6
![]() |
[67] |
Shaharoona B, Naveed M, Arshad M, et al. (2008) Fertilizer-dependent efficiency of Pseudomonas for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L. ). Appl Microbiol Biotechnol 79: 147-155. doi: 10.1007/s00253-008-1419-0
![]() |
[68] | Oertli JJ (1987) Exogenous application of vitamins as regulators for growth and development of plants—a review. Z Pflanzenernahr Bodenk 150: 375-391. |
[69] |
Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13: 415-424. doi: 10.1016/0734-9750(95)02004-M
![]() |
[70] |
Brown ME, Carr GR (1984) Interactions between Azotobacter chroococcum and vesicular-arbuscular mycorrhiza and their effects on plant growth. J Appl Bacteriol 56: 429-437. doi: 10.1111/j.1365-2672.1984.tb01371.x
![]() |
[71] | Rodelas B, González-López J, Pozo C, et al. (1999) Response of Faba bean (Vicia faba L. ) to combined inoculation with Azotobacter and Rhizobium leguminosarum bv. viceae. Appl Soil Ecol 12: 51-59. |
[72] |
Revillas JJ, Rodelas B, Pozo C, et al. (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89: 486-493. doi: 10.1046/j.1365-2672.2000.01139.x
![]() |
[73] |
Sharma SB, Sayyed RZ, Trivedi MH, et al. (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2: 587. doi: 10.1186/2193-1801-2-587
![]() |
[74] |
Zou X, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147: 243-250. doi: 10.1007/BF00029076
![]() |
[75] | Lindsay WL, Vlek PLG, Chien SH (1989) Phosphate minerals. In: Dixon JB, Weed SB, editors. Minerals in Soil Environments. 2 ed. Madison, Wisconsin: Soil Science Society of America; 1089-1130. |
[76] | Norrish K, Rosser H (1983) Mineral phosphate. In: Lenaghan JJ, Katsantoni G, editors. Soils: an Australian viewpoint. Melbourne: CSIRO Publishing; 335-361. |
[77] |
Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48: 987-992. doi: 10.1016/j.plaphy.2010.09.006
![]() |
[78] | Pindi PK, Satyanarayana SDV (2012) Liquid Microbial Consortium—A Potential Tool for Sustainable Soil Health. J Biofertil Biopest 3: 1-9. |
[79] |
Flores-Felix JD, Silva LR, Rivera LP, et al. (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10: e0122281. doi: 10.1371/journal.pone.0122281
![]() |
[80] | Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium Solublisers: Occurrence, Mechanism and Their Role as Competent Biofertilizers. Int J Curr Microbiol App Sci 3: 622-629. |
[81] |
Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52: 66-72. doi: 10.1139/w05-117
![]() |
[82] | Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21: 118-124. |
[83] | Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers. ) grown under two Alfisols. Plant Soil 317: 235-255. |
[84] | Han HS, Lee KD (2005) Phosphate and Potassium Solubilizing Bacteria Effect on Mineral Uptake, Soil Availability and Growth of Eggplant. Res J Agric Biol Sci 1: 176-180. |
[85] | Han HS, Supanjani S, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52: 130-136. |
[86] | Crowley DA (2006) Microbial Siderophores in the Plant Rhizosphere. In: Barton LL, Abadia J, editors. Iron Nutrition in Plants and Rhizospheric Microorganisms Netherlands: Springer Netherlands; 169-190. |
[87] |
Ahmed E, Holmstrom SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7: 196-208. doi: 10.1111/1751-7915.12117
![]() |
[88] |
Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14. doi: 10.1007/s00425-003-1105-5
![]() |
[89] |
Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55: 388-394. doi: 10.1139/W08-144
![]() |
[90] |
Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48: 378-384. doi: 10.1002/jobm.200700365
![]() |
[91] |
Yao L, Wu Z, Zheng Y, et al. (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46: 49-54. doi: 10.1016/j.ejsobi.2009.11.002
![]() |
[92] |
Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36: 184-189. doi: 10.1016/j.apsoil.2007.02.005
![]() |
[93] |
El-Akhal MR, Rincon A, Coba de la Pena T, et al. (2013) Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biol (Stuttg) 15: 415-421. doi: 10.1111/j.1438-8677.2012.00634.x
![]() |
[94] |
Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7: 343-347. doi: 10.1016/S0958-1669(96)80042-5
![]() |
[95] | Dilantha Fernando WG, Nakkeeran S, Zhang Y (2006) Biosynthesis of Antibiotics by PGPR and its Relation in Biocontrol of Plant Diseases. In: Siddiqui ZA, editor. PGPR: Biocontrol and Biofertilization. The Netherlands: Springer; 67-109. |
[96] | Mazzola M, Fujimoto DK, Thomashow LS, et al. (1995) Variation in Sensitivity of Gaeumannomyces graminis to Antibiotics Produced by Fluorescent Pseudomonas spp. and Effect on Biological Control of Take-All of Wheat. Appl Environ Microbiol 61: 2554-2559. |
[97] |
Maksimov IV, Abizgil'dina RR, Pusenkova LI (2011) Plant Growth Promoting Rhizobacteria as Alternative to Chemical Crop Protectors from Pathogens (Review). Appl Biochem Microbiol 47: 333-345. doi: 10.1134/S0003683811040090
![]() |
[98] | Silo-Suh LA, Lethbridge BJ, Raffel SJ, et al. (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60: 2023-2030. |
[99] |
Jones DA (1998) Why are so many food plants cyanogenic? Phytochemistry 47: 155-162. doi: 10.1016/S0031-9422(97)00425-1
![]() |
[100] |
Thamer S, Schädler M, Bonte D, et al. (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341: 209-219. doi: 10.1007/s11104-010-0635-4
![]() |
[101] | Kumar H, Bajpai VK, Dubey RC, et al. (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protect 29: 591-598. |
[102] |
Arora NK, Khare E, Oh JH, et al. (2008) Diverse mechanisms adopted by Pseudomonas fluorescent PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24: 581-585. doi: 10.1007/s11274-007-9505-5
![]() |
[103] | Schnepf E, Crickmore N, Van Rie J, et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 775-806. |
[104] |
Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004) Bacterial insecticidal toxins. Crit Rev Microbiol 30: 33-54. doi: 10.1080/10408410490270712
![]() |
[105] |
Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol 35: 1044-1051. doi: 10.1590/S1415-47572012000600020
![]() |
[106] |
Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of Deleterious and Beneficial Rhizosphere Microorganisms and the Effect of Cropping Practices. Ann Rev Phytopathol 25: 339-358. doi: 10.1146/annurev.py.25.090187.002011
![]() |
[107] |
Pal KK, Tilak KV, Saxena AK, et al. (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156: 209-223. doi: 10.1078/0944-5013-00103
![]() |
[108] |
Radzki W, Gutierrez Manero FJ, Algar E, et al. (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104: 321-330. doi: 10.1007/s10482-013-9954-9
![]() |
[109] |
Yu XM, Ai CX, Xin L, et al. (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47: 138-145. doi: 10.1016/j.ejsobi.2010.11.001
![]() |
[110] |
Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16: 729-770. doi: 10.1016/S0734-9750(98)00003-2
![]() |
[111] |
Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8: 71-78. doi: 10.1016/0167-7799(90)90139-O
![]() |
[112] |
Bashan Y, Hernandez JP, Leyva LA, et al. (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fert Soils 35: 359-368. doi: 10.1007/s00374-002-0481-5
![]() |
[113] | VanderGheynst JS, Scher H, Guo HY (2006) Design of formulations for improved biological control agent viability and sequestration during storage Indust Biotech 2: 213-219. |
[114] | Martinez-Viveros O, Jorquera MA, Crowley DE, et al. (2010) Mechanisms and Practical Considerations Involved in Plant Growth Promotion by Rhizobacteria. J Soil Sci Plant Nut 10: 293-319. |
[115] | Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World J 2012: 491206. |
[116] | Ben Rebah F, Tyagi RD, Prevost D (2002) Production of S. meliloti using wastewater sludge as a raw material: effect of nutrient addition and pH control. Environ Technol 23: 623-629. |
[117] |
Ben Rebah F, Tyagi RD, Prevost D (2002) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresour Technol 83: 145-151. doi: 10.1016/S0960-8524(01)00202-4
![]() |
[118] |
Vassileva M, Serrano M, Bravo V, et al. (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85: 1287-1299. doi: 10.1007/s00253-009-2366-0
![]() |
[119] |
Gryndler M, Vosatka M, Hrselova H, et al. (2002) Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J Plant Nut 25: 1341-1358. doi: 10.1081/PLN-120004393
![]() |
[120] |
Medina A, Probanza A, Gutierrez Mañero FJ, et al. (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl Soil Ecol 22: 15-28. doi: 10.1016/S0929-1393(02)00112-9
![]() |
[121] | Brar SK, Sarma SJ, Chaabouni E (2012) Shelf-life of Biofertilizers: An Accord between Formulations and Genetics. J Biofertil Biopestici 3: e109. |
[122] | Mahdi SS, Hassan GI, Samoon SA, et al. (2010) Bio-fertilizers in Organic Agriculture. J Phytol 2: 42-54. |
[123] |
Yardin MR, Kennedy IR, Thies JE (2000) Development of high quality carrier materials for field delivery of key microorganisms used as bio-fertilisers and bio-pesticides. Radiat Phys Chem 57: 565-568. doi: 10.1016/S0969-806X(99)00480-6
![]() |
[124] | Sethi SK, Adhikary SP (2012) Cost effective pilot scale production of biofertilizer using Rhizobium and Azotobacter. Afr J Biotechnol 11: 13490-13493. |
[125] |
Baudoin E, Lerner A, Mirza MS, et al. (2010) Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res Microbiol 161: 219-226. doi: 10.1016/j.resmic.2010.01.005
![]() |
[126] |
Galleguillos C, Aguirre C, Miguel Barea J, et al. (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159: 57-63. doi: 10.1016/S0168-9452(00)00321-6
![]() |
[127] | Joshi F, Chaudhari A, Joglekar P, et al. (2008) Effect of expression of Bradyrhizobium japonicum 61A152 fegA gene in Mesorhizobium sp., on its competitive survival and nodule occupancy on Arachis hypogea. Appl Soil Ecol 40: 338-347. |
[128] | Group FBP, editor (2006) Biofertilizer Manual. Tokyo, Japan: Japan Atomic Industrial Forum. |
[129] | Babalola OO, Glick BR (2012) Indigenous African agriculture and plant associated microbes: Current practice and future transgenic prospects. Sci Res Essays 7: 2431-2439. |
[130] | Turrent-Fernandez A Fertilizer technology and its efficient use for crop production- Foreword. In: Etchevers JD, editor; 1994; Mexico city, Mexico. International Society of Soil Science. |
[131] |
Cirera X, Masset E (2010) Income distribution trends and future food demand. Philos Trans R Soc Lond B Biol Sci 365: 2821-2834. doi: 10.1098/rstb.2010.0164
![]() |