Review Special Issues

Biotechnological applications of bacterial cellulases

  • Received: 31 May 2015 Accepted: 03 August 2015 Published: 14 August 2015
  • Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC 3.2.1.4) are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

    Citation: Esther Menendez, Paula Garcia-Fraile, Raul Rivas. Biotechnological applications of bacterial cellulases[J]. AIMS Bioengineering, 2015, 2(3): 163-182. doi: 10.3934/bioeng.2015.3.163

    Related Papers:

    [1] Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116
    [2] Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767
    [3] Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280
    [4] Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364
    [5] Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406
    [6] Emile Franc Doungmo Goufo, Abdon Atangana . On three dimensional fractal dynamics with fractional inputs and applications. AIMS Mathematics, 2022, 7(2): 1982-2000. doi: 10.3934/math.2022114
    [7] Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041
    [8] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [9] Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820
    [10] Muhammad Aslam, Muhammad Farman, Hijaz Ahmad, Tuan Nguyen Gia, Aqeel Ahmad, Sameh Askar . Fractal fractional derivative on chemistry kinetics hires problem. AIMS Mathematics, 2022, 7(1): 1155-1184. doi: 10.3934/math.2022068
  • Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC 3.2.1.4) are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.


    Fractional calculus is a generalization of classical calculus and many researchers have paid attention to this science as they encounter many of these issues in the real world. Most of these issues do not have analytical exact solution. Which made many researchers interest and search in numerical and approximate methods to obtain solutions using these methods. There are many of these methods, such as the homotopy analysis [1,2,3,4], He's variational iteration method [5,6], Adomians decomposition method [7,8,9], Fourier spectral methods [10], finite difference schemes [11], collocation methods [12,13,14]. To find out more about the fractal calculus, refer to the following references [15,16]. More recently, a new concept was introduced for the fractional operator, as this operator has two orders, the first representing the fractional order, and the second representing the fractal dimension. In our work we aim to applied the idea of fractal-fractional derivative of orders $ \beta, k $ to a reaction-diffusion equation with $ q $-th nonlinear. To this end [17], we replace the derivative with respect to t by the fractal-fractional derivatives power (FFP) law, the fractal-fractional exponential(FFE) law and the fractal-fractional Mittag-Leffler (FFM) law kernels which corresponds to the [18], Caputo-Fabrizio (CF) [19] and the Atangana-Baleanu (AB) [20] fractional derivatives, respectively. This topic has attracted many researchers and has been applied to research related to the real world, such as [21,22,23,24,25,26]. Some recent developments in the area of numerical techniques can be found in [27,28,29,30,31].

    Merkin and Needham [32] considered the reaction-diffusion travelling waves that can develop in a coupled system involving simple isothermal autocatalysis kinetics. They assumed that reactions took place in two separate and parallel regions, with, in $ I $, the reaction being given by quadratic autocatalysis

    $ F+G2G(ratek1fg),
    $
    (1.1)

    together with a linear decay step

    $ GH(ratek2g)
    $
    (1.2)

    where $ f $ and $ g $ are the concentrations of reactant $ F $ and autocatalyst $ H $, the $ k_{i}(i = 1, 2) $ are the rate constants and $ H $ is some inert product of reaction. The reaction in region $ II $ was the quadratic autocatalytic step (1.1) only. The two regions were assumed to be coupled via a linear diffusive interchange of the autocatalytic species $ G $. We shall consider a similar system as I, but with cubic autocatalysis

    $ F+2G3G(ratek3fg2)
    $
    (1.3)

    together with a linear decay step

    $ GH(ratek4g).
    $
    (1.4)

    For $ q $-th autocatalytic, we have

    $ F+qG(q+1)G(ratek3fgq),1q2,
    $
    (1.5)

    together with a linear decay step

    $ GH(rate k4g).
    $
    (1.6)

    This yields to the following system

    $ η1t=2η1ξ2+ν(η2η1)η1ζq1,
    $
    (1.7)
    $ ζ1t=2ζ1ξ2κζ1+η1ζq1,
    $
    (1.8)
    $ η2t=2η2ξ2+ν(η1η2)η2ζq2,
    $
    (1.9)
    $ ζ2t=2ζ2ξ2+η2ζq2
    $
    (1.10)

    where $ \nu $ represents the couple between (I) and (II) and $ \kappa $ represents the strength of the auto-catalyst decay. For more details see [32]. Omitting the diffusion terms in the system (1.7)-(1.10), one has the following ordinary differential equations

    $ η1t=ν(η2η1)η1ζq1,
    $
    (1.11)
    $ ζ1t=κζ1+η1ζq1,
    $
    (1.12)
    $ η2t=ν(η1η2)η2ζq2,
    $
    (1.13)
    $ ζ2t=η2ζq2.
    $
    (1.14)

    Now we provide some basic definitions that be needed in this work. As for the theorems and proofs related to the three fractal-fractional operators, they are found in details in [17]. Thus we suffice in this work by constructing the algorithms and making the numerical simulations of the set of Eqs (1.7)-(1.10) with the three fractal-fractional operators.

    Definition 1. If $ \eta(t) $ is continuous and fractal differentiable on $ (a, b) $ of order $ k $, then the fractal-fractional derivative of $ \eta(t) $ of order $ \beta $ in Riemann Liouville sense with the power law is given by [17]:

    $ {FFP}0Dβ,ktη(t)=1Γ(1β)ddtkt0(tτ)βη(τ)dτ,(0<β,k1),
    $
    (1.15)

    and the fractal-fractional integral of $ \eta(t) $ is given by

    $ FFP0Iβ,ktη(t)=kΓ(β)t0τk1(tτ)β1η(τ)dτ.
    $
    (1.16)

    Definition 2. If $ \eta(t) $ is continuous in the $ (a, b) $ and fractal differentiable on $ (a, b) $ with order $ k $, then the fractal-fractional derivative of $ \eta(t) $ of order $ \beta $ in Riemann Liouville sense with the exponential decay kernel is given by [17]:

    $ FFE0Dβ,ktη(t)=M(β)1βddtkt0eβ1β(tτ)η(τ)dτ,(0<β,k1),
    $
    (1.17)

    and the fractal-fractional integral of $ \eta(t) $ is given by

    $ FFE0Iβ,ktη(t)=(1β)ktk1M(β)η(t)+βkM(β)t0τk1η(τ)dτ
    $
    (1.18)

    where $ M(\beta) $ is the normalization function such that $ M(0) = M(1) = 1. $

    Definition 3. If $ \eta(t) $ is continuous in the $ (a, b) $ and fractal differentiable on $ (a, b) $ with order $ k $, then the fractal-fractional derivative of $ \eta(t) $ of order $ \beta $ in Riemann Liouville sense with the Mittag-Leffler type kernel is given by [17]:

    $ FFE0Dβ,ktη(t)=A(β)1βddtkt0Eβ(β1β(tτ))η(τ)dτ,(0<β,k1),
    $
    (1.19)

    and the fractal-fractional integral of $ \eta(t) $ is given by

    $ FFE0Iβ,ktη(t)=(1β)ktk1A(β)η(t)+βkA(β)Γ(β)t0τk1(tτ)β1η(τ)dτ,
    $
    (1.20)
    $ dη(t)dtk=limτtη(τ)η(t)τktk
    $
    (1.21)

    where where $ A(\beta) = 1-\beta+\dfrac{\beta}{\Gamma(\beta)} $ is a normalization function such that $ A(0) = A(1) = 1 $.

    Our contribution to this paper is to construct the successive approximations and evaluate the numerical solutions of the FFRDE. These successive approximations allow us to study the behavior of numerical solutions based on power, exponential, and the Mittag-Leffler kernels. Also we can study the behavior of approximate solutions in the case of nonlinearity of the FFRDE in general. To our best knowledge, this is the first study of the FFRDE using fractal-fractional with these kernels. The importance of these results lies in the fact that they highlight the possibility of using these results for the benefit of chemical and physical researchers, by trying to link the numerical results of these mathematical models with the laboratory results. These results also contribute to the reliance on numerical results in the case of many models related to the real world, which often cannot find an analytical solution. The structure of this paper is summarized as follows: In sections, two, three and four, the FFRDE is presented with the three kernels that proposed in this work and construct the successive approximations. In section Five, numerical solutions for the FFRDE are discussed with a study of their behavior. Section Six the conclusion is presented.

    The new model is obtained by replacing the ordinary derivative with the the fractal-fractional derivative the power law kernel as [17]

    $ FFP0Dβtη1(t)=ν(η2(t)η1(t))η1(t)ζq1(t),
    $
    (2.1)
    $ FFP0Dβtζ1(t)=κζ1(t)+η1(t)ζq1(t),
    $
    (2.2)
    $ FFP0Dβtη2(t)=ν(η1(t)η2(t))η2(t)ζq2(t),
    $
    (2.3)
    $ FFP0Dβtζ2(t)=η2(t)ζq2(t).
    $
    (2.4)

    By following the procedure in [17], we can obtain the following successive approximations:

    $ η1(t)η1(0)=kΓ(β)t0τk1(tτ)β1φ1(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (2.5)
    $ ζ1(t)ζ2(0)=kΓ(β)t0τk1(tτ)β1φ2(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (2.6)
    $ η2(t)η3(0)=kΓ(β)t0τk1(tτ)β1φ3(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (2.7)
    $ ζ2(t)ζ2(0)=kΓ(β)t0τk1(tτ)β1φ4(η1,ζ1,η2,ζ2,τ)dτ
    $
    (2.8)

    where

    $ φ1(η1,ζ1,η2,ζ2,τ)=(ν(η2(τ)η1(τ))η1(τ)ζq1(τ)),
    $
    (2.9)
    $ φ2(η1,ζ1,η2,ζ2,τ)=(κζ1(τ)+η1(τ)ζq1(τ)),
    $
    (2.10)
    $ φ3(η1,ζ1,η2,ζ2,τ)=(ν(η1(τ)η2(τ))η2(τ)ζq2(τ)),
    $
    (2.11)
    $ φ4(η1,ζ1,η2,ζ2,τ)=η2(τ)ζq2(τ).
    $
    (2.12)

    Equation (2.5)-(2.8) can be reformulated as

    $ η1(t)η1(0)=kΓ(β)nm=0tm+1tmτk1(tn+1τ)β1φ1(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (2.13)
    $ ζ1(t)ζ1(0)=kΓ(β)nm=0tm+1tmτk1(tn+1τ)β1φ2(η1(τ),ζ1(τ),η2(τ),ζ2(τ),τ)dτ,
    $
    (2.14)
    $ η2(t)η2(0)=kΓ(β)nm=0tm+1tmτk1(tn+1τ)β1φ3(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (2.15)
    $ ζ2(t)ζ2(0)=kΓ(β)nm=0tm+1tmτk1(tn+1τ)β1φ4(η1,ζ1,η2,ζ2,τ)dτ.
    $
    (2.16)

    Using the two-step Lagrange polynomial interpolation, we obtain

    $ η1(t)η1(0)=kΓ(β)nm=0tm+1tm(tn+1τ)β1Q1,m(τ)dτ,
    $
    (2.17)
    $ ζ1(t)ζ1(0)=kΓ(β)nm=0tm+1tm(tn+1τ)β1Q2,m(τ)dτ,
    $
    (2.18)
    $ η2(t)η2(0)=kΓ(β)nm=0tm+1tm(tn+1τ)β1Q3,m(τ)dτ,
    $
    (2.19)
    $ ζ2(t)ζ2(0)=kΓ(β)nm=0tm+1tm(tn+1τ)β1Q4,m(τ)dτ,
    $
    (2.20)

    where,

    $ Q1,m(τ)=τtm1tmtm1tk1mφ1(η1(τm),ζ1(τm),η2(τm),ζ2(τm),τm)τtmtmtm1×tk1m1φ1(η1(τm1),ζ1(τm1),η2(τm1),ζ2(τm1),τm1),
    $
    (2.21)
    $ Q2,m(τ)=τtm1tmtm1tk1mφ2(η1(τm),ζ1(τm),η2(τm),ζ2(τm),τm)τtmtmtm1×tk1m1φ2(η1(τm1),ζ1(τm1),η2(τm1),ζ2(τm1),τm1),
    $
    (2.22)
    $ Q3,m(τ)=τtm1tmtm1tk1mφ3(η1(τm),ζ1(τm),η2(τm),ζ2(τm),τm)τtmtmtm1×tk1m1φ3(η1(τm1),ζ1(τm1),η2(τm1),ζ2(τm1),τm1),
    $
    (2.23)
    $ Q4,m(τ)=τtm1tmtm1tk1mφ4(η4(τm),ζ1(τm),η2(τm),ζ2(τm),τm)τtmtmtm1×tk1m1φ4(η1(τm1),ζ1(τm1),η2(τm1),ζ2(τm1),τm1).
    $
    (2.24)

    These integrals are evaluated directly and the numerical solutions of (2.1)-(2.4) involving the FFP derivative are given by

    $ η1(tn+1)=η1(0)+khβΓ(β+2)nm=0tk1mφ1(η1(tm),ζ1(tm),η2(tm),ζ2(tm),tm)Ξ1(n,m)tk1m1φ1(η1(τm1),ζ1(tm1),η2(tm1),ζ2(tm1),tm1)Ξ2(n,m)),
    $
    (2.25)
    $ ζ1(tn+1)=ζ1(0)+khβΓ(β+2)nm=0tk1mφ2(η1(tm),ζ1(tm),η2(tm),ζ2(tm),tm)Ξ1(n,m)tk1m1φ2(η1(τm1),ζ1(tm1),η2(tm1),ζ2(tm1),tm1)Ξ2(n,m)),
    $
    (2.26)
    $ η2(tn+1)=η2(0)+khβΓ(β+2)nm=0tk1mφ3(η1(tm),ζ1(tm),η2(tm),ζ2(tm),tm)Ξ1(n,m)tk1m1φ4(η1(τm1),ζ1(tm1),η2(tm1),ζ2(tm1),tm1)Ξ2(n,m)),
    $
    (2.27)
    $ ζ2(tn+1)=ζ2(0)+khβΓ(β+2)nm=0tk1mφ4(η1(tm),ζ1(tm),η2(tm),ζ2(tm),tm)Ξ1(n,m)tk1m1φ4(η1(τm1),ζ1(tm1),η2(tm1),ζ2(tm1),tm1)Ξ2(n,m)),
    $
    (2.28)
    $ Ξ1(n,m)=((n+1m)β(nm+2+β)(nm)β×(nm+2+2β)),
    $
    (2.29)
    $ Ξ2(n,m)=((n+1m)β+1(nm)β(nm+1+β)).
    $
    (2.30)

    Considering the FFE derivative, we have from [17]

    $ FFE0Dβtη1(t)=ν(η2(t)η1(t))η1(t)ζq1(t),
    $
    (3.1)
    $ FFE0Dβtζ1(t)=κζ1(t)+η1(t)ζq1(t),
    $
    (3.2)
    $ FFE0Dβtη2(t)=ν(η1(t)η2(t))η2(t)ζq2(t),
    $
    (3.3)
    $ FFE0Dβtζ2(t)=η2(t)ζq2(t).
    $
    (3.4)

    For the successive approximations of the system (3.1)-(3.4), we follow the same procedures as in [17], we obtain

    $ η1(t)η1(0)=ktk1(1β)M(β)φ1(η1,ζ1,η2,ζ2,t)+βM(β)t0kτk1φ1(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.5)
    $ ζ1(t)ζ1(0)=ktk1(1β)M(β)φ2(η1,ζ1,η2,ζ2,t)+βM(β)t0kτk1φ2(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.6)
    $ η2(t)η2(0)=ktk1(1β)M(β)φ3(η1,ζ1,η2,ζ2,t)+βM(β)t0kτk1φ3(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.7)
    $ ζ2(t)ζ2(0)=ktk1(1β)M(β)φ4(η1,ζ1,η2,ζ2,t)+βM(β)t0kτk1φ4(η1,ζ1,η2,ζ2,τ)dτ.
    $
    (3.8)

    Using $ t = t_{n+1} $ the following is established

    $ η1(tn+1)η1(0)=ktk1(1β)M(β)φ1(η1,ζ1,η2,ζ2,tn)+βM(β)tn+10kτk1φ1(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.9)
    $ ζ1(tn+1)ζ1(0)=ktk1(1β)M(β)φ2(η1,ζ1,η2,ζ2,tn)+βM(β)tn+10kτk1φ2(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.10)
    $ η2(tn+1)η2(0)=ktk1(1β)M(β)φ3(η1,ζ1,η2,ζ2,tn)+βM(β)tn+10kτk1φ3(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.11)
    $ ζ2(tn+1)ζ2(0)=ktk1(1β)M(β)φ4(η1,ζ1,η2,ζ2,tn)+βM(β)tn+10kτk1φ4(η1,ζ1,η2,ζ2,τ)dτ.
    $
    (3.12)

    Further, we have the following:

    $ η1(tn+1)η1(tn)=ktk1n(1β)M(β)φ1(η1,ζ1,η2,ζ2,tn)ktk1n1(1β)M(β)φ1(η1,ζ1,η2,ζ2,tn1)+βM(β)tn+1tnkτk1φ1(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.13)
    $ ζ1(tn+1)ζ1(tn)=ktk1n(1β)M(β)φ2(η1,ζ1,η2,ζ2,tn)ktk1n1(1β)M(β)φ2(η1,ζ1,η2,ζ2,tn1)+βM(β)tn+1tnkτk1φ2(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.14)
    $ η2(tn+1)η2(tn)=ktk1n(1β)M(β)φ3(η1,ζ1,η2,ζ2,tn)ktk1n1(1β)M(β)φ3(η1,ζ1,η2,ζ2,tn1)+βM(β)tn+1tnkτk1φ3(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (3.15)
    $ ζ2(tn+1)ζ2(tn)=ktk1n(1β)M(β)φ4(η1,ζ1,η2,ζ2,tn)ktk1n1(1β)M(β)φ4(η1,ζ1,η2,ζ2,tn1)+βM(β)tn+1tnkτk1φ4(η1,ζ1,η2,ζ2,τ)dτ.
    $
    (3.16)

    It follows from the Lagrange polynomial interpolation and integrating the following expressions:

    $ η1(tn+1)η1(tn)=ktk1n(1β)M(β)φ1(η1,ζ1,η2,ζ2,tn)ktk1n1(1β)M(β)φ1(η1,ζ1,η2,ζ2,tn1)+khβ2M(β)×(3tk1nφ1(η1,ζ1,η2,ζ2,tn)tk1n1φ1(η1,ζ1,η2,ζ2,tn1),
    $
    (3.17)
    $ ζ1(tn+1)ζ1(tn)=ktk1n(1β)M(β)φ2(η1,ζ1,η2,ζ2,tn)ktk1n1(1β)M(β)φ2(η1,ζ1,η2,ζ2,tn1)+khβ2M(β)×(3tk1nφ2(η1,ζ1,η2,ζ2,tn)tk1n1φ2(η1,ζ1,η2,ζ2,tn1),
    $
    (3.18)
    $ η2(tn+1)η2(tn)=ktk1n(1β)M(β)φ3(η1,ζ1,η2,ζ2,tn)ktk1n1(1β)M(β)φ3(η1,ζ1,η2,ζ2,tn1)+khβ2M(β)×(3tk1nφ3(η1,ζ1,η2,ζ2,tn)tk1n1φ3(η1,ζ1,η2,ζ2,tn1),
    $
    (3.19)
    $ ζ2(tn+1)ζ2(tn)=ktk1n(1β)M(β)φ4(η1,ζ1,η2,ζ2,tn)ktk1n1(1β)M(β)φ4(η1,ζ1,η2,ζ2,tn1)+khβ2M(β)×(3tk1nφ4(η1,ζ1,η2,ζ2,tn)tk1n1φ4(η1,ζ1,η2,ζ2,tn1).
    $
    (3.20)

    Finally, it is appropriate to write the successive approximations of the system (3.1)-(3.4) as follows:

    $ η1(tn+1)η1(tn)=ktk1n((1β)M(β)+3hβ2M(β))φ1(η1,ζ1,η2,ζ2,tn)ktk1n1((1β)M(β)+hβ2M(β))φ1(η1,ζ1,η2,ζ2,tn1),
    $
    (3.21)
    $ ζ1(tn+1)ζ1(tn)=ktk1n((1β)M(β)+3hβ2M(β))φ2(η1,ζ1,η2,ζ2,tn)ktk1n1((1β)M(β)+hβ2M(β))φ2(η1,ζ1,η2,ζ2,tn1),
    $
    (3.22)
    $ η2(tn+1)η2(tn)=ktk1n((1β)M(β)+3hβ2M(β))φ3(η1,ζ1,η2,ζ2,tn)ktk1n1((1β)M(β)+hβ2M(β))φ3(η1,ζ1,η2,ζ2,tn1),
    $
    (3.23)
    $ ζ2(tn+1)ζ2(tn)=ktk1n((1β)M(β)+3hβ2M(β))φ4(η1,ζ1,η2,ζ2,tn)ktk1n1((1β)M(β)+hβ2M(β))φ4(η1,ζ1,η2,ζ2,tn1).
    $
    (3.24)

    Considering the FFM derivative, we have [18]

    $ FFM0Dβtη1(t)=ν(η2(t)η1(t))η1(t)ζq1(t),
    $
    (4.1)
    $ FFM0Dβtζ1(t)=κζ1(t)+η1(t)ζq1(t),
    $
    (4.2)
    $ FFM0Dβtη2(t)=ν(η1(t)η2(t))η2(t)ζq2(t),
    $
    (4.3)
    $ FFM0Dβtζ2(t)=η2(t)ζq2(t).
    $
    (4.4)

    Also, for this system (4.1)-(4.4), we follow the same treatment that was done in [17] to obtain the successive approximate solutions as follows:

    $ η1(t)η1(0)=ktk1(1β)A(β)φ1(η1,ζ1,η2,ζ2,t)+βA(β)Γ(β)t0kτk1(tτ)β1φ1(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.5)
    $ ζ1(t)ζ1(0)=ktk1(1β)A(β)φ2(η1,ζ1,η2,ζ2,t)+βA(β)Γ(β)t0kτk1(tτ)β1φ2(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.6)
    $ η2(t)η2(0)=ktk1(1β)A(β)φ3(η1,ζ1,η2,ζ2,t)+βA(β)Γ(β)t0kτk1(tτ)β1φ3(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.7)
    $ ζ2(t)ζ2(0)=ktk1(1β)A(β)φ4(η1,ζ1,η2,ζ2,t)+βA(β)Γ(β)t0kτk1(tτ)β1φ4(η1,ζ1,η2,ζ2,τ)dτ.
    $
    (4.8)

    At $ t_{n+1} $ we obtain the following

    $ η1(tn+1)η1(0)=ktk1n(1β)A(β)φ1(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+βA(β)Γ(β)tn+10kτk1(tn+1τ)β1φ1(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.9)
    $ ζ1(tn+1)ζ1(0)=ktk1n(1β)A(β)φ2(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+βA(β)Γ(β)tn+10kτk1(tn+1τ)β1φ2(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.10)
    $ η2(tn+1)η2(0)=ktk1n(1β)A(β)φ3(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+βA(β)Γ(β)tn+10kτk1(tn+1τ)β1φ3(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.11)
    $ ζ2(tn+1)ζ2(0)=ktk1n(1β)A(β)φ4(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+βA(β)Γ(β)tn+10kτk1(tn+1τ)β1φ4(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.12)

    The integrals involving in (4.9)-(4.12) can be approximated as:

    $ η1(tn+1)η1(0)=ktk1n(1β)A(β)φ1(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+βA(β)Γ(β)nm=0tm+1tmkτk1(tn+1τ)β1φ1(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.13)
    $ ζ1(tn+1)ζ1(0)=ktk1n(1β)A(β)φ2(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+βA(β)Γ(β)nm=0tm+1tmkτk1(tn+1τ)β1φ2(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.14)
    $ η2(tn+1)η2(0)=ktk1n(1β)A(β)φ3(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+βA(β)Γ(β)nm=0tm+1tmkτk1(tn+1τ)β1φ3(η1,ζ1,η2,ζ2,τ)dτ,
    $
    (4.15)
    $ ζ2(tn+1)ζ2(0)=ktk1n(1β)A(β)φ4(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+βA(β)Γ(β)nm=0tm+1tmkτk1(tn+1τ)β1φ4(η1,ζ1,η2,ζ2,τ)dτ.
    $
    (4.16)

    The following numerical schemes after approximating the expressions $ \tau^{k-1} \varphi_{i}(\eta_{1}, \zeta_{1}, \eta_{2}, \zeta_{2}, \tau), \, \, i = 1, 2, 3, 4 $ in the interval $ [t_{m}, t_{m+1}] $ in (4.13)-(4.16) are given by

    $ η1(tn+1)η1(0)=ktk1n(1β)A(β)φ1(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+khβA(β)Γ(β+2)nm=0[tk1mφ1(η1(tm),ζ1(tm),η2(tm),ζ2(tm),(tm))Ξ1(n,m)tk1m1φ1(η1(tm1),ζ1(tm1),η2(tm1),ζ2(tm1),(tm1))Ξ2(n,m)],
    $
    (4.17)
    $ ζ1(tn+1)ζ1(0)=ktk1n(1β)A(β)φ2(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+khβA(β)Γ(β+2)nm=0[tk1mφ2(η1(tm),ζ1(tm),η2(tm),ζ2(tm),(tm))Ξ1(n,m)tk1m1φ2(η1(tm1),ζ1(tm1),η2(tm1),ζ2(tm1),(tm1))Ξ2(n,m)],
    $
    (4.18)
    $ η2(tn+1)η2(0)=ktk1n(1β)A(β)φ3(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+khβA(β)Γ(β+2)nm=0[tk1mφ3(η1(tm),ζ1(tm),η2(tm),ζ2(tm),(tm))Ξ1(n,m)tk1m1φ3(η1(tm1),ζ1(tm1),η2(tm1),ζ2(tm1),(tm1))Ξ2(n,m)],
    $
    (4.19)
    $ ζ2(tn+1)ζ2(0)=ktk1n(1β)A(β)φ4(η1(tn),ζ1(tn),η2(tn),ζ2(tn),tn)+khβA(β)Γ(α+2)nm=0[tk1mφ4(η1(tm),ζ1(tm),η2(tm),ζ2(tm),(tm))Ξ1(n,m)tk1m1φ4(η1(tm1),ζ1(tm1),η2(tm1),ζ2(tm1),(tm1))Ξ2(n,m)].
    $
    (4.20)

    In this section, we study in detail the effect of the non-linear term in general, as well as the effect of the fractal-fractional order on the numerical solutions that we obtained by using successive approximations in the above sections. First we begin by satisfying the effective of the numerical solutions of the proposed system when $ \beta = 1 $ and $ k = 1. $

    We compare only for the power kernel with a known numerical method which is the finite differences method. This is because all numerical solutions based on the three fractal-fractional operators that presented in this paper are very close each other when $ \beta = 1 $ and $ k = 1. $ Figure 1 illustrates the comparison between numerical solutions (2.25)-(2.28) and numerical solutions computed by using the finite differences method with $ k $ and $ \beta $. The parameters that used are $ \gamma = 0.4, \kappa = 0.004, h = 0.02. $ From this figure we note that an excellent agreement. And the accurate is increasing as we take small $ h $. From, Figure 1(a) and 1(c), we can see, that the profiles for $ \eta_{1} $ and $ \eta_{2} $ are very similar, but the profiles of $ \zeta_{1} $ and $ \zeta_{2} $ are more distinct with $ \zeta_{2} > \zeta_{2}. $ For Figure 1(b), the profiles of $ \zeta_{1} $ and $ \zeta_{2} $ are very close than in Figure 1(a) and 1(c), also for $ \zeta_{1} $ and $ \zeta_{2} $. Figures 2 and 3 show that the behavior of the approximate solutions based on FFP, FFE and FFM, when the degree of the non-linear term is cubic and for different values of $ k $ and $ \beta $. For the parameters $ \gamma $ and $ \kappa $, we fixed them in all computations. The remain parameters are the same as in Figure 1. Similarly, in Figures 4 and 5, the approximate solutions are plotted in the case of a non-linear with quadratic degree and for different values of $ k $ and $ \beta $. Finally in Figures 6 and 7, the approximate solutions are shown in the case of non-linear with fractional order and for different values for $ k $ and $ \beta $. For the Figures 2 and 3 which the nonlinear is cubic, all the profiles are distinct. Similarly with Figures 6 and 7 when the nonlinear is quadratic. From Figures 4 and 5, we can see in the case of fraction non-linear, the profiles of $ \eta_{1} $ and $ \eta_{2} $ are very close to each other than the profiles of $ \zeta_{1} $ and $ \zeta_{2}. $

    Figure 1.  Comparison between the numerical solutions (2.25)-(2.28) and numerical based on finite difference methods for $ \beta = 1, \, k = 1, \, \gamma = 0.4, \, \kappa = 0.001, \, h = 0.01.\, (a)\, q = 2; \, (b)\, q = 1; (c)\, q = 1.8; $ (Green solid color: Numerical solutions (2.25)-(2.28); Red dashed color: FDM).
    Figure 2.  Graph of the numerical solutions with $ q = 2 $ for $ \beta = 0.8, k = 1, \gamma = 0.4, \kappa = 0.001, h = 0.01 $ (a) FFP; (b) FFE; (c) FFM; (Red color: $ \eta_{1} $; Blue color: $ \zeta_{1} $; Green color: $ \eta_{2} $; Cyan color: $ \zeta_{2}) $.
    Figure 3.  Graph of the numerical solutions with $ q = 2 $ for $ \beta = 0.7, k = 0.8, \gamma = 0.4, \kappa = 0.001, h = 0.01 $ (a) FFP; (b) FFE; (c) FFM; (Red color: $ \eta_{1} $; Blue color: $ \zeta_{1} $; Green color: $ \eta_{2} $; Cyan color: $ \zeta_{2}) $.
    Figure 4.  Graph of the numerical solutions with $ q = 1 $ for $ \beta = 0.8, k = 1, \gamma = 0.4, \kappa = 0.001, h = 0.01 $ (a) FFP; (b) FFE; (c) FFM; (Red color: $ \eta_{1} $; Blue color: $ \zeta_{1} $; Green color: $ \eta_{2} $; Cyan color: $ \zeta_{2}) $.
    Figure 5.  Graph of the numerical solutions with $ q = 1 $ for $ \beta = 0.7, k = 0.8, \gamma = 0.4, \kappa = 0.001, h = 0.01 $ (a) FFP; (b) FFE; (c) FFM; (Red color: $ \eta_{1} $; Blue color: $ \zeta_{1} $; Green color: $ \eta_{2} $; Cyan color: $ \zeta_{2}) $.
    Figure 6.  Graph of the numerical solutions with $ q = 1.8 $ for $ \beta = 0.8, k = 1, \gamma = 0.4, \kappa = 0.001, h = 0.01 $ (a) FFP; (b) FFE; (c) FFM; (Red color: $ \eta_{1} $; Blue color: $ \zeta_{1} $; Green color: $ \eta_{2} $; Cyan color: $ \zeta_{2}) $.
    Figure 7.  Graph of the numerical solutions with $ q = 1.8 $ for $ \beta = 0.7, k = 0.8, \gamma = 0.4, \kappa = 0.001, h = 0.01 $ (a) FFP; (b) FFE; (c) FFM; (Red color: $ \eta_{1} $; Blue color: $ \zeta_{1} $; Green color: $ \eta_{2} $; Cyan color: $ \zeta_{2}) $.

    In this paper, numerical solutions of the of the fractal-fractional reaction diffusion equations with general nonlinear have been studied. We introduced the FFRDE in three instances of fractional derivatives based on power, exponential, and Mittag-Leffler kernels. After that, we used the fundamental fractional calculus with the help of Lagrange polynomial functions. We obtained the iterative and approximate formulas in the three cases. We studied the effect of the non-linear term order, in the case of cubic, quadratic, and fractional for different values of the fractal-fractional derivative order. The accuracy of the numerical solutions in the classic case of the FFRDE was tested in the case of power kernel, where all the numerical solutions in the classic case of integer order coincide to each other, and the comparison result has excellent agreement. In all calculations was used the Mathematica Program Package.

    The authors would like to express their Gratitudes to the ministry of education and the deanship of scientific research-Najran University-Kingdom of Saudi Arabia for their financial and Technical support under code number (NU/ESCI/17/025).

    The authors declare that there is no conflict of interests regarding the publication of this paper.

    [1] Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioproces Biotechniq 4: 2.
    [2] Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99: 2491-2511. doi: 10.1007/s00253-015-6426-3
    [3] Araujo S, Moreira da Silva F, Gouveia IC (2015) The role of technology towards a new bacterial-cellulose-based material for fashion design. J Ind Intell Inf 3: 168-172.
    [4] Castellane TCL, Persona MR, Campanharo JC, et al. (2015) Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications. Int J Biol Macromol 74: 515-522. doi: 10.1016/j.ijbiomac.2015.01.007
    [5] Ross P, Weinhouse H, Aloni Y, et al. (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279-281. doi: 10.1038/325279a0
    [6] Ude S, Arnolod DL, Moon CD, et al. (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8: 1997-2011.
    [7] Zogaj X, Nimtz M, Rohde M, et al. (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39: 1452-1463. doi: 10.1046/j.1365-2958.2001.02337.x
    [8] Romling U (2002) Molecular biology of cellulose production in bacteria. ResMicrobiol 153: 205-212.
    [9] Solano C, Garcia B, Valle J, et al. (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43: 793-808. doi: 10.1046/j.1365-2958.2002.02802.x
    [10] Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohyd Polym106: 132-141.
    [11] Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493: 181-186.
    [12] Amikam D, Benziman M (1989) Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 171: 6649-6655.
    [13] Romling U (2012) Cyclic di-GMP, an established secondary messenger still speeding up. Environ Microbiol 14: 1817-1829.
    [14] Whiteley CG, Lee DJ (2014) Bacterial diguanylate cyclases: Structure, function and mechanism in exopolysaccharide biofilm development. Biotech Adv 33: 124-41.
    [15] Morgan JL, Mcnamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nature Struc Biol 21: 489-496.
    [16] Dazzo FB, Truchet GL, Sherwood JE, et al. (1984) Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl Environ Microbiol 48: 1140-1150.
    [17] Mateos PF, Baker DL, Philip-Hollingsworth S, et al. (1995) Direct in situ identification of cellulose microfibrils associated with Rhizobium leguminosarum biovar trifolii attached to the root epidermis of white clover. Can J Microb 41: 202-207. doi: 10.1139/m95-028
    [18] Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev 8: 624-633.
    [19] McCrate OA, Zhou X, Reichhardt C, et al. (2013) Sum of the Parts: Composition and Architecture of the Bacterial Extracellular Matrix. J Mol Biol 425: 4286-4294. doi: 10.1016/j.jmb.2013.06.022
    [20] Koeck DE, Pechtl A, Zerlov VV, et al., (2014) Genomics of cellulolytic bacteria Curr Opin Biotech 29: 171-183. doi: 10.1016/j.copbio.2014.07.002
    [21] Lombard V, Ramulu HG, Drula E, et al. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42: D490-D495. doi: 10.1093/nar/gkt1178
    [22] Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3: 853-859. doi: 10.1016/S0969-2126(01)00220-9
    [23] Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11: 593-600. doi: 10.1016/S0959-440X(00)00253-0
    [24] Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. British Microbiology Research Journal 3: 235-258. doi: 10.9734/BMRJ/2013/2367
    [25] Fuji K, Satomi M, Fukui Y, et al. (2013) Streptomyces abietis sp. nov., a cellulolytic bacterium isolated from soil of a pine forest. Int J Syst Evol Microbiol 63: 4754-4759.
    [26] Cole JK, Gieler BA, Heisler DL, et al. (2013) Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J Syst Evol Microbiol 63: 4675-4682.
    [27] Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, et al. (2013) Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 63: 86-92.
    [28] Hatamoto M, Kaneshige M, Nakamura A, et al. (2014) Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge. Int J Syst Evol Microbiol 64: 1770-1774.
    [29] Kusube M, Sugihara A, Moriwaki Y, et al. (2014) Alicyclobacillus cellulosilyticus sp. nov., a thermophilic, cellulolytic bacterium isolated from steamed Japanese cedar chips from a lumbermill. Int J Syst Evol Microbiol 64: 2257-2263.
    [30] Horino H, Fujita T, Tonouchi A (2014) Description of Anaerobacterium chartisolvens gen. nov., sp. nov., an obligately anaerobic bacterium from Clostridium rRNA cluster III isolated from soil of a Japanese rice field, and reclassification of Bacteroides cellulosolvens Murray et al. 1984 as Pseudobacteroides cellulosolvens gen. nov., comb. nov. Int J Syst Evol Microbiol 64: 1296-1303.
    [31] Bing W, Wang H, Zheng B, et al. (2015) Caldicellulosiruptor changbaiensis sp. nov., a cellulolytic and hydrogen-producing bacterium from a hot spring. Int J Syst Evol Microbiol 65: 293-297.
    [32] Koeck DE, Ludwig W, Wanner G, et al. (2015) Herbinix hemicellulosilytica, gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol [in press].
    [33] Menéndez E, Ramírez-Bahena MH, Fabryová A, et al. (2015) Pseudomonas coleopterorum sp. nov., a cellulase producing bacterium isolated from the bark beetle Hylesinus fraxini. Int J Syst Evol Microbiol [in press].
    [34] Huang S, Sheng P, Zhang H (2012) Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae) Int J Mol Sci 13: 2563-2577.
    [35] Hameed A, Shahina M, Lai WA, et al. (2015) Oricola cellulosilytica gen. nov., sp. nov., a cellulose-degrading bacterium of the family Phyllobacteriaceae isolated from surface seashore water, and emended descriptions of Mesorhizobium loti and Phyllobacterium myrsinacearum. A van Leeuw J Microb 107: 759-771.
    [36] Sethi S, Datta A, Gupta L, et al. (2013) Optimization of Cellulase Production from Bacteria Isolated from Soil. ISRN Biotechnology 2013: 985685.
    [37] Howard JA, Hood E (2005) Bioindustrial and biopharmaceutical products produced in plants. Adv Agron 85: 91-124.
    [38] Yu LX, Gray BN, Rutzke CJ, et al. (2007) Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J Biotechnol1 31: 362-369.
    [39] Rastogi G, Muppidi GL, Gurram RN, et al. (2009) Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Ind Microbiol Biotechnol 36: 585-598. doi: 10.1007/s10295-009-0528-9
    [40] Trivedi N, Gupta V, Kumar M, et al. (2011) An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohyd Polym 83: 891-897. doi: 10.1016/j.carbpol.2010.08.069
    [41] DiPasquale L, Romano I, Picardello G, et al., (2014) Characterization of a native cellulase activity from an anaerobic thermophilic hydrogen-producing bacterium Thermosipho sp. strain 3. Ann Microbiol 64: 1493-1503. doi: 10.1007/s13213-013-0792-9
    [42] Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13: 1925-1965. doi: 10.3390/md13041925
    [43] Kinet R, Destain J, Hiligsmann S, et al. (2015) Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: Toward a microbial resource management approach. Bioresource Technol 189: 138-144. doi: 10.1016/j.biortech.2015.04.010
    [44] Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126: 26-36. doi: 10.1016/j.jbiotec.2006.02.011
    [45] Duan CJ, Feng JX (2010) Mining metagenomes for novel cellulase genes. Biotechnol Lett 32: 1765-1775.
    [46] Liu J, Liu W, Zhao X, et al. (2011) Cloning and functional characterization of a novel endo-β-1,4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol 89: 1083-1092. doi: 10.1007/s00253-010-2828-4
    [47] Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4: 117-139.
    [48] Mori T, Kamei I, Hirofumi H, et al. (2014) Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. Springer Plus 3: 365.
    [49] Attri S, Garg G (2014) Isolation of microorganisms simultaneously producing xylanase, pectinase and cellulase enzymes using cost effective substrates. J Innovative Biol 1: 45-50.
    [50] Singh G, Singh AK (2014) Alternative substrates for the amylase and cellulase production with rhizobial isolates. Int J Avd Res Sci Technol 3: 79-85.
    [51] Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Environ Microbiol 43: 777-780.
    [52] Kasana RC, Salwan R, Dhar H, et al. (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57: 503-507. doi: 10.1007/s00284-008-9276-8
    [53] Taha M, Kadali KK, Al-Hothaly K, et al. (2015) An effective microplate method (Biolog MT2) for screening native lignocellulosic-straw-degrading bacteria. Ann Microbiol [in press].
    [54] Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook of cellulase improvement: screening and selection strategies. Biotechnol Adv 24: 452-481. doi: 10.1016/j.biotechadv.2006.03.003
    [55] Sadhu S, Ghosh PK, Aditya G, et al. (2014) Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. J King Saud Univ 26: 323-332.
    [56] Sangkharak K, Vangsirikul P, Janthachat S (2012) Strain improvement and optimization for enhanced production of cellulase in Cellulomonas sp. TSU-03. African J Microbiol Res 6: 1079-1084.
    [57] Maki M, Leung KT, Qin W (2009) The prospects of cellulose-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5: 500-516.
    [58] Zhao H, Chockalingam K, Chen Z (2002) Directed evolution of enzymes and pathways for industrial biocatalysis. Curr Opin Biotechnol 13: 104-110. doi: 10.1016/S0958-1669(02)00291-4
    [59] Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14: 438-443.
    [60] Hasunuma T, Okazaki F, Okai N, et al. (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresource Technol 135: 513-522. doi: 10.1016/j.biortech.2012.10.047
    [61] Garvey M, Klose H, Fischer R, et al. (2014) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31: 581-593.
    [62] Juturu V, Wu JC (2014) Microbial cellulases: Engineering, production and applications. Renew Sust Energ Rev 33: 188-203. doi: 10.1016/j.rser.2014.01.077
    [63] Lambertz C, Garvey M, Klinger J, et al. (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7: 135. doi: 10.1186/s13068-014-0135-5
    [64] Munjal N, Jaewd K, Wajid S, et al. (2015) A Constitutive Expression System for Cellulase Secretion in Escherichia coli and Its Use in Bioethanol Production. PLoS ONE 10: e0119917. doi: 10.1371/journal.pone.0119917
    [65] Chung D, Cha M, Guss AM, et al. (2015) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. P Natl Acad Sci U S A 111: 8931-8936.
    [66] Robledo M, Jimenez-Zurdo JI, Soto MJ, et al. (2011) Development of functional symbiotic white clover root hairs and nodules requires tightly regulated production of rhizobial cellulase CelC2. Mol Plant Microbe Interact 24: 798-807. doi: 10.1094/MPMI-10-10-0249
    [67] Batthacharya AS, Batthacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett [in press].
    [68] Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27: 297-306. doi: 10.1016/j.biotechadv.2009.01.008
    [69] Streatfield AJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5: 2-15. doi: 10.1111/j.1467-7652.2006.00216.x
    [70] Ziegelhoffer T, Will J, Austin-Phillips S (1998) Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.) Mol Breeding 5: 309-318.
    [71] Brunecki R, Selig MJ, Vinzant TB, et al. (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels 4: 1.
    [72] Petersen K, Bock R (2011) High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76: 311-321. doi: 10.1007/s11103-011-9742-8
    [73] Lilly M, Fierobe HP, van Zyl WH, et al. (2009) Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res 9: 1236-1249. doi: 10.1111/j.1567-1364.2009.00564.x
    [74] Bayer EA, Shimon LJW, Lamed R (1998) Cellulosomes: structure and ultrastructure. J Struct Biol 124: 221-234. doi: 10.1006/jsbi.1998.4065
    [75] Bayer EA, Belaich JP, Sholam Y, et al. (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Ann Rev Microbiol 58: 521-554. doi: 10.1146/annurev.micro.57.030502.091022
    [76] Fontes CMGA, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Ann Rev Biochem 79: 655-681. doi: 10.1146/annurev-biochem-091208-085603
    [77] Shinoda S, Kanamasa S, Arai M (2012) Cloning of an endoglycanase gene from Paenibacillus cookii and characterization of the recombinant enzyme. Biotechnol Lett 34: 281-286. doi: 10.1007/s10529-011-0759-5
    [78] Shi R, Li Z, Ye Q, et al. (2013) Heterologous expression and characterization of a novel thermo-halotolerant endoglucanase Cel5H from Dictyoglomus thermophilum. Bioresource Technol 142: 338-344. doi: 10.1016/j.biortech.2013.05.037
    [79] Wei KSC, Teoh TC, Koshy P, et al. (2015) Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli. Electronic J Biotechnol 18: 103-109. doi: 10.1016/j.ejbt.2014.12.007
    [80] Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnology Adv 18: 355-383. doi: 10.1016/S0734-9750(00)00041-0
    [81] Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol20: 295-299.
    [82] Kuhad RC, Gupta R, Singh A. (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011: 280696.
    [83] McMullan G, Meehan C, Connely M, et al. (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56: 81-87. doi: 10.1007/s002530000587
    [84] Anish R, Rahman MS, Rao M (2007) Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng 96: 48-56. doi: 10.1002/bit.21175
    [85] Ladeira SA, Cruz E, Delatorre AB, et al. (2015) Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electronic J Biotechnol 18: 110-115.
    [86] Yu M, Qiu Y, Chen W, et al., (2015) Action modes of recombinant endocellulase, EGA, and its domains on cotton fabrics. Biotechnol Lett [in press].
    [87] Singh K (2015) Role of Enzymes in Fruit juices Clarification during Processing: A review. Int J Biol Technology 6: 114-124.
    [88] Cinar I (2004) Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem 40: 945-949.
    [89] Wilkins MR, Widmer WW, Grohmann K, et al. (2007) Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technol 98: 1596-1601. doi: 10.1016/j.biortech.2006.06.022
    [90] Meyer AS, Jepsen SM, Sorensen NS (1998) Enzymatic Release of Antioxidants for Human Low-Density Lipoprotein from Grape Pomace. J Agr Food Chem 46: 2399-2446.
    [91] Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50: 353-357 doi: 10.1016/j.jcs.2009.03.001
    [92] Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10: 358-364. doi: 10.1016/S0958-1669(99)80065-2
    [93] Dhiman TR, Zaman MS, MacQueen IS, et al. (2002) Influence of corn processing and frequency of feeding on cow performance. J Dairy Sci 85: 217-226. doi: 10.3168/jds.S0022-0302(02)74070-8
    [94] Beauchemin KA, Colombatto D, Morgavi DP, et al. (2003) Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J Anim Sci 81: E37-E47.
    [95] Wongputtissin P, Khanongnuch C, Kongbuntad W, et al. (2014) Use of Bacillus subtilis isolates from Tua-nao towards nutritional improvement of soya bean hull for monogastric feed application. Lett App Microbiol 59: 328-333. doi: 10.1111/lam.12279
    [96] Shatya TA, Khan M (2014) Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry. J Food Sci 79: R2149-R 2156.
    [97] Pottkamper J, Barthen P, Ilmberger N, et al. (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11: 957-965. doi: 10.1039/b820157a
    [98] Eriksson KEL (1990) Biotechnology in the pulp and paper industry.Wood Sci Technol 24: 79-101.
    [99] Viesturs U, Leite M, Eisimonte M, et al. (1999) Biological deinking, technology for the recycling of office waste papers. Bioresource Technol 67: 255-265. doi: 10.1016/S0960-8524(98)00119-9
    [100] Bajpai P (1999) Application of Enzymes in the Pulp and Paper Industry. Biotechnol Prog 15: 147-157. doi: 10.1021/bp990013k
    [101] Garcia O, Torres AL, Colom JF, et al. (2002) Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose 9: 115-125. doi: 10.1023/A:1020191622764
    [102] Lynd LR, Laser MS, Bransby D, et al. (2008) How biotech can transform biofuels. Nat Biotechnol 26: 169-172. doi: 10.1038/nbt0208-169
    [103] Yang SJ, Kataeva I, Wiegel J, et al. (2010) Classification of ‘Anaerocellum thermophilum’ strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol 60: 2011-2015 doi: 10.1099/ijs.0.017731-0
    [104] Kanafusa-Shinkai S, Wakayama J, Tsukamoto K, et al. (2013) Degradation of microcrystalline cellulose and non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase system from the extreme thermophilic bacterium Caldicellulosiruptor bescii. J Biosci Bioeng 115: 64-70. doi: 10.1016/j.jbiosc.2012.07.019
    [105] Scully SM, Orlygsson J (2015) Recent advances in second generation ethanol production by thermophilic bacteria. Energies 8: 1-30.
    [106] Assareh R, Zahiri HS, Noghabi KA, et al. (2012) Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulose-producer on untreated barley and wheat straws. Bioresource Technol 120: 99-105.
    [107] Gaur R, Tiwati S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15: 19. doi: 10.1186/s12896-015-0129-9
    [108] Li Y, Horsman M, Wu N, et al. (2008) Biofuels from microalgae. Biotechnol Prog 24: 815-820.
    [109] Muñoz C, Hidalgo C, Zapata M, et al. (2014) Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. App Environ Microbiol 80: 4199-4206. doi: 10.1128/AEM.00827-14
    [110] Rinaudo M (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci 31: 603-632. doi: 10.1016/j.progpolymsci.2006.06.001
    [111] Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog Polym Sci 34: 641-678. doi: 10.1016/j.progpolymsci.2009.04.001
    [112] Zhang J, Xia W, Liu P, et al. (2010) Chitosan Modification and Pharmaceutical/Biomedical Applications. Mar Drugs 8: 1962-1987. doi: 10.3390/md8071962
    [113] Qin C, Zhou B, Zeng L, et al. (2004) The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem 84: 107-115. doi: 10.1016/S0308-8146(03)00181-X
    [114] Lin SB, Lin YC, Chen HH (2009) Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: Characterisation and antibacterial activity. Food Chem 116: 47-53. doi: 10.1016/j.foodchem.2009.02.002
    [115] Liu J, Xia W (2006) Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochem Eng J 30: 82-87. doi: 10.1016/j.bej.2006.02.005
    [116] Xie Y, Wei Y, Hu J (2010) Depolymerization of Chitosan with a Crude Cellulase Preparation from Aspergillus niger. Appl Biochem Biotechnol 160: 1074-1083. doi: 10.1007/s12010-009-8559-2
    [117] Pedraza-Reyes M, Gutierrez-Corona F (1997) The bifunctional enzyme chitosanase-cellulase produced by the gram-negative microorganism Myxobacter sp. AL-1 is highly similar to Bacillus subtilis endoglucanases. Arch Microbiol 168: 321-327.
    [118] Tanabe T, Morinaga K, Fukamizo T, et al. (2003) Novel Chitosanase from Streptomyces griseus HUT 6037 with Transglycosylation Activity. Biosci Biotechnol Biochem 67: 354-364. doi: 10.1271/bbb.67.354
    [119] Sinha S, Tripathi P, Chand S (2012) A New Bifunctional Chitosanase Enzyme from Streptomyces sp. and Its Application in Production of Antioxidant Chitooligosaccharides. Appl Biochem Biotechnol 167: 1029-1039.
    [120] Zhang Z, Wang Y, Ruan J (1998) Reclassification of Thermomonospora and Microtetraspora. J Syst Bacteriol 48: 411-422. doi: 10.1099/00207713-48-2-411
    [121] Lao G, Changas GS, Jung ED, et al. (1991) DNA Sequences of Three 3-1,4-Endoglucanase Genes from Thermomonospora fusca. J Bacteriol 173: 3397-3407.
    [122] Ali WAA, Gondal ZI, Yammahi AAAK, et al. (2013) A case of small bowel obstruction due to phytobezoars. J Surg Case Report 7: 1.
    [123] Kramer SJ, Pochapin MB (2012) Gastric Phytobezoar Dissolution with Ingestion of Diet Coke and Cellulase. Gastroen Hepatol 8: 770-772.
    [124] Ladas SD, Kamberoglou D, Karamanolis G, et al. (2013) Systematic review: Coca-Cola can effectively dissolve gastric phytobezoars as a first-line treatment. Aliment Pharmacol Ther 37: 169-173. doi: 10.1111/apt.12141
    [125] Pinos N, Moreno-Merino S, Congregado M (2015) Phytobezoar by aloe vera as long term complication after oesophagectomy resolved using cellulase. Int J Surg Case Report 13: 37-39. doi: 10.1016/j.ijscr.2015.05.008
    [126] Robert C, Bernalier-Donadille A (2003) The cellulolytic micro£ora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46: 81-89. doi: 10.1016/S0168-6496(03)00207-1
    [127] Wedekind KJ, Mansfield HR, Montgomery L (1988) Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces. App Environ Microbiol 54: 1530-1535
    [128] Robert C, Chassard C, Lawson PA, et al. (2007) Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int J Syst Evol Microbiol 57: 1516-1520
    [129] Chassard C, Delmas E, Robert C, et al. (2012) Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol 62: 138-143.
    [130] Martinez AJ, Visvesvara GS (1997) Free-living, amphizoic and opportunistic amebas. Brain Pathol 97: 583-98.
    [131] Lakhundi S, Siddiqui R, Khan NA (2015) Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasite Vector 8: 23. doi: 10.1186/s13071-015-0642-7
    [132] Loiselle M, Anderson KW (2003) The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling 19: 77-85. doi: 10.1080/0892701021000030142
    [133] Ma L, Conover M, Lu H, et al. (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5: e1000354. doi: 10.1371/journal.ppat.1000354
    [134] Rajasekharan SK, Ramesh S (2013) Cellulase inhibits Burkholderia cepacia biofilms on diverse prosthetic materials. Polish J Microbiol 62: 327-330.
    [135] Huertas MG, Zarate L, Acosta IC, et al. (2014) Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility. Microbiology 160: 2595-2606. doi: 10.1099/mic.0.081992-0
    [136] Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012.
    [137] Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9: 1-7.
    [138] El-Tarabily KA, SykesML, Kurtböke ID, et al. (1996) Synergistic effects of a cellulose-producing Micromonospora carbonacea and an antibiotic-producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Can J Botany 74: 618-624. doi: 10.1139/b96-078
    [139] Naing KW, Anees M, Nguyen XH, et al. (2014) Biocontrol of Late Blight Disease (Phytophthora capsici) of Pepper and the Plant Growth Promotion by Paenibacillus ehimensis KWN38. J Phytopathol 162: 367-376. doi: 10.1111/jph.12198
    [140] Han W, He M (2010) The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource Technol 101: 3724-3731.
    [141] Compant S, Reiter B, Sessitsch A, et al. (2005) Endophytic colonization of Vitis vinifera l. by plant growth-promoting bacterium Burkholderia sp. strain PsJN App Environ Microbiol 71: 1685-1693.
  • This article has been cited by:

    1. Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon, Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator, 2022, 7, 2473-6988, 2123, 10.3934/math.2022121
    2. Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park, A study on the fractal-fractional tobacco smoking model, 2022, 7, 2473-6988, 13887, 10.3934/math.2022767
    3. Hasib Khan, Muhammad Ibrahim, Abdel-Haleem Abdel-Aty, M. Motawi Khashan, Farhat Ali Khan, Aziz Khan, A fractional order Covid-19 epidemic model with Mittag-Leffler kernel, 2021, 148, 09600779, 111030, 10.1016/j.chaos.2021.111030
    4. Krunal B. Kachhia, Chaos in fractional order financial model with fractal–fractional derivatives, 2023, 7, 26668181, 100502, 10.1016/j.padiff.2023.100502
    5. Hari M. Srivastava, Khaled Mohammed Saad, Walid M. Hamanah, Certain New Models of the Multi-Space Fractal-Fractional Kuramoto-Sivashinsky and Korteweg-de Vries Equations, 2022, 10, 2227-7390, 1089, 10.3390/math10071089
    6. Hasnaa H Alzahrani, Marco Lucchesi, Kassem Mustapha, Olivier P Le Maître, Omar M Knio, Bayesian calibration of order and diffusivity parameters in a fractional diffusion equation, 2021, 5, 2399-6528, 085014, 10.1088/2399-6528/ac1507
    7. Jagdev Singh, Arpita Gupta, Dumitru Baleanu, On the analysis of an analytical approach for fractional Caudrey-Dodd-Gibbon equations, 2022, 61, 11100168, 5073, 10.1016/j.aej.2021.09.053
    8. Xiaojun Zhou, Yue Dai, A spectral collocation method for the coupled system of nonlinear fractional differential equations, 2022, 7, 2473-6988, 5670, 10.3934/math.2022314
    9. Nauman Ahmed, Ali Raza, Ali Akgül, Zafar Iqbal, Muhammad Rafiq, Muhammad Ozair Ahmad, Fahd Jarad, New applications related to hepatitis C model, 2022, 7, 2473-6988, 11362, 10.3934/math.2022634
    10. Esra Karatas Akgül, Wasim Jamshed, Kottakkaran Sooppy Nisar, S.K. Elagan, Nawal A. Alshehri, On solutions of gross domestic product model with different kernels, 2022, 61, 11100168, 1289, 10.1016/j.aej.2021.06.067
    11. Rubayyi T. Alqahtani, Shabir Ahmad, Ali Akgül, On Numerical Analysis of Bio-Ethanol Production Model with the Effect of Recycling and Death Rates under Fractal Fractional Operators with Three Different Kernels, 2022, 10, 2227-7390, 1102, 10.3390/math10071102
    12. A. DLAMINI, EMILE F. DOUNGMO GOUFO, M. KHUMALO, CHAOTIC BEHAVIOR OF MODIFIED STRETCH–TWIST–FOLD FLOW UNDER FRACTAL-FRACTIONAL DERIVATIVES, 2022, 30, 0218-348X, 10.1142/S0218348X22402071
    13. Anwar Zeb, Abdon Atangana, Zareen A. Khan, Salih Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, 2022, 61, 11100168, 5649, 10.1016/j.aej.2021.11.039
    14. Shabir Ahmad, Aman Ullah, Ali Akgül, Manuel De la Sen, A study of fractional order Ambartsumian equation involving exponential decay kernel, 2021, 6, 2473-6988, 9981, 10.3934/math.2021580
    15. Raheel Kamal, Gul Rahmat, Kamal Shah, Ricardo Escobar, On the Numerical Approximation of Three-Dimensional Time Fractional Convection-Diffusion Equations, 2021, 2021, 1563-5147, 1, 10.1155/2021/4640467
    16. Kaihong Zhao, Shuang Ma, Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses, 2022, 7, 2473-6988, 3169, 10.3934/math.2022175
    17. Kamsing Nonlaopon, Muhammad Naeem, Ahmed M. Zidan, Rasool Shah, Ahmed Alsanad, Abdu Gumaei, Muhammad Imran Asjad, Numerical Investigation of the Time-Fractional Whitham–Broer–Kaup Equation Involving without Singular Kernel Operators, 2021, 2021, 1099-0526, 1, 10.1155/2021/7979365
    18. Saima Rashid, Rehana Ashraf, Ebenezer Bonyah, Azhar Hussain, On Analytical Solution of Time-Fractional Biological Population Model by means of Generalized Integral Transform with Their Uniqueness and Convergence Analysis, 2022, 2022, 2314-8888, 1, 10.1155/2022/7021288
    19. Khadija Tul Kubra, Rooh Ali, Modeling and analysis of novel COVID-19 outbreak under fractal-fractional derivative in Caputo sense with power-law: a case study of Pakistan, 2023, 2363-6203, 10.1007/s40808-023-01747-w
    20. ZAREEN A. KHAN, KAMAL SHAH, BAHAAELDIN ABDALLA, THABET ABDELJAWAD, A NUMERICAL STUDY OF COMPLEX DYNAMICS OF A CHEMOSTAT MODEL UNDER FRACTAL-FRACTIONAL DERIVATIVE, 2023, 31, 0218-348X, 10.1142/S0218348X23401813
    21. Kamal Shah, Thabet Abdeljawad, On complex fractal-fractional order mathematical modeling of CO 2 emanations from energy sector, 2024, 99, 0031-8949, 015226, 10.1088/1402-4896/ad1286
    22. Samy A. Abdelhafeez, Anas A. M. Arafa, Yousef H. Zahran, Ibrahim S. I. Osman, Moutaz Ramadan, Adapting Laplace residual power series approach to the Caudrey Dodd Gibbon equation, 2024, 14, 2045-2322, 10.1038/s41598-024-57780-x
    23. Krunal B. Kachhia, Prit P. Parmar, A novel fractional mask for image denoising based on fractal–fractional integral, 2024, 11, 26668181, 100833, 10.1016/j.padiff.2024.100833
    24. Harpreet Kaur, Amanpreet Kaur, Palwinder Singh, Scale-3 Haar wavelet-based method of fractal-fractional differential equations with power law kernel and exponential decay kernel, 2024, 13, 2192-8029, 10.1515/nleng-2022-0380
    25. Muhammad Farman, Changjin Xu, Perwasha Abbas, Aceng Sambas, Faisal Sultan, Kottakkaran Sooppy Nisar, Stability and chemical modeling of quantifying disparities in atmospheric analysis with sustainable fractal fractional approach, 2025, 142, 10075704, 108525, 10.1016/j.cnsns.2024.108525
    26. Ashish Rayal, System of fractal-fractional differential equations and Bernstein wavelets: a comprehensive study of environmental, epidemiological, and financial applications, 2025, 100, 0031-8949, 025236, 10.1088/1402-4896/ada592
    27. Mashael M. AlBaidani, Abdul Hamid Ganie, Adnan Khan, Fahad Aljuaydi, An Approximate Analytical View of Fractional Physical Models in the Frame of the Caputo Operator, 2025, 9, 2504-3110, 199, 10.3390/fractalfract9040199
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(25333) PDF downloads(10859) Cited by(55)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog