Citation: Sébastien Bernacchi, Simon Rittmann, Arne H. Seifert, Alexander Krajete, Christoph Herwig. Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis[J]. AIMS Bioengineering, 2014, 1(2): 72-87. doi: 10.3934/bioeng.2014.2.72
[1] | Yukun Song, Yang Chen, Jun Yan, Shuai Chen . The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28(1): 47-66. doi: 10.3934/era.2020004 |
[2] | Qiu Meng, Yuanyuan Zhao, Wucai Yang, Huifang Xing . Existence and uniqueness of solution for a class of non-Newtonian fluids with non-Newtonian potential and damping. Electronic Research Archive, 2023, 31(5): 2940-2958. doi: 10.3934/era.2023148 |
[3] | Changjia Wang, Yuxi Duan . Well-posedness for heat conducting non-Newtonian micropolar fluid equations. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043 |
[4] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[5] | Yazhou Chen, Dehua Wang, Rongfang Zhang . On mathematical analysis of complex fluids in active hydrodynamics. Electronic Research Archive, 2021, 29(6): 3817-3832. doi: 10.3934/era.2021063 |
[6] | Anna Gołȩbiewska, Marta Kowalczyk, Sławomir Rybicki, Piotr Stefaniak . Periodic solutions to symmetric Newtonian systems in neighborhoods of orbits of equilibria. Electronic Research Archive, 2022, 30(5): 1691-1707. doi: 10.3934/era.2022085 |
[7] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[8] | Dingshi Li, Xuemin Wang . Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29(2): 1969-1990. doi: 10.3934/era.2020100 |
[9] | Linyan Fan, Yinghui Zhang . Space-time decay rates of a nonconservative compressible two-phase flow model with common pressure. Electronic Research Archive, 2025, 33(2): 667-696. doi: 10.3934/era.2025031 |
[10] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
Fluid-particle interaction model arises in many practical applications, and is of primary importance in the sedimentation analysis of disperse suspensions of particles in fluids. This model is one of the commonly used models nowadays in biotechnology, medicine, mineral processing and chemical engineering [27]-[25]. Usually, the fluid flow is governed by the Navier-Stokes equations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation [4], the system has the form:
$ {ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)+∇(P(ρ)+η)−μΔu−λ∇divu=−(η+βρ)∇Φ,ηt+div(η(u−∇Φ))−Δη=0, $ | (1) |
where
There are many kinds of literatures on the study of the existence and behavior of solutions to Navier-Stokes equations (See [1]-[17]). Taking system (1) as an example, Carrillo
Despite the important progress, there are few results of non-Newtonian fluid-particle interaction model. As we know, the Navier Stokes equations are generally accepted as a right governing equations for the compressible or incompressible motion of viscous fluids, which is usually described as
$ {ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)−div(Γ)+∇P=ρf, $ |
where
$ E_{ij}(\nabla u) = \frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i}, $ |
is the rate of strain. If the relation between the stress and rate of strain is linear, namely,
$ \Gamma = \mu(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i})^q, $ |
for
$ \Gamma_{ij} = (\mu_0+\mu_1|\mathbb{E}(\nabla_x u)|^{p-2})\mathbb{E}_{ij}(\nabla_x u). $ |
For
Non-Newtonian fluid flows are frequently encountered in many physical and industrial processes [8,9], such as porous flows of oils and gases [7], biological fluid flows of blood [30], saliva and mucus, penetration grouting of cement mortar and mixing of massive particles and fluids in drug production [13]. The possible appearance of the vacuum is one of the major difficulties when trying to prove the existence and strong regularity results. On the other hand, the constitutive behavior of non-Newtonian fluid flow is usually more complex and highly non-linear, which may bring more difficulties to study such flows.
In recent years, there has been many research in the field of non-Newtonian flows, both theoretically and experimentally (see [14]-[26]). For example, in [14], Guo and Zhu studied the partial regularity of the generalized solutions to an incompressible monopolar non-Newtonian fluids. In [32], the trajectory attractor and global attractor for an autonomous non-Newtonian fluid in dimension two was studied. The existence and uniqueness of solutions for non-Newtonian fluids were established in [29] by applying Ladyzhenskaya's viscous stress tensor model.
In this paper, followed by Ladyzhenskaya's model of non-Newtonian fluid, we consider the following system
$ {ρt+(ρu)x=0,(ρu)t+(ρu2)x+ρΨx−λ(|ux|p−2ux)x+(P+η)x=−ηΦx,(x,t)∈ΩT(|Ψx|q−2Ψx)x=4πg(ρ−1|Ω|∫Ωρdx),ηt+(η(u−Φx))x=ηxx, $ | (2) |
with the initial and boundary conditions
$ {(ρ,u,η)|t=0=(ρ0,u0,η0),x∈Ω,u|∂Ω=Ψ|∂Ω=0,t∈[0,T], $ | (3) |
and the no-flux condition for the density of particles
$ (ηx+ηΦx)|∂Ω=0,t∈[0,T], $ | (4) |
where
The system describes a compressible shear thinning fluid-particle interaction system for the evolution of particles dispersed in a viscous non-Newtonian fluid and the particle is driven by non-Newtonian gravitational potential. To our knowledge, there still no existence results for (2)-(4) when
We state the definition of strong solution as follows:
Definition 1.1. The
(ⅰ)
$ ρ∈L∞(0,T∗;H1(Ω)),u∈L∞(0,T∗;W1,p0(Ω)∩H2(Ω)),Ψ∈L∞(0,T∗;H2(Ω)),η∈L∞(0,T∗;H2(Ω)),ρt∈L∞(0,T∗;L2(Ω)),ut∈L2(0,T∗;H10(Ω)),Ψt∈L∞(0,T∗;H1(Ω)),ηt∈L∞(0,T∗;L2(Ω)),√ρut∈L∞(0,T∗;L2(Ω)),(|ux|p−2ux)x∈C(0,T∗;L2(Ω)). $ |
(ⅱ) For all
$ ∫Ωρϕ(x,t)dx−∫t0∫Ω(ρϕt+ρuϕx)(x,s)dxds=∫Ωρ0ϕ(x,0)dx, $ | (5) |
(ⅲ) For all
$ ∫Ωρuφ(x,t)dx−∫t0∫Ω{ρuφt+ρu2φx−ρΨxφ−λ|ux|p−2uxφx+(P+η)φx−ηΦxφ}(x,s)dxds=∫Ωρ0u0φ(x,0)dx, $ | (6) |
(ⅳ) For all
$ −∫t0∫Ω|Ψx|q−2Ψxψx(x,s)dxds=∫t0∫Ω4πg(ρ−1|Ω|∫Ωρdx)ψ(x,0)dxds, $ | (7) |
(ⅴ) For all
$ ∫Ωηϑ(x,t)dx−∫t0∫Ω[η(u−Φx)−ηx]ϑx(x,s)dxds=∫Ωη0ϑ(x,0)dx. $ | (8) |
The main result of this paper is stated in the following theorem.
Theorem 1.2. Let
$ 0≤ρ0∈H1(Ω),u0∈H10(Ω)∩H2(Ω),η0∈H2(Ω), $ |
and the compatibility condition
$ −(|u0x|p−2u0x)x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx), $ | (9) |
for some
$ ρ∈L∞(0,T∗;H1(Ω)),u∈L∞(0,T∗;W1,p0(Ω)∩H2(Ω)),Ψ∈L∞(0,T∗;H2(Ω)),η∈L∞(0,T∗;H2(Ω)),ρt∈L∞(0,T∗;L2(Ω)),ut∈L2(0,T∗;H10(Ω)),Ψt∈L∞(0,T∗;H1(Ω)),ηt∈L∞(0,T∗;L2(Ω)),√ρut∈L∞(0,T∗;L2(Ω)),(|ux|p−2ux)x∈C(0,T∗;L2(Ω)). $ |
Remark 1. By using exactly the similar argument, we can prove the result also hold for the case
In this section, we will prove the local existence of strong solutions. From the continuity equation
$ \int_\Omega\rho(t){\rm d} x = \int_\Omega\rho_0{\rm d} x: = m_0,\quad(t > 0,m_0 > 0) $ |
Because equation
$ ρt+(ρu)x=0, $ | (10) |
$ (ρu)t+(ρu2)x+ρΨx−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x=−ηΦx, $ | (11) |
$ [(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]x=4πg(ρ−m0), $ | (12) |
$ ηt+(η(u−Φx))x=ηxx, $ | (13) |
with the initial and boundary conditions.
$ (ρ,u,η)|t=0=(ρ0,u0,η0),x∈Ω, $ | (14) |
$ u|∂Ω=Ψ|∂Ω=(ηx+ηΦx)|∂Ω=0,t∈[0,T], $ | (15) |
and
$ {−[(εu20x+1u20x+ε)2−p2u0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),u0|∂Ω=0. $ | (16) |
Provided that
We first get the estimate of
$ {−[(εu20x+1u20x+ε)2−p2u0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),u0|∂Ω=0. $ | (16) |
Then
$ |u0xx|L2≤1p−1|(u20x+εεu20x+1)1−p2|L∞|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2≤1p−1(|u0x|2L∞+1)1−p2(|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2)≤1p−1(|u0xx|2L2+1)1−p2(|Px(ρ0)|L2+|η0x|L2+|η0|L∞|Φx|L2+|ρ0|12L∞|g|L2+|ρ0|12L∞|Φx|L2). $ |
Applying Young's inequality, we have
$ |u0xx|L2≤C(|Px(ρ0)|L2+|η0x|L2+|η0|L∞|Φx|L2+|ρ0|12L∞|g|L2+|ρ0|12L∞|Φx|L2)1p−1≤C, $ |
thus
$ |u0|L∞+|u0x|L∞+|u0xx|L2≤C, $ | (17) |
where
Next, we introduce an auxiliary function
$ Z(t) = \sup\limits_{0\leq s\leq t}(1+|\rho(s)|_{H^1}+|u(s)|_{W_0^{1,p}}+|\sqrt\rho u_t(s)|_{L^2}+|\eta_t(s)|_{L^2}+|\eta(s)|_{H^1}). $ |
We will derive some useful estimate to each term of
In order to prove the main Theorem, we first give some useful lemmas for later use.
Lemma 2.1. Let
$ {−[(ε(uε0x)2+1(uε0x)2+ε)2−p2uε0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),uε0(0)=uε0(1)=0. $ | (18) |
Then there are a subsequence
$ uεj0→u0inH10(Ω)∩H2(Ω),[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). $ |
Proof. According to (18), we have
$ uεj0→u0inH10(Ω)∩H2(Ω),[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). $ |
Taking it by the
$ |uε0xx|L2≤|(ε(uε0x)2+1(uε0x)2+ε)1−p2|L∞|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2≤(|uε0x|2L∞+1)1−p2|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2, $ |
then
$ |uε0xx|L2≤C(1+|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2)1p−1≤C. $ | (19) |
Therefore, by the above inequality, as
$ uεj0→u0inC32(Ω),uεj0xx→u0xxinL2(Ω)weakly. $ |
Thus, we can obtain
$ |uεi0x−uεj0x|L∞(Ω)<α1. $ |
Now, we prove that
Let
$ |uεi0x−uεj0x|L∞(Ω)<α1. $ |
For all
$ |uεi0xx−uεj0xx|L2(Ω)≤|ϕi−ϕj|L∞(Ω)|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2(Ω). $ |
With the assumption, we can obtain
$ |(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2(Ω)≤C, $ |
where
$ |ϕi−ϕj|L∞(Ω)≤|∫10ϕ′(θ(uεi0x)2+(1−θ)(uεj0x)2)dθ((uεi0x)2−(uεj0x)2)|L∞(Ω), $ | (20) |
where
By the simple calculation, we can get
$ \phi^{'}(s)\leq \frac{2}{p-1}(1+s^{-\frac{p}{2}}), $ |
where
$ |ϕi−ϕj|L∞(Ω)≤2p−1|(1+∫10(θ(uεi0x)2+(1−θ)(uεj0x)2)dθ)((uεi0x)2−(uεj0x)2)|L∞(Ω)≤2p−1|uεi0x−uεj0x|L∞(Ω)|uεi0x+uεj0x|L∞(Ω)+4(2−p)(p−1)|uεi0x−uεj0x|2−p2L∞(Ω)|uεi0x+uεj0x|2−p2L∞(Ω)≤α. $ |
Substituting this into (18), we have
$ |uεi0xx−uεj0xx|L∞(Ω)<α, $ |
then there is a subsequence
$ {uεj0xx}→χinL2(Ω). $ |
By the uniqueness of the weak convergence, we have
$ χ={uε0xx}. $ |
Since
$ [(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). $ |
This completes the proof of Lemma 2.1.
Lemma 2.2.
$ sup0≤t≤T|ρ(t)|2H1≤Cexp(C∫t0Z6γ(3p−4)(q−1)(s)ds), $ | (21) |
where
Proof. We estimates for
$ \Big[\Big(\frac{\varepsilon u_x^2+1}{u_x^2+\varepsilon}\Big)^{\frac{2-p}{2}}u_x\Big]_x = \rho u_t+\rho u u_x+\rho\Psi_x+(P+\eta)_x+\eta\Phi_x. $ |
We note that
$ |uxx|≤1p−1(u2x+ε)1−p2|ρut+ρuux+ρΨx+(P+η)x+ηΦx|≤1p−1(|ux|2−p+1)|ρut+ρuux+ρΨx+(P+η)x+ηΦx|. $ |
Taking it by the
$ |uxx|p−1L2≤C(1+|ρut|L2+|ρuux|L2+|ρΨx|L2+|(P+η)x|L2+|ηΦx|L2)≤C(1+|ρ|12L∞|√ρut|L2+|ρ|L∞|u|L∞|ux|p2Lp|ux|1−p2L∞+|ρ|γ−1L∞|ρx|L2+|ηx|L2+|η|L∞|Φx|L2+|ρ|L2|Ψxx|L2)≤C[1+|ρ|12L∞|√ρut|L2+(|ρ|L∞|u|L∞|ux|p2Lp)2(p−1)3p−4+|ρ|γ−1L∞|ρx|L2+|ηx|L2+|η|L∞|Φx|L2+|ρ|L2|Ψxx|L2]+12|uxx|p−1L2. $ | (22) |
On the other hand, by
$ |Ψxx|≤1q−1(|Ψx|2−q+1)|4πg(ρ−m0)|. $ |
Taking it by
$ |Ψxx|L2≤CZ1q−1(t). $ | (23) |
This implies that
$ |uxx|L2≤CZmax{qq−1,(p−1)(4+p)3p−4γ}(t)≤CZ6γ(3p−4)(q−1)(t). $ | (24) |
By (13), taking it by the
$ |ηxx|L2≤|ηt+(η(u−Φx))x|L2≤|ηt|L2+|ηx|L2|u|L∞+|ηx|L2|Φx|L∞+|η|L2|uxx|L2+|η|L∞|Φxx|L2≤CZ6γ+2(3p−4)(q−1)(t). $ | (25) |
Multiplying (10) by
$ 12ddt∫Ω|ρ|2ds+∫Ω(ρu)xρdx=0. $ |
Integrating it by parts, using Sobolev inequality, we obtain
$ ddt|ρ(t)|2L2≤∫Ω|ux||ρ|2dx≤|uxx|L2|ρ|2L2. $ | (26) |
Differentiating
$ ddt∫Ω|ρx|2dx=−∫Ω[32ux(ρx)2+ρρxuxx](t)dx≤C[|ux|L∞|ρx|2L2+|ρ|L∞|ρx|L2|uxx|L2]≤C|ρ|2H1|uxx|L2. $ | (27) |
From (26) and (27) and the Gronwall's inequality, then lemma 2.2 holds.
Lemma 2.3.
$ |η|2H1+|ηt|2L2+∫t0(|ηx|2L2+|ηt|2L2+|ηxt|2L2)(s)ds≤C(1+∫t0Z4(s)ds), $ | (28) |
where
Proof. Multiplying
$ ∫t0|ηx(s)|2L2ds+12|η(t)|2L2≤∬ΩT(|ηuηx|+|ηΦxηx|)dxds≤14∫t0|ηx(s)|2L2ds+C∫t0|ux|2Lp|η|2H1ds+C∫t0|η|2H1ds+C≤14∫t0|ηx(s)|2L2ds+C(1+∫t0Z4(t)ds). $ | (29) |
Multiplying
$ ∫t0|ηt(s)|2L2ds+12|ηx(t)|2L2≤∬ΩT|η(u−Φx)ηxt|dxds≤14∫t0|ηxt(s)|2L2ds+C∫t0|η|2H1|ux|2Lpds+C∫t0|η|2H1ds+C≤14∫t0|ηxt(s)|2L2ds+C(1+∫t0Z4(t)ds). $ | (30) |
Differentiating
$ ∫t0|ηxt(s)|2L2ds+12|ηt(t)|2L2=∬ΩT(η(u−Φx))tηxtdxds≤C+∬ΩT(|ηtuηxt|+|ηtΦxηxt|+|ηxutηt|+|ηuxtηt|)dxds≤C(1+∫t0(|ηt|2L2||ux|2Lp+|ηt|2L2+|ηx|2L2|ηt|2L2+|η|2H1|ηt|2L2)dx)+12∫t0|ηxt|2L2+12∫t0|uxt|2L2≤C(1+∫t0Z4(s)ds). $ | (31) |
Combining (29)-(31), we obtain the desired estimate of Lemma 2.3.
Lemma 2.4.
$ ∫t0|√ρut(s)|2L2(s)ds+|ux(t)|pLp≤C(1+∫t0Z10+4γ(3p−4)(q−1)(s)ds), $ | (32) |
where
Proof. Using (10), we rewritten the (11) as
$ ρut+(ρu)ux+ρΨx−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x=−ηΦx. $ | (33) |
Multiplying (33) by
$ ∬ΩTρ|ut|2dxds+∬ΩT(εu2x+1u2x+ε)2−p2uxuxtdxds=−∬ΩT(ρuux+ρΨx+Px+ηx+ηΦx)utdxds. $ | (34) |
We deal with each term as follows:
$ ∫Ω(εu2x+1u2x+ε)2−p2uxuxtdx=12∫Ω(εu2x+1u2x+ε)2−p2(u2x)tdx=12ddt∫Ω(∫u2x0(εs+1s+ε)2−p2ds)dx, $ |
$ ∫u2x0(εs+1s+ε)2−p2ds≥∫u2x0(s+1)2−p2ds=2p[(u2x+1)p2−1], $ |
$ −∬ΩTPxutdxds=∬ΩTPuxtdxds=ddt∬ΩTPuxdxds−∬ΩTPtuxdxds. $ |
By virtue of
$ Pt=−γPux−Pxu,−∬ΩTηxutdxds=∬ΩTηuxtdxds=ddt∬ΩTηuxdxds−∬ΩTηtuxdxds.−∬ΩTηΦxutdxds=−ddt∬ΩTηΦxudxds+∬ΩTηtΦxudxds. $ | (35) |
Substituting the above into (34), using Sobolev inequality and Young's inequality, we have
$ ∫t0|√ρut(s)|2L2ds+|ux(t)|pLp≤∬ΩT(|ρuuxut|+|ρΨxut|+|γPu2x|+|Pxuux|+|ηtux|+|ηtΦxu|)dxds+∫Ω(|Pux|+|ηux|+|ηΦxu|)dx+C≤C+∫t0(|ρ|12L∞|u|L∞|ux|p2Lp|ux|1−p2L∞|√ρut|L2+|ρ|12L∞|Ψx|L∞|√ρut|L2)ds+∫t0(γ|P|L2|ux|p2Lp|ux|1−p2L∞|uxx|L2+aγ|ρ|γ−1L∞|ρx|L2|u|L∞|ux|L∞+|ηt|L2|ux|p2Lp|ux|1−p2L∞+|ηt|L2|Φx|L2|u|L∞)ds+|P|Lpp−1|ux|Lp+|η|Lpp−1|ux|Lp+|η|Lpp−1|Φx|Lp|u|L∞≤C(1+∫t0(|ρ|L∞|ux|2+pLp|uxx|2−pL2+|ρ|H1|Ψxx|2L2+|P|L∞|ux|p2Lp|uxx|2−p2L2+|ρ|γ−1L∞|ρx|L2|ux|Lp|uxx|L2+|ηt|L2|ux|p2Lp|uxx|1−p2L2+|ηt|L2|ux|Lp)ds)+|P|pp−1Lpp−1+|η|pp−1Lpp−1+12∫t0|√ρut(s)|2L2ds+12|ux(t)|pLp. $ | (36) |
To estimate (36), combining (35) we have the following estimates
$ ∫Ω|P(t)|pp−1dx=∫Ω|P(0)|pp−1dx+∫t0∂∂s(∫ΩP(s)pp−1dx)ds≤∫Ω|P(0)|pp−1dx+pp−1∫t0∫Ωaγργ−1P(s)1p−1(−ρxu−ρux)dxds≤C+C∫t0|ρ|γ−1L∞|P|1p−1L∞|ρ|H1|ux|Lpds≤C(1+∫t0Zγp−1+γ+1(s)ds), $ | (37) |
In exactly the same way, we also have
$ ∫Ω|η(t)|pp−1dx≤C(1+∫t0Z1p−1+1(s)ds), $ | (38) |
which, together with (36) and (37), implies (32) holds.
Lemma 2.5.
$ |√ρut(t)|2L2+∫t0|uxt|2L2(s)ds≤C(1+∫t0Z26γ(3p−4)(q−1)(s)ds), $ | (39) |
where
Proof. Differentiating equation
$ 12ddt∫Ωρ|ut|2dx+∫Ω[(εu2x+1u2x+ε)2−p2ux]tuxtdx=∫Ω[(ρu)x(u2t+uuxut+Ψxut)−ρuxu2t+(P+η)tuxt−ηtΦxut−ρΨxtut]dx. $ | (40) |
Note that
$ ∫Ω[(εu2x+1u2x+ε)2−p2ux]tuxtdx=∫Ω[(εu2x+1u2x+ε)−p2ux](εu2x+1)(u2x+ε)−(2−p)(1−ε2)u2x(u2x+ε)2u2xtdx≥(p−1)∫Ω(u2x+1)p−22|uxt|2dx, $ | (41) |
Let
$ \omega = (u_x^2+1)^{\frac{p-2}{4}}, $ |
from (24), it follows that
$ |ω−1|L∞=|(u2x+1)2−p4|L∞≤C(|uxx|2−p2L2+1)≤CZ2γ(3p−4)(q−1)(t). $ |
Combining (35), (40) can be rewritten into
$ ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. $ | (42) |
Using Sobolev inequality, Young's inequality,
$ ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. $ | (42) |
$ ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. $ | (42) |
In order to estimate
$ ∫Ω[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]tΨxtdx=−4πg∫Ω(ρu)xΨtdx, $ | (43) |
and
$ ∫Ω[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]tΨxtdx≥(q−1)∫Ω(Ψ2x+1)q−22|Ψxt|2dx. $ | (44) |
Let
$ \beta^q = (\Psi_x^2+1)^{\frac{q-2}{4}} $ |
then
$ |(βq)−1|L∞=|(Ψ2x+1)2−q4|L∞≤C(|Ψxx|2−q2L2+1)≤CZ2−q2(q−1)(t). $ |
Then (43) can be rewritten into
$ ∫Ω|βqΨxt|2dx≤C∫Ω(ρu)Ψxtdx≤C|ρ|L2|u|L∞|βqΨxt|L2|(βq)−1|L∞. $ |
Using Young's inequality, combining the above estimates we deduce that
$ I11≤|ρ|12L∞|√ρut|L2|βqΨxt|L2|(βq)−1|L∞≤CZ5q−32(q−1)(t). $ |
Substituting
$ |√ρut(t)|2L2+∫t0|ωuxt|2L2(s)ds≤|√ρut(τ)|2L2+∫t0Z26γ(3p−4)(q−1)(s)ds. $ | (45) |
To obtain the estimate of
$ \int_\Omega\rho|u_t|^2{\rm d} x\leq 2\int_\Omega(\rho|u|^2|u_x|^2+\rho|\Psi_x|^2+\rho^{-1}\big|-[(\frac{\varepsilon u_x^2+1}{u_x^2+\varepsilon})^{\frac{2-p}{2}}u_x]_x+(P+\eta)_x+\eta\Phi_x\big|^2){\rm d}x. $ |
According to the smoothness of
$ limτ→0∫Ω(ρ|u|2|ux|2+ρ|Ψx|2+ρ−1|−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x+ηΦx|2)dx=∫Ω(ρ0|u0|2|u0x|2+ρ0|Ψx|2+ρ−10|−[(εu20x+1u20x+ε)2−p2u0x]x+(P0+η0)x+η0Φx|2)dx≤|ρ0|L∞|u0|2L∞|u0x|2L2+|ρ0|L∞|Ψx|2+|g|2L2+|Φx|2L2≤C. $ |
Then, taking a limit on
$ |√ρut(t)|2L2+∫t0|uxt|2L2(s)ds≤C(1+∫t0Z26γ(3p−4)(q−1)(s)ds), $ | (46) |
This complete the proof of Lemma 2.5.
With the help of Lemma 2.2 to Lemma 2.5, and the definition of
$ Z(t)≤Cexp(˜C∫t0Z26γ(3p−4)(q−1)(s)ds), $ | (47) |
where
$ esssup0≤t≤T1(|ρ|H1+|u|W1,p0∩H2+|η|H2+|ηt|L2+|√ρut|L2+|ρt|L2)+∫T10(|√ρut|2L2+|uxt|2L2+|ηx|2L2+|ηt|2L2+|ηxt|2L2)ds≤C, $ | (48) |
where
In this section, the existence of strong solutions can be established by a standard argument. We construct the approximate solutions by using the iterative scheme, derive uniform bounds and thus obtain solutions of the original problem by passing to the limit. Our proof will be based on the usual iteration argument and some ideas developed in [10]. Precisely, we first define
$ ρkt+ρkxuk−1+ρkuk−1x=0, $ | (49) |
$ ρkukt+ρkuk−1ukx+ρkΨkx+Lpuk+Pkx+ηkx=−ηkΦx, $ | (50) |
$ LqΨk=4πg(ρk−m0), $ | (51) |
$ ηkt+(ηk(uk−1−Φx))x=ηkxx, $ | (52) |
with the initial and boundary conditions
$ (ρk,uk,ηk)|t=0=(ρ0,u0,η0), $ | (53) |
$ uk|∂Ω=(ηkx+ηkΦx)|∂Ω=0, $ | (54) |
where
$ L_p \theta^k = -\Big[\Big(\frac{\varepsilon(\theta_x^k)^2+1}{(\theta_x^k)^2+\varepsilon}\Big)^{\frac{2-p}{2}}\theta_x^k\Big]_x.\qquad $ |
With the process, the nonlinear coupled system has been deduced into a sequence of decoupled problems and each problem admits a smooth solution. And the following estimates hold
$ esssup0≤t≤T1(|ρk|H1+|uk|W1,p0∩H2+|ηk|H2+|ηkt|L2+|√ρkukt|L2+|ρkt|L2)+∫T10(|√ρkukt|2L2+|ukxt|2L2+|ηkx|2L2+|ηkt|2L2+|ηkxt|2L2)ds≤C, $ | (55) |
where
In addition, we first find
$ \rho_t^k+u^{k-1}\rho_x^k+u_x^{k-1}\rho^k = 0, $ |
$ \quad \rho^k|_{t = 0} = \rho_0, $ |
with smooth function
$ \rho^k(x,t)\geq\delta\exp\big[-\int_0^{T_1}|u_x^{k-1}(.,s)|_{L^\infty}{\rm d} s\big] > 0, \mbox{for all} \ \ t\in(0,T_1). $ |
Next, we will prove the approximate solution
$ \bar\rho^{k+1} = \rho^{k+1}-\rho^k,\quad\bar u^{k+1} = u^{k+1}-u^k,\quad\bar\eta^{k+1} = \eta^{k+1}-\eta^k,\quad\bar\Psi^{k+1} = \Psi^{k+1}-\Psi^k. $ |
By a direct calculation, we can verify that the functions
$ ˉρk+1t+(ˉρk+1uk)x+(ρkˉuk)x=0, $ | (56) |
$ ρk+1ˉuk+1t+ρk+1ukˉuk+1x+(Lpuk+1−Lpuk)=−ˉρk+1(ukt+ukukx+Ψk+1x)−(Pk+1−Pk)x−ˉηk+1x+ρk(ˉukukx−ˉΨk+1x)−ˉηk+1Φx, $ | (57) |
$ LqΨk+1−LqΨk=4πgˉρk+1, $ | (58) |
$ ˉηk+1t+(ηkˉuk)x+(ˉηk+1(uk−Φx))x=ˉηk+1xx. $ | (59) |
Multiplying (56) by
$ ddt|ˉρk+1|2L2≤C|ˉρk+1|2L2|ukx|L∞+|ρk|H1|ˉukx|L2|ˉρk+1|L2≤C|ukxx|L2|ˉρk+1|2L2+Cξ|ρk|2H1|ˉρk+1|2L2+ξ|ˉukx|2L2≤Cξ|ˉρk+1|2L2+ξ|ˉukx|2L2, $ | (60) |
where
Multiplying (57) by
$ 12ddt∫Ωρk+1|ˉuk+1|2dx+∫Ω(Lpuk+1−Lpuk)ˉuk+1dx≤C∫Ω[|ˉρk+1|(|ukt|+|ukukx|+|Ψk+1x|)+|Pk+1x−Pkx|+|ˉηk+1x|+|ρk|ˉuk||ukx|+|ρk||ˉΨk+1x|+|ˉηk+1Φx|]|ˉuk+1|dx≤C(|ˉρk+1|L2|ukxt|L2|ˉuk+1x|L2+|ˉρk+1|L2|ukx|Lp|ukxx|L2|ˉuk+1x|L2+|ˉρk+1|L2|Ψk+1x|L2|ˉuk+1x|L2+|Pk+1−Pk|L2|ˉuk+1x|L2+|ˉηk+1|L2|ˉuk+1x|L2+|ρk|12L2|√ρkˉuk|L2|ukxx|L2|ˉuk+1x|L2+|ρk|H1|ˉΨk+1x|L2|ˉuk+1x|L2+|ˉηk+1|L2|ˉuk+1x|L2). $ | (61) |
Let
$ \sigma(s) = \big(\frac{\varepsilon s^2+1}{s^2+\varepsilon}\big)^{\frac{2-p}{2}}s, $ |
then
$ σ′(s)=(εs2+1s2+ε)−p2(εs2+1)(s2+ε)−(2−p)(1−ε2)s2(s2+ε)2≥p−1(s2+ε)2−p2. $ |
To estimate the second term of (61), we have
$ ∫Ω(Lpuk+1−Lpuk)ˉuk+1dx=∫Ω∫10σ′(θuk+1x+(1−θ)ukx)dθ|ˉuk+1x|2dx≥∫Ω[∫10dθ|θuk+1x+(1−θ)ukx|2−pL∞+1](ˉuk+1x)2≥C−1∫Ω|ˉuk+1x|2dx. $ | (62) |
On the other hand, multiplying (58) by
$ ∫Ω(LqΨk+1−LqΨk)ˉΨk+1dx=4πg∫Ωˉρk+1ˉΨk+1dx. $ | (63) |
Since
$ ∫Ω(LqΨk+1−LqΨk)ˉΨk+1xdx=(q−1)∫Ω(∫10|θΨk+1x+(1−θ)Ψkx|q−2dθ)(ˉΨk+1x)2dx, $ |
and
$ ∫10|θΨk+1x+(1−θ)Ψkx|q−2dθ=∫101|θΨk+1x+(1−θ)Ψkx|2−qdθ≥∫101(|Ψk+1x|+|Ψkx|2−q)dθ=1(|Ψk+1x|+|Ψkx|)2−q, $ |
then
$ ∫Ω[|Ψk+1x|q−2Ψk+1x−|Ψkx|q−2Ψkx]ˉΨk+1xdx≥1(|Ψk+1x(t)|L∞+|Ψkx(t)|L∞)2−q∫Ω(ˉΨk+1x)2dx, $ |
which implies
$ ∫Ω(ˉΨk+1x)2dx≤C|ˉρk+1|2L2. $ | (64) |
From (55), (62) and (64), (61) can be re-written as
$ ddt∫Ωρk+1|ˉuk+1|2dx+C−1∫Ω|ˉuk+1x|2dx≤Bξ(t)|ˉρk+1|2L2+C(|√ρkˉuk|2L2+|ˉηk+1|2L2)+ξ|ˉuk+1x|2L2, $ | (65) |
where
$ \int_0^tB_\xi(s){\rm d} s\leq C+Ct. $ |
Multiplying (59) by
$ 12ddt∫Ω|ˉηk+1|2dx+∫Ω|ˉηk+1x|2dx≤∫Ω|ˉηk+1||uk−Φx||ˉηk+1x|dx+∫Ω(|ηk||ˉuk|)x|ˉηk+1|dx≤|ˉηk+1|L2|uk−Φx|L∞|ˉηk+1x|L2+|ηkx|L2|ˉuk|L∞|ˉηk+1|L2+|ηk|L∞|ˉukx|L2|ˉηk+1|L2≤Cξ|ˉηk+1|2L2+ξ|ˉηk+1x|2L2+ξ|ˉukx|2L2. $ | (66) |
Combining (60), (65) and (66), we have
$ ddt(|ˉρk+1(t)|2L2+|√ρk+1ˉuk+1(t)|2L2+|ˉηk+1(t)|2L2)+|ˉuk+1x(t)|2L2+|ˉηk+1x|2L2≤Eξ(t)|ˉρk+1(t)|2L2+C|√ρkˉuk|2L2+Cξ|ˉηk+1|2L2+ξ|ˉukx|2L2, $ | (67) |
where
$ \int_0^t E_\xi(s){\rm d} s\leq C+C_\xi t. $ |
Integrating (67) over
$ |ˉρk+1(t)|2L2+|√ρk+1ˉuk+1(t)|2L2+|ˉηk+1(t)|2L2+∫t0|ˉuk+1x(t)|2L2ds+∫t0|ˉηk+1x|2L2ds≤Cexp(Cξt)∫t0(|√ρkˉuk(s)|2L2+|ˉukx(s)|2L2)ds. $ | (68) |
From the above recursive relation, choose
$ K∑k=1[sup0≤t≤T∗(|ˉρk+1(t)|2L2+|√ρk+1ˉuk+1(t)|2L2+|ˉηk+1(t)|2L2dt+∫T∗0|ˉuk+1x(t)|2L2+∫T∗0|ˉηk+1x(t)|2L2dt]<C, $ | (69) |
where
Therefore, as
$ ρk→ρεin L∞(0,T∗;L2(Ω)), $ | (70) |
$ uk→uεin L∞(0,T∗;L2(Ω))∩L2(0,T∗;H10(Ω)), $ | (71) |
$ ηk→ηεin L∞(0,T∗;L2(Ω))∩L2(0,T∗;H1(Ω)). $ | (72) |
By virtue of the lower semi-continuity of various norms, we deduce from the uniform estimate (55) that
$ esssup0≤t≤T1(|ρε|H1+|uε|W1,p0∩H2+|ηε|H2+|ηεt|L2+|√ρεuεt|L2+|ρεt|L2)+∫T∗0(|√ρεuεt|2L2+|uεxt|2L2+|ηεx|2L2+|ηεt|2L2+|ηεxt|2L2)ds≤C. $ | (73) |
Since all of the constants are independent of
$ ρε→ρδin L∞(0,T∗;L2(Ω)), $ | (74) |
$ uε→uδin L∞(0,T∗;L2(Ω))∩L2(0,T∗;H10(Ω)), $ | (75) |
$ ηε→ηδin L∞(0,T∗;L2(Ω))∩L2(0,T∗;H1(Ω)), $ | (76) |
and there also holds
$ esssup0≤t≤T1(|ρδ|H1+|uδ|W1,p0∩H2+|ηδ|H2+|ηδt|L2+|√ρδuδt|L2+|ρδt|L2)+∫T∗0(|√ρδuδt|2L2+|uδxt|2L2+|ηδx|2L2+|ηδt|2L2+|ηδxt|2L2)ds≤C. $ | (77) |
For each small
$ {Lpuδ0+(P(ρδ0)+ηδ0)x+ηδ0Φx=(ρδ0)12(gδ+Φx),uδ0|∂Ω=0, $ | (78) |
where
We deduce that
$ \begin{align*} \begin{cases} \begin{aligned} &\rho_t+(\rho u)_x = 0,\\ &(\rho u )_t+(\rho u^2)_x+\rho\Psi_x-\lambda(|u_x|^{p-2}u_x)_x+(P+\eta)_x = -\eta\Phi_x,\\ &(|\Psi_x|^{q-2}\Psi_x)_x = 4\pi g(\rho-\frac{1}{|\Omega|} \int_\Omega \rho {\rm d} x),\\ &\eta_t+(\eta(u-\Phi_x))_x = \eta_{xx},\\ &(\rho,u,\eta)|_{t = 0} = (\rho_0^\delta,u_0^\delta,\eta_0^\delta),\\ &u|_{\partial\Omega} = (\eta_x+\eta\Phi_x)|_{\partial\Omega} = 0, \end{aligned} \end{cases} \end{align*} $ |
where
By the proof of Lemma 2.1, there exists a subsequence
$ \begin{align} \mbox{ess}\sup\limits_{0\leq t\leq T_1}(&|\rho|_{H^1}+|u|_{W_0^{1,p} \cap H^2}+|\eta|_{H^2}+|\eta_t|_{L^2}+|\sqrt{\rho}u_t|_{L^2}+|\rho_t|_{L^2})\\ &+\int_0^{T_*}(|\sqrt\rho u_t|_{L^2}^2+|u_{xt}|_{L^2}^2+|\eta_x|_{L^2}^2+|\eta_t|_{L^2}^2+|\eta_{xt}|_{L^2}^2) {\rm d} s\leq C, \end{align} $ | (79) |
where
The authors would like to thank the anonymous referees for their valuable suggestions.
[1] | Specht M, Brellochs J, Frick V, et al. (2010) Storage of renewable energy in the natural gas grid. Erdoel, Erdgas, Kohle 126: 342-345. |
[2] |
Thauer RK, Kaster AK, Goenrich M, et al. (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79: 507-536. doi: 10.1146/annurev.biochem.030508.152103
![]() |
[3] |
Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125: 171-189. doi: 10.1196/annals.1419.019
![]() |
[4] | Kaster AK, Goenrich M, Seedorf H, et al. (2011) More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea ID973848: 1-23. |
[5] | Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis Appl Energ 132: 155-162. |
[6] |
Bernacchi S, Weissgram M, Wukovits W, et al. (2014) Process efficiency simulation for key process parameters in biological methanogenesis. AIMS bioengineering 1: 53-71. doi: 10.3934/bioeng.2014.1.53
![]() |
[7] |
Thauer RK, Kaster AK, Seedorf H, et al. (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6: 579-591. doi: 10.1038/nrmicro1931
![]() |
[8] | Schill N, van Gulik WM, Voisard D, et al. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructure mathematical model and experimental verification with Methanobacterium thermoautotrophicum. Biotechnol Bioeng 51: 645-658. |
[9] |
Jud G, Schneider K, Bachofen R (1997) The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. J Ind Microbiol Biotechnol 19: 246-251. doi: 10.1038/sj.jim.2900461
![]() |
[10] |
Tsao JH, Kaneshiro SM, Yu SS, et al. (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. Biotechnol Bioeng 43: 258-261. doi: 10.1002/bit.260430309
![]() |
[11] | Schill N, van Gulik WM, Voisard D, et al. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum. Biotechnol Bioeng 51: 645-658. |
[12] |
Peillex JP, Fardeau ML, Belaich JP (1990) Growth of Methanobacterium thermoautotrophicum on hydrogen-carbon dioxide: high methane productivities in continuous culture. Biomass 21:315-321. doi: 10.1016/0144-4565(90)90080-4
![]() |
[13] |
Nishimura N, Kitaura S, Mimura A, et al. (1992) Cultivation of thermophilic methanogen KN-15 on hydrogen-carbon dioxide under pressurized conditions. J Ferment Bioeng 73: 477-480. doi: 10.1016/0922-338X(92)90141-G
![]() |
[14] |
Morii H, Koga Y, Nagai S (1987) Energetic analysis of the growth of Methanobrevibacter arboriphilus A2 in hydrogen-limited continuous cultures. Biotechnol Bioeng 29: 310-315. doi: 10.1002/bit.260290304
![]() |
[15] |
de Poorter LMI, Geerts WJ, Keltjens JT (2007) Coupling of Methanothermobacter thermautotrophicus methane formation and growth in fed-batch and continuous cultures under different H2 gassing regimens. Appl Environ Microbiol 73: 740-749. doi: 10.1128/AEM.01885-06
![]() |
[16] |
Schoenheit P, Moll J, Thauer RK (1980) Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol 127: 59-65. doi: 10.1007/BF00414356
![]() |
[17] |
Gerhard E, Butsch BM, Marison IW, et al. (1993) Improved growth and methane production conditions for Methanobacterium thermoautotrophicum. Appl Microbiol Biotechnol 40: 432-437. doi: 10.1007/BF00170406
![]() |
[18] |
Seifert AH, Rittmann S, Bernacchi S, et al. (2013) Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresour Technol 136:747-751. doi: 10.1016/j.biortech.2013.03.119
![]() |
[19] |
Fardeau ML, Peillex JP, Belaich JP (1987) Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus on ammonium chloride and dinitrogen. Arch Microbiol 148: 128-131. doi: 10.1007/BF00425360
![]() |
[20] |
Fardeau ML, Belaich JP (1986) Energetics of the growth of Methanococcus thermolithotrophicus. Arch Microbiol 144: 381-385. doi: 10.1007/BF00409888
![]() |
[21] | Morgan RM, Pihl TD, Nolling J (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum Delta H. J Bacteriol 179:889-898. |
[22] | Archer DB (1985) Uncoupling of methanogenesis from growth of Methanosarcina barkeri by phosphate limitation. Appl Environ Microbiol 50: 1233-1237. |
[23] |
Rittmann S, Seifert A, Herwig C (2012) Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass Bioenerg 36: 293-301. doi: 10.1016/j.biombioe.2011.10.038
![]() |
[24] |
Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117: 61-66. doi: 10.1007/BF00689352
![]() |
[25] |
Schoenheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123: 105-107. doi: 10.1007/BF00403508
![]() |
[26] |
Bonacker LG, Baudner S, Thauer RK (1992) Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. Eur J Biochem 206: 87-92. doi: 10.1111/j.1432-1033.1992.tb16904.x
![]() |
[27] |
Bonacker LG, Baudner S, Moerschel E, et al. (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur J Biochem 217:587-595. doi: 10.1111/j.1432-1033.1993.tb18281.x
![]() |
[28] |
Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27: 287-297. doi: 10.1016/j.tibtech.2009.02.004
![]() |
[29] |
Wang J, Wan W (2008) Optimization of fermentative hydrogen production process by response surface methodology. Int J Hydrogen Energy 33: 6976-6984. doi: 10.1016/j.ijhydene.2008.08.051
![]() |
[30] |
Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microbial Cell Factories 11:115. doi: 10.1186/1475-2859-11-115
![]() |
[31] |
Spadiut O, Rittmann S, Dietzsch C, et al. (2013) Dynamic process conditions in bioprocess development. Eng Life Sci 13: 88-101. doi: 10.1002/elsc.201200026
![]() |
[32] | Rittmann S, Seifert A, Herwig C (2013) Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Crit Rev Biotechnol 1-11. |
[33] |
Costa KC, Yoon SH, Pan M, et al. (2013) Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis. J Bacteriol 195: 1456-1462. doi: 10.1128/JB.02141-12
![]() |
[34] | Haydock AK, Porat I, Whitman WB, et al. (2004) Continuous culture of Methanococcus maripaludis under defined nutrient conditions. FEMS Microbiol Lett 238: 85-91. |