Citation: Mani Pavuluri, Kelley Volpe, Alexander Yuen. Nucleus Accumbens and Its Role in Reward and Emotional Circuitry: A Potential Hot Mess in Substance Use and Emotional Disorders[J]. AIMS Neuroscience, 2017, 4(1): 52-70. doi: 10.3934/Neuroscience.2017.1.52
[1] | Yukun Song, Yang Chen, Jun Yan, Shuai Chen . The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28(1): 47-66. doi: 10.3934/era.2020004 |
[2] | Qiu Meng, Yuanyuan Zhao, Wucai Yang, Huifang Xing . Existence and uniqueness of solution for a class of non-Newtonian fluids with non-Newtonian potential and damping. Electronic Research Archive, 2023, 31(5): 2940-2958. doi: 10.3934/era.2023148 |
[3] | Changjia Wang, Yuxi Duan . Well-posedness for heat conducting non-Newtonian micropolar fluid equations. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043 |
[4] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[5] | Yazhou Chen, Dehua Wang, Rongfang Zhang . On mathematical analysis of complex fluids in active hydrodynamics. Electronic Research Archive, 2021, 29(6): 3817-3832. doi: 10.3934/era.2021063 |
[6] | Anna Gołȩbiewska, Marta Kowalczyk, Sławomir Rybicki, Piotr Stefaniak . Periodic solutions to symmetric Newtonian systems in neighborhoods of orbits of equilibria. Electronic Research Archive, 2022, 30(5): 1691-1707. doi: 10.3934/era.2022085 |
[7] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[8] | Dingshi Li, Xuemin Wang . Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29(2): 1969-1990. doi: 10.3934/era.2020100 |
[9] | Linyan Fan, Yinghui Zhang . Space-time decay rates of a nonconservative compressible two-phase flow model with common pressure. Electronic Research Archive, 2025, 33(2): 667-696. doi: 10.3934/era.2025031 |
[10] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
Fluid-particle interaction model arises in many practical applications, and is of primary importance in the sedimentation analysis of disperse suspensions of particles in fluids. This model is one of the commonly used models nowadays in biotechnology, medicine, mineral processing and chemical engineering [27]-[25]. Usually, the fluid flow is governed by the Navier-Stokes equations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation [4], the system has the form:
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)+∇(P(ρ)+η)−μΔu−λ∇divu=−(η+βρ)∇Φ,ηt+div(η(u−∇Φ))−Δη=0, | (1) |
where
There are many kinds of literatures on the study of the existence and behavior of solutions to Navier-Stokes equations (See [1]-[17]). Taking system (1) as an example, Carrillo
Despite the important progress, there are few results of non-Newtonian fluid-particle interaction model. As we know, the Navier Stokes equations are generally accepted as a right governing equations for the compressible or incompressible motion of viscous fluids, which is usually described as
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)−div(Γ)+∇P=ρf, |
where
Eij(∇u)=∂ui∂xj+∂uj∂xi, |
is the rate of strain. If the relation between the stress and rate of strain is linear, namely,
Γ=μ(∂ui∂xj+∂uj∂xi)q, |
for
Γij=(μ0+μ1|E(∇xu)|p−2)Eij(∇xu). |
For
Non-Newtonian fluid flows are frequently encountered in many physical and industrial processes [8,9], such as porous flows of oils and gases [7], biological fluid flows of blood [30], saliva and mucus, penetration grouting of cement mortar and mixing of massive particles and fluids in drug production [13]. The possible appearance of the vacuum is one of the major difficulties when trying to prove the existence and strong regularity results. On the other hand, the constitutive behavior of non-Newtonian fluid flow is usually more complex and highly non-linear, which may bring more difficulties to study such flows.
In recent years, there has been many research in the field of non-Newtonian flows, both theoretically and experimentally (see [14]-[26]). For example, in [14], Guo and Zhu studied the partial regularity of the generalized solutions to an incompressible monopolar non-Newtonian fluids. In [32], the trajectory attractor and global attractor for an autonomous non-Newtonian fluid in dimension two was studied. The existence and uniqueness of solutions for non-Newtonian fluids were established in [29] by applying Ladyzhenskaya's viscous stress tensor model.
In this paper, followed by Ladyzhenskaya's model of non-Newtonian fluid, we consider the following system
{ρt+(ρu)x=0,(ρu)t+(ρu2)x+ρΨx−λ(|ux|p−2ux)x+(P+η)x=−ηΦx,(x,t)∈ΩT(|Ψx|q−2Ψx)x=4πg(ρ−1|Ω|∫Ωρdx),ηt+(η(u−Φx))x=ηxx, | (2) |
with the initial and boundary conditions
{(ρ,u,η)|t=0=(ρ0,u0,η0),x∈Ω,u|∂Ω=Ψ|∂Ω=0,t∈[0,T], | (3) |
and the no-flux condition for the density of particles
(ηx+ηΦx)|∂Ω=0,t∈[0,T], | (4) |
where
The system describes a compressible shear thinning fluid-particle interaction system for the evolution of particles dispersed in a viscous non-Newtonian fluid and the particle is driven by non-Newtonian gravitational potential. To our knowledge, there still no existence results for (2)-(4) when
We state the definition of strong solution as follows:
Definition 1.1. The
(ⅰ)
ρ∈L∞(0,T∗;H1(Ω)),u∈L∞(0,T∗;W1,p0(Ω)∩H2(Ω)),Ψ∈L∞(0,T∗;H2(Ω)),η∈L∞(0,T∗;H2(Ω)),ρt∈L∞(0,T∗;L2(Ω)),ut∈L2(0,T∗;H10(Ω)),Ψt∈L∞(0,T∗;H1(Ω)),ηt∈L∞(0,T∗;L2(Ω)),√ρut∈L∞(0,T∗;L2(Ω)),(|ux|p−2ux)x∈C(0,T∗;L2(Ω)). |
(ⅱ) For all
∫Ωρϕ(x,t)dx−∫t0∫Ω(ρϕt+ρuϕx)(x,s)dxds=∫Ωρ0ϕ(x,0)dx, | (5) |
(ⅲ) For all
∫Ωρuφ(x,t)dx−∫t0∫Ω{ρuφt+ρu2φx−ρΨxφ−λ|ux|p−2uxφx+(P+η)φx−ηΦxφ}(x,s)dxds=∫Ωρ0u0φ(x,0)dx, | (6) |
(ⅳ) For all
−∫t0∫Ω|Ψx|q−2Ψxψx(x,s)dxds=∫t0∫Ω4πg(ρ−1|Ω|∫Ωρdx)ψ(x,0)dxds, | (7) |
(ⅴ) For all
∫Ωηϑ(x,t)dx−∫t0∫Ω[η(u−Φx)−ηx]ϑx(x,s)dxds=∫Ωη0ϑ(x,0)dx. | (8) |
The main result of this paper is stated in the following theorem.
Theorem 1.2. Let
0≤ρ0∈H1(Ω),u0∈H10(Ω)∩H2(Ω),η0∈H2(Ω), |
and the compatibility condition
−(|u0x|p−2u0x)x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx), | (9) |
for some
ρ∈L∞(0,T∗;H1(Ω)),u∈L∞(0,T∗;W1,p0(Ω)∩H2(Ω)),Ψ∈L∞(0,T∗;H2(Ω)),η∈L∞(0,T∗;H2(Ω)),ρt∈L∞(0,T∗;L2(Ω)),ut∈L2(0,T∗;H10(Ω)),Ψt∈L∞(0,T∗;H1(Ω)),ηt∈L∞(0,T∗;L2(Ω)),√ρut∈L∞(0,T∗;L2(Ω)),(|ux|p−2ux)x∈C(0,T∗;L2(Ω)). |
Remark 1. By using exactly the similar argument, we can prove the result also hold for the case
In this section, we will prove the local existence of strong solutions. From the continuity equation
∫Ωρ(t)dx=∫Ωρ0dx:=m0,(t>0,m0>0) |
Because equation
ρt+(ρu)x=0, | (10) |
(ρu)t+(ρu2)x+ρΨx−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x=−ηΦx, | (11) |
[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]x=4πg(ρ−m0), | (12) |
ηt+(η(u−Φx))x=ηxx, | (13) |
with the initial and boundary conditions.
(ρ,u,η)|t=0=(ρ0,u0,η0),x∈Ω, | (14) |
u|∂Ω=Ψ|∂Ω=(ηx+ηΦx)|∂Ω=0,t∈[0,T], | (15) |
and
{−[(εu20x+1u20x+ε)2−p2u0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),u0|∂Ω=0. | (16) |
Provided that
We first get the estimate of
{−[(εu20x+1u20x+ε)2−p2u0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),u0|∂Ω=0. | (16) |
Then
|u0xx|L2≤1p−1|(u20x+εεu20x+1)1−p2|L∞|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2≤1p−1(|u0x|2L∞+1)1−p2(|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2)≤1p−1(|u0xx|2L2+1)1−p2(|Px(ρ0)|L2+|η0x|L2+|η0|L∞|Φx|L2+|ρ0|12L∞|g|L2+|ρ0|12L∞|Φx|L2). |
Applying Young's inequality, we have
|u0xx|L2≤C(|Px(ρ0)|L2+|η0x|L2+|η0|L∞|Φx|L2+|ρ0|12L∞|g|L2+|ρ0|12L∞|Φx|L2)1p−1≤C, |
thus
|u0|L∞+|u0x|L∞+|u0xx|L2≤C, | (17) |
where
Next, we introduce an auxiliary function
Z(t)=sup0≤s≤t(1+|ρ(s)|H1+|u(s)|W1,p0+|√ρut(s)|L2+|ηt(s)|L2+|η(s)|H1). |
We will derive some useful estimate to each term of
In order to prove the main Theorem, we first give some useful lemmas for later use.
Lemma 2.1. Let
{−[(ε(uε0x)2+1(uε0x)2+ε)2−p2uε0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),uε0(0)=uε0(1)=0. | (18) |
Then there are a subsequence
uεj0→u0inH10(Ω)∩H2(Ω),[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
Proof. According to (18), we have
uεj0→u0inH10(Ω)∩H2(Ω),[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
Taking it by the
|uε0xx|L2≤|(ε(uε0x)2+1(uε0x)2+ε)1−p2|L∞|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2≤(|uε0x|2L∞+1)1−p2|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2, |
then
|uε0xx|L2≤C(1+|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2)1p−1≤C. | (19) |
Therefore, by the above inequality, as
uεj0→u0inC32(Ω),uεj0xx→u0xxinL2(Ω)weakly. |
Thus, we can obtain
|uεi0x−uεj0x|L∞(Ω)<α1. |
Now, we prove that
Let
|uεi0x−uεj0x|L∞(Ω)<α1. |
For all
|uεi0xx−uεj0xx|L2(Ω)≤|ϕi−ϕj|L∞(Ω)|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2(Ω). |
With the assumption, we can obtain
|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2(Ω)≤C, |
where
|ϕi−ϕj|L∞(Ω)≤|∫10ϕ′(θ(uεi0x)2+(1−θ)(uεj0x)2)dθ((uεi0x)2−(uεj0x)2)|L∞(Ω), | (20) |
where
By the simple calculation, we can get
ϕ′(s)≤2p−1(1+s−p2), |
where
|ϕi−ϕj|L∞(Ω)≤2p−1|(1+∫10(θ(uεi0x)2+(1−θ)(uεj0x)2)dθ)((uεi0x)2−(uεj0x)2)|L∞(Ω)≤2p−1|uεi0x−uεj0x|L∞(Ω)|uεi0x+uεj0x|L∞(Ω)+4(2−p)(p−1)|uεi0x−uεj0x|2−p2L∞(Ω)|uεi0x+uεj0x|2−p2L∞(Ω)≤α. |
Substituting this into (18), we have
|uεi0xx−uεj0xx|L∞(Ω)<α, |
then there is a subsequence
{uεj0xx}→χinL2(Ω). |
By the uniqueness of the weak convergence, we have
χ={uε0xx}. |
Since
[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
This completes the proof of Lemma 2.1.
Lemma 2.2.
sup0≤t≤T|ρ(t)|2H1≤Cexp(C∫t0Z6γ(3p−4)(q−1)(s)ds), | (21) |
where
Proof. We estimates for
[(εu2x+1u2x+ε)2−p2ux]x=ρut+ρuux+ρΨx+(P+η)x+ηΦx. |
We note that
|uxx|≤1p−1(u2x+ε)1−p2|ρut+ρuux+ρΨx+(P+η)x+ηΦx|≤1p−1(|ux|2−p+1)|ρut+ρuux+ρΨx+(P+η)x+ηΦx|. |
Taking it by the
|uxx|p−1L2≤C(1+|ρut|L2+|ρuux|L2+|ρΨx|L2+|(P+η)x|L2+|ηΦx|L2)≤C(1+|ρ|12L∞|√ρut|L2+|ρ|L∞|u|L∞|ux|p2Lp|ux|1−p2L∞+|ρ|γ−1L∞|ρx|L2+|ηx|L2+|η|L∞|Φx|L2+|ρ|L2|Ψxx|L2)≤C[1+|ρ|12L∞|√ρut|L2+(|ρ|L∞|u|L∞|ux|p2Lp)2(p−1)3p−4+|ρ|γ−1L∞|ρx|L2+|ηx|L2+|η|L∞|Φx|L2+|ρ|L2|Ψxx|L2]+12|uxx|p−1L2. | (22) |
On the other hand, by
|Ψxx|≤1q−1(|Ψx|2−q+1)|4πg(ρ−m0)|. |
Taking it by
|Ψxx|L2≤CZ1q−1(t). | (23) |
This implies that
|uxx|L2≤CZmax{qq−1,(p−1)(4+p)3p−4γ}(t)≤CZ6γ(3p−4)(q−1)(t). | (24) |
By (13), taking it by the
|ηxx|L2≤|ηt+(η(u−Φx))x|L2≤|ηt|L2+|ηx|L2|u|L∞+|ηx|L2|Φx|L∞+|η|L2|uxx|L2+|η|L∞|Φxx|L2≤CZ6γ+2(3p−4)(q−1)(t). | (25) |
Multiplying (10) by
12ddt∫Ω|ρ|2ds+∫Ω(ρu)xρdx=0. |
Integrating it by parts, using Sobolev inequality, we obtain
ddt|ρ(t)|2L2≤∫Ω|ux||ρ|2dx≤|uxx|L2|ρ|2L2. | (26) |
Differentiating
ddt∫Ω|ρx|2dx=−∫Ω[32ux(ρx)2+ρρxuxx](t)dx≤C[|ux|L∞|ρx|2L2+|ρ|L∞|ρx|L2|uxx|L2]≤C|ρ|2H1|uxx|L2. | (27) |
From (26) and (27) and the Gronwall's inequality, then lemma 2.2 holds.
Lemma 2.3.
|η|2H1+|ηt|2L2+∫t0(|ηx|2L2+|ηt|2L2+|ηxt|2L2)(s)ds≤C(1+∫t0Z4(s)ds), | (28) |
where
Proof. Multiplying
∫t0|ηx(s)|2L2ds+12|η(t)|2L2≤∬ΩT(|ηuηx|+|ηΦxηx|)dxds≤14∫t0|ηx(s)|2L2ds+C∫t0|ux|2Lp|η|2H1ds+C∫t0|η|2H1ds+C≤14∫t0|ηx(s)|2L2ds+C(1+∫t0Z4(t)ds). | (29) |
Multiplying
∫t0|ηt(s)|2L2ds+12|ηx(t)|2L2≤∬ΩT|η(u−Φx)ηxt|dxds≤14∫t0|ηxt(s)|2L2ds+C∫t0|η|2H1|ux|2Lpds+C∫t0|η|2H1ds+C≤14∫t0|ηxt(s)|2L2ds+C(1+∫t0Z4(t)ds). | (30) |
Differentiating
∫t0|ηxt(s)|2L2ds+12|ηt(t)|2L2=∬ΩT(η(u−Φx))tηxtdxds≤C+∬ΩT(|ηtuηxt|+|ηtΦxηxt|+|ηxutηt|+|ηuxtηt|)dxds≤C(1+∫t0(|ηt|2L2||ux|2Lp+|ηt|2L2+|ηx|2L2|ηt|2L2+|η|2H1|ηt|2L2)dx)+12∫t0|ηxt|2L2+12∫t0|uxt|2L2≤C(1+∫t0Z4(s)ds). | (31) |
Combining (29)-(31), we obtain the desired estimate of Lemma 2.3.
Lemma 2.4.
∫t0|√ρut(s)|2L2(s)ds+|ux(t)|pLp≤C(1+∫t0Z10+4γ(3p−4)(q−1)(s)ds), | (32) |
where
Proof. Using (10), we rewritten the (11) as
ρut+(ρu)ux+ρΨx−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x=−ηΦx. | (33) |
Multiplying (33) by
∬ΩTρ|ut|2dxds+∬ΩT(εu2x+1u2x+ε)2−p2uxuxtdxds=−∬ΩT(ρuux+ρΨx+Px+ηx+ηΦx)utdxds. | (34) |
We deal with each term as follows:
∫Ω(εu2x+1u2x+ε)2−p2uxuxtdx=12∫Ω(εu2x+1u2x+ε)2−p2(u2x)tdx=12ddt∫Ω(∫u2x0(εs+1s+ε)2−p2ds)dx, |
∫u2x0(εs+1s+ε)2−p2ds≥∫u2x0(s+1)2−p2ds=2p[(u2x+1)p2−1], |
−∬ΩTPxutdxds=∬ΩTPuxtdxds=ddt∬ΩTPuxdxds−∬ΩTPtuxdxds. |
By virtue of
Pt=−γPux−Pxu,−∬ΩTηxutdxds=∬ΩTηuxtdxds=ddt∬ΩTηuxdxds−∬ΩTηtuxdxds.−∬ΩTηΦxutdxds=−ddt∬ΩTηΦxudxds+∬ΩTηtΦxudxds. | (35) |
Substituting the above into (34), using Sobolev inequality and Young's inequality, we have
∫t0|√ρut(s)|2L2ds+|ux(t)|pLp≤∬ΩT(|ρuuxut|+|ρΨxut|+|γPu2x|+|Pxuux|+|ηtux|+|ηtΦxu|)dxds+∫Ω(|Pux|+|ηux|+|ηΦxu|)dx+C≤C+∫t0(|ρ|12L∞|u|L∞|ux|p2Lp|ux|1−p2L∞|√ρut|L2+|ρ|12L∞|Ψx|L∞|√ρut|L2)ds+∫t0(γ|P|L2|ux|p2Lp|ux|1−p2L∞|uxx|L2+aγ|ρ|γ−1L∞|ρx|L2|u|L∞|ux|L∞+|ηt|L2|ux|p2Lp|ux|1−p2L∞+|ηt|L2|Φx|L2|u|L∞)ds+|P|Lpp−1|ux|Lp+|η|Lpp−1|ux|Lp+|η|Lpp−1|Φx|Lp|u|L∞≤C(1+∫t0(|ρ|L∞|ux|2+pLp|uxx|2−pL2+|ρ|H1|Ψxx|2L2+|P|L∞|ux|p2Lp|uxx|2−p2L2+|ρ|γ−1L∞|ρx|L2|ux|Lp|uxx|L2+|ηt|L2|ux|p2Lp|uxx|1−p2L2+|ηt|L2|ux|Lp)ds)+|P|pp−1Lpp−1+|η|pp−1Lpp−1+12∫t0|√ρut(s)|2L2ds+12|ux(t)|pLp. | (36) |
To estimate (36), combining (35) we have the following estimates
∫Ω|P(t)|pp−1dx=∫Ω|P(0)|pp−1dx+∫t0∂∂s(∫ΩP(s)pp−1dx)ds≤∫Ω|P(0)|pp−1dx+pp−1∫t0∫Ωaγργ−1P(s)1p−1(−ρxu−ρux)dxds≤C+C∫t0|ρ|γ−1L∞|P|1p−1L∞|ρ|H1|ux|Lpds≤C(1+∫t0Zγp−1+γ+1(s)ds), | (37) |
In exactly the same way, we also have
∫Ω|η(t)|pp−1dx≤C(1+∫t0Z1p−1+1(s)ds), | (38) |
which, together with (36) and (37), implies (32) holds.
Lemma 2.5.
|√ρut(t)|2L2+∫t0|uxt|2L2(s)ds≤C(1+∫t0Z26γ(3p−4)(q−1)(s)ds), | (39) |
where
Proof. Differentiating equation
12ddt∫Ωρ|ut|2dx+∫Ω[(εu2x+1u2x+ε)2−p2ux]tuxtdx=∫Ω[(ρu)x(u2t+uuxut+Ψxut)−ρuxu2t+(P+η)tuxt−ηtΦxut−ρΨxtut]dx. | (40) |
Note that
∫Ω[(εu2x+1u2x+ε)2−p2ux]tuxtdx=∫Ω[(εu2x+1u2x+ε)−p2ux](εu2x+1)(u2x+ε)−(2−p)(1−ε2)u2x(u2x+ε)2u2xtdx≥(p−1)∫Ω(u2x+1)p−22|uxt|2dx, | (41) |
Let
ω=(u2x+1)p−24, |
from (24), it follows that
|ω−1|L∞=|(u2x+1)2−p4|L∞≤C(|uxx|2−p2L2+1)≤CZ2γ(3p−4)(q−1)(t). |
Combining (35), (40) can be rewritten into
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
Using Sobolev inequality, Young's inequality,
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
In order to estimate
∫Ω[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]tΨxtdx=−4πg∫Ω(ρu)xΨtdx, | (43) |
and
∫Ω[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]tΨxtdx≥(q−1)∫Ω(Ψ2x+1)q−22|Ψxt|2dx. | (44) |
Let
βq=(Ψ2x+1)q−24 |
then
|(βq)−1|L∞=|(Ψ2x+1)2−q4|L∞≤C(|Ψxx|2−q2L2+1)≤CZ2−q2(q−1)(t). |
Then (43) can be rewritten into
∫Ω|βqΨxt|2dx≤C∫Ω(ρu)Ψxtdx≤C|ρ|L2|u|L∞|βqΨxt|L2|(βq)−1|L∞. |
Using Young's inequality, combining the above estimates we deduce that
I11≤|ρ|12L∞|√ρut|L2|βqΨxt|L2|(βq)−1|L∞≤CZ5q−32(q−1)(t). |
Substituting
|√ρut(t)|2L2+∫t0|ωuxt|2L2(s)ds≤|√ρut(τ)|2L2+∫t0Z26γ(3p−4)(q−1)(s)ds. | (45) |
To obtain the estimate of
∫Ωρ|ut|2dx≤2∫Ω(ρ|u|2|ux|2+ρ|Ψx|2+ρ−1|−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x+ηΦx|2)dx. |
According to the smoothness of
limτ→0∫Ω(ρ|u|2|ux|2+ρ|Ψx|2+ρ−1|−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x+ηΦx|2)dx=∫Ω(ρ0|u0|2|u0x|2+ρ0|Ψx|2+ρ−10|−[(εu20x+1u20x+ε)2−p2u0x]x+(P0+η0)x+η0Φx|2)dx≤|ρ0|L∞|u0|2L∞|u0x|2L2+|ρ0|L∞|Ψx|2+|g|2L2+|Φx|2L2≤C. |
Then, taking a limit on
|√ρut(t)|2L2+∫t0|uxt|2L2(s)ds≤C(1+∫t0Z26γ(3p−4)(q−1)(s)ds), | (46) |
This complete the proof of Lemma 2.5.
With the help of Lemma 2.2 to Lemma 2.5, and the definition of
Z(t)≤Cexp(˜C∫t0Z26γ(3p−4)(q−1)(s)ds), | (47) |
where
esssup0≤t≤T1(|ρ|H1+|u|W1,p0∩H2+|η|H2+|ηt|L2+|√ρut|L2+|ρt|L2)+∫T10(|√ρut|2L2+|uxt|2L2+|ηx|2L2+|ηt|2L2+|ηxt|2L2)ds≤C, | (48) |
where
In this section, the existence of strong solutions can be established by a standard argument. We construct the approximate solutions by using the iterative scheme, derive uniform bounds and thus obtain solutions of the original problem by passing to the limit. Our proof will be based on the usual iteration argument and some ideas developed in [10]. Precisely, we first define
ρkt+ρkxuk−1+ρkuk−1x=0, | (49) |
ρkukt+ρkuk−1ukx+ρkΨkx+Lpuk+Pkx+ηkx=−ηkΦx, | (50) |
LqΨk=4πg(ρk−m0), | (51) |
ηkt+(ηk(uk−1−Φx))x=ηkxx, | (52) |
with the initial and boundary conditions
(ρk,uk,ηk)|t=0=(ρ0,u0,η0), | (53) |
uk|∂Ω=(ηkx+ηkΦx)|∂Ω=0, | (54) |
where
Lpθk=−[(ε(θkx)2+1(θkx)2+ε)2−p2θkx]x. |
With the process, the nonlinear coupled system has been deduced into a sequence of decoupled problems and each problem admits a smooth solution. And the following estimates hold
esssup0≤t≤T1(|ρk|H1+|uk|W1,p0∩H2+|ηk|H2+|ηkt|L2+|√ρkukt|L2+|ρkt|L2)+∫T10(|√ρkukt|2L2+|ukxt|2L2+|ηkx|2L2+|ηkt|2L2+|ηkxt|2L2)ds≤C, | (55) |
where
In addition, we first find
ρkt+uk−1ρkx+uk−1xρk=0, |
ρk|t=0=ρ0, |
with smooth function
ρk(x,t)≥δexp[−∫T10|uk−1x(.,s)|L∞ds]>0,for all t∈(0,T1). |
Next, we will prove the approximate solution
ˉρk+1=ρk+1−ρk,ˉuk+1=uk+1−uk,ˉηk+1=ηk+1−ηk,ˉΨk+1=Ψk+1−Ψk. |
By a direct calculation, we can verify that the functions
ˉρk+1t+(ˉρk+1uk)x+(ρkˉuk)x=0, | (56) |
ρk+1ˉuk+1t+ρk+1ukˉuk+1x+(Lpuk+1−Lpuk)=−ˉρk+1(ukt+ukukx+Ψk+1x)−(Pk+1−Pk)x−ˉηk+1x+ρk(ˉukukx−ˉΨk+1x)−ˉηk+1Φx, | (57) |
LqΨk+1−LqΨk=4πgˉρk+1, | (58) |
ˉηk+1t+(ηkˉuk)x+(ˉηk+1(uk−Φx))x=ˉηk+1xx. | (59) |
Multiplying (56) by
ddt|ˉρk+1|2L2≤C|ˉρk+1|2L2|ukx|L∞+|ρk|H1|ˉukx|L2|ˉρk+1|L2≤C|ukxx|L2|ˉρk+1|2L2+Cξ|ρk|2H1|ˉρk+1|2L2+ξ|ˉukx|2L2≤Cξ|ˉρk+1|2L2+ξ|ˉukx|2L2, | (60) |
where
Multiplying (57) by
12ddt∫Ωρk+1|ˉuk+1|2dx+∫Ω(Lpuk+1−Lpuk)ˉuk+1dx≤C∫Ω[|ˉρk+1|(|ukt|+|ukukx|+|Ψk+1x|)+|Pk+1x−Pkx|+|ˉηk+1x|+|ρk|ˉuk||ukx|+|ρk||ˉΨk+1x|+|ˉηk+1Φx|]|ˉuk+1|dx≤C(|ˉρk+1|L2|ukxt|L2|ˉuk+1x|L2+|ˉρk+1|L2|ukx|Lp|ukxx|L2|ˉuk+1x|L2+|ˉρk+1|L2|Ψk+1x|L2|ˉuk+1x|L2+|Pk+1−Pk|L2|ˉuk+1x|L2+|ˉηk+1|L2|ˉuk+1x|L2+|ρk|12L2|√ρkˉuk|L2|ukxx|L2|ˉuk+1x|L2+|ρk|H1|ˉΨk+1x|L2|ˉuk+1x|L2+|ˉηk+1|L2|ˉuk+1x|L2). | (61) |
Let
σ(s)=(εs2+1s2+ε)2−p2s, |
then
σ′(s)=(εs2+1s2+ε)−p2(εs2+1)(s2+ε)−(2−p)(1−ε2)s2(s2+ε)2≥p−1(s2+ε)2−p2. |
To estimate the second term of (61), we have
∫Ω(Lpuk+1−Lpuk)ˉuk+1dx=∫Ω∫10σ′(θuk+1x+(1−θ)ukx)dθ|ˉuk+1x|2dx≥∫Ω[∫10dθ|θuk+1x+(1−θ)ukx|2−pL∞+1](ˉuk+1x)2≥C−1∫Ω|ˉuk+1x|2dx. | (62) |
On the other hand, multiplying (58) by
∫Ω(LqΨk+1−LqΨk)ˉΨk+1dx=4πg∫Ωˉρk+1ˉΨk+1dx. | (63) |
Since
∫Ω(LqΨk+1−LqΨk)ˉΨk+1xdx=(q−1)∫Ω(∫10|θΨk+1x+(1−θ)Ψkx|q−2dθ)(ˉΨk+1x)2dx, |
and
∫10|θΨk+1x+(1−θ)Ψkx|q−2dθ=∫101|θΨk+1x+(1−θ)Ψkx|2−qdθ≥∫101(|Ψk+1x|+|Ψkx|2−q)dθ=1(|Ψk+1x|+|Ψkx|)2−q, |
then
∫Ω[|Ψk+1x|q−2Ψk+1x−|Ψkx|q−2Ψkx]ˉΨk+1xdx≥1(|Ψk+1x(t)|L∞+|Ψkx(t)|L∞)2−q∫Ω(ˉΨk+1x)2dx, |
which implies
∫Ω(ˉΨk+1x)2dx≤C|ˉρk+1|2L2. | (64) |
From (55), (62) and (64), (61) can be re-written as
ddt∫Ωρk+1|ˉuk+1|2dx+C−1∫Ω|ˉuk+1x|2dx≤Bξ(t)|ˉρk+1|2L2+C(|√ρkˉuk|2L2+|ˉηk+1|2L2)+ξ|ˉuk+1x|2L2, | (65) |
where
\int_0^tB_\xi(s){\rm d} s\leq C+Ct. |
Multiplying (59) by
\begin{align} &\frac{1}{2}\frac{d}{dt}\int_\Omega|\bar\eta^{k+1}|^2{\rm d} x+\int_\Omega|\bar\eta_x^{k+1}|^2{\rm d} x\\ &\leq\int_\Omega|\bar\eta^{k+1}||u^k-\Phi_x||\bar\eta_x^{k+1}|{\rm d} x+\int_\Omega(|\eta^k||\bar u^k|)_x|\bar\eta^{k+1}|{\rm d} x\\ &\leq|\bar\eta^{k+1}|_{L^2}|u^k-\Phi_x|_{L^\infty}|\bar\eta_x^{k+1}|_{L^2}+|\eta_x^k|_{L^2}|\bar u^k|_{L^\infty}|\bar\eta^{k+1}|_{L^2}+|\eta^k|_{L^\infty}|\bar u_x^k|_{L^2}|\bar\eta^{k+1}|_{L^2}\\ &\leq C_\xi|\bar\eta^{k+1}|_{L^2}^2+\xi|\bar\eta_x^{k+1}|_{L^2}^2+\xi|\bar u_x^k|_{L^2}^2. \end{align} | (66) |
Combining (60), (65) and (66), we have
\begin{align} &\frac{d}{dt}\Big(|\bar\rho^{k+1}(t)|_{L^2}^2+|\sqrt{\rho^{k+1}}\bar u^{k+1}(t)|_{L^2}^2+|\bar\eta^{k+1}(t)|_{L^2}^2\Big)+|\bar u_x^{k+1}(t)|_{L^2}^2+|\bar\eta_x^{k+1}|_{L^2}^2\\ &\leq E_\xi(t)|\bar\rho^{k+1}(t)|_{L^2}^2+C|\sqrt{\rho^k} \bar u^k|_{L^2}^2+C_\xi|\bar\eta^{k+1}|_{L^2}^2+\xi|\bar u_x^k|_{L^2}^2, \end{align} | (67) |
where
\int_0^t E_\xi(s){\rm d} s\leq C+C_\xi t. |
Integrating (67) over
\begin{align} |\bar\rho^{k+1}(t)|_{L^2}^2&+|\sqrt{\rho^{k+1}}\bar u^{k+1}(t)|_{L^2}^2+|\bar\eta^{k+1}(t)|_{L^2}^2+\int_0^t|\bar u_x^{k+1}(t)|_{L^2}^2{\rm d} s+\int_0^t|\bar\eta_x^{k+1}|_{L^2}^2{\rm d} s\\ &\leq C\exp(C_\xi t)\int_0^t(|\sqrt{\rho^k} \bar u^k(s)|_{L^2}^2+|\bar u_x^k(s)|_{L^2}^2){\rm d} s. \end{align} | (68) |
From the above recursive relation, choose
\begin{align} \sum\limits_{k = 1}^K[\sup\limits_{0\leq t\leq T_*}(|\bar\rho^{k+1}(t)|_{L^2}^2&+|\sqrt{\rho^{k+1}}\bar u^{k+1}(t)|_{L^2}^2+|\bar\eta^{k+1}(t)|_{L^2}^2{\rm d} t\\ &+\int_0^{T_*}|\bar u_x^{k+1}(t)|_{L^2}^2+\int_0^{T_*}|\bar\eta_x^{k+1}(t)|_{L^2}^2{\rm d} t] < C, \end{align} | (69) |
where
Therefore, as
\begin{align} &\rho^k\rightarrow\rho^\varepsilon\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega)), \end{align} | (70) |
\begin{align} &u^k\rightarrow u^\varepsilon\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega))\cap L^2(0,T_*;H_0^1(\Omega)), \end{align} | (71) |
\begin{align} &\eta^k\rightarrow \eta^\varepsilon\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega))\cap L^2(0,T_*;H^1(\Omega)). \end{align} | (72) |
By virtue of the lower semi-continuity of various norms, we deduce from the uniform estimate (55) that
\begin{align} \mbox{ess}\sup\limits_{0\leq t\leq T_1}(&|\rho^\varepsilon|_{H^1}+|u^\varepsilon|_{W_0^{1,p} \cap H^2}+|\eta^\varepsilon|_{H^2}+|\eta_t^\varepsilon|_{L^2}+|\sqrt{\rho^\varepsilon}u_t^\varepsilon|_{L^2}+|\rho_t^\varepsilon|_{L^2})\\ &+\int_0^{T_*}(|\sqrt\rho^\varepsilon u_t^\varepsilon|_{L^2}^2+|u_{xt}^\varepsilon|_{L^2}^2+|\eta_x^\varepsilon|_{L^2}^2+|\eta_t^\varepsilon|_{L^2}^2+|\eta_{xt}^\varepsilon|_{L^2}^2) {\rm d} s\leq C. \end{align} | (73) |
Since all of the constants are independent of
\begin{align} &\rho^\varepsilon\rightarrow\rho^\delta\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega)), \end{align} | (74) |
\begin{align} &u^\varepsilon\rightarrow u^\delta\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega))\cap L^2(0,T_*;H_0^1(\Omega)), \end{align} | (75) |
\begin{align} &\eta^\varepsilon\rightarrow \eta^\delta\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega))\cap L^2(0,T_*;H^1(\Omega)), \end{align} | (76) |
and there also holds
\begin{align} \mbox{ess}\sup\limits_{0\leq t\leq T_1}(&|\rho^\delta|_{H^1}+|u^\delta|_{W_0^{1,p} \cap H^2}+|\eta^\delta|_{H^2}+|\eta_t^\delta|_{L^2}+|\sqrt{\rho^\delta}u_t^\delta|_{L^2}+|\rho_t^\delta|_{L^2})\\ &+\int_0^{T_*}(|\sqrt\rho^\delta u_t^\delta|_{L^2}^2+|u_{xt}^\delta|_{L^2}^2+|\eta_x^\delta|_{L^2}^2+|\eta_t^\delta|_{L^2}^2+|\eta_{xt}^\delta|_{L^2}^2) {\rm d} s\leq C. \end{align} | (77) |
For each small
\begin{align} \begin{cases} \begin{aligned} &L_p u_0^\delta+\big(P(\rho_0^\delta)+\eta_0^\delta\big)_x+\eta_0^\delta\Phi_x = (\rho_0^\delta)^{1\over2}(g^\delta+\Phi_x),&\\ &u_0^\delta|_{\partial\Omega} = 0,& \end{aligned} \end{cases} \end{align} | (78) |
where
We deduce that
\begin{align*} \begin{cases} \begin{aligned} &\rho_t+(\rho u)_x = 0,\\ &(\rho u )_t+(\rho u^2)_x+\rho\Psi_x-\lambda(|u_x|^{p-2}u_x)_x+(P+\eta)_x = -\eta\Phi_x,\\ &(|\Psi_x|^{q-2}\Psi_x)_x = 4\pi g(\rho-\frac{1}{|\Omega|} \int_\Omega \rho {\rm d} x),\\ &\eta_t+(\eta(u-\Phi_x))_x = \eta_{xx},\\ &(\rho,u,\eta)|_{t = 0} = (\rho_0^\delta,u_0^\delta,\eta_0^\delta),\\ &u|_{\partial\Omega} = (\eta_x+\eta\Phi_x)|_{\partial\Omega} = 0, \end{aligned} \end{cases} \end{align*} |
where
By the proof of Lemma 2.1, there exists a subsequence
\begin{align} \mbox{ess}\sup\limits_{0\leq t\leq T_1}(&|\rho|_{H^1}+|u|_{W_0^{1,p} \cap H^2}+|\eta|_{H^2}+|\eta_t|_{L^2}+|\sqrt{\rho}u_t|_{L^2}+|\rho_t|_{L^2})\\ &+\int_0^{T_*}(|\sqrt\rho u_t|_{L^2}^2+|u_{xt}|_{L^2}^2+|\eta_x|_{L^2}^2+|\eta_t|_{L^2}^2+|\eta_{xt}|_{L^2}^2) {\rm d} s\leq C, \end{align} | (79) |
where
The authors would like to thank the anonymous referees for their valuable suggestions.
[1] |
Floresco SB (2015) The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 66: 25–52. doi: 10.1146/annurev-psych-010213-115159
![]() |
[2] |
Diekhof EK, Falkai P, Gruber O (2008) Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Res Rev 59: 164–184. doi: 10.1016/j.brainresrev.2008.07.004
![]() |
[3] |
Salgado S, Kaplitt MG (2015) The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 93: 75–93. doi: 10.1159/000368279
![]() |
[4] |
Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14: 69–97. doi: 10.1016/0301-0082(80)90018-0
![]() |
[5] |
Zahm DS, Brog JS (1992) On the significance of subterritories in the "accumbens" part of the rat ventral striatum. Neuroscience 50: 751–767. doi: 10.1016/0306-4522(92)90202-D
![]() |
[6] |
Baliki MN, Mansour A, Baria AT, et al. (2013) Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain. J Neurosci Off J Soc Neurosci 33: 16383–16393. doi: 10.1523/JNEUROSCI.1731-13.2013
![]() |
[7] |
Voorn P, Brady LS, Schotte A, et al. (1994) Evidence for two neurochemical divisions in the human nucleus accumbens. Eur J Neurosci 6: 1913–1916. doi: 10.1111/j.1460-9568.1994.tb00582.x
![]() |
[8] |
Meredith GE (1999) The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci 877: 140–156. doi: 10.1111/j.1749-6632.1999.tb09266.x
![]() |
[9] | Francis TC, Lobo MK (2016) Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression. Biol Psychiatry. |
[10] | Lu XY, Ghasemzadeh MB, Kalivas PW (1998) Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 82: 767–780. |
[11] |
Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4: 277–291. doi: 10.2174/157015906778520773
![]() |
[12] |
Ding Z-M, Ingraham CM, Rodd ZA, et al. (2015) The reinforcing effects of ethanol within the nucleus accumbens shell involve activation of local GABA and serotonin receptors. J Psychopharmacol Oxf Engl 29: 725–733. doi: 10.1177/0269881115581982
![]() |
[13] | Voorn P, Brady LS, Berendse HW, et al. (1996) Densitometrical analysis of opioid receptor ligand binding in the human striatum-I. Distribution of mu-opioid receptor defines shell and core of the ventral striatum. Neuroscience 75: 777–792. |
[14] |
Schoffelmeer ANM, Hogenboom F, Wardeh G, et al. (2006) Interactions between CB1 cannabinoid and mu opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 51: 773–781. doi: 10.1016/j.neuropharm.2006.05.019
![]() |
[15] |
O'Neill RD, Fillenz M (1985) Simultaneous monitoring of dopamine release in rat frontal cortex, nucleus accumbens and striatum: effect of drugs, circadian changes and correlations with motor activity. Neuroscience 16: 49–55. doi: 10.1016/0306-4522(85)90046-6
![]() |
[16] |
Haralambous T, Westbrook RF (1999) An infusion of bupivacaine into the nucleus accumbens disrupts the acquisition but not the expression of contextual fear conditioning. Behav Neurosci 113: 925–940. doi: 10.1037/0735-7044.113.5.925
![]() |
[17] |
Levita L, Hoskin R, Champi S (2012) Avoidance of harm and anxiety: a role for the nucleus accumbens. NeuroImage 62: 189–198. doi: 10.1016/j.neuroimage.2012.04.059
![]() |
[18] | Parkinson JA, Olmstead MC, Burns LH, et al. (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J Neurosci Off J Soc Neurosc i 19: 2401–2411. |
[19] |
Feja M, Hayn L, Koch M (2014) Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 54: 31–42. doi: 10.1016/j.pnpbp.2014.04.012
![]() |
[20] | Fernando ABP, Murray JE, Milton AL (2013) The amygdala: securing pleasure and avoiding pain. Front Behav Neurosci 7: 190. |
[21] | Di Ciano P, Cardinal RN, Cowell RA, et al. (2001) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J Neurosci Off J Soc Neurosci 21: 9471–9477. |
[22] |
Parkinson JA, Willoughby PJ, Robbins TW, et al. (2000) Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav Neurosci 114: 42–63. doi: 10.1037/0735-7044.114.1.42
![]() |
[23] |
Saunders BT, Robinson TE (2012) The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci 36: 2521–2532. doi: 10.1111/j.1460-9568.2012.08217.x
![]() |
[24] |
Stopper CM, Floresco SB (2011) Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn Affect Behav Neurosci 11: 97–112. doi: 10.3758/s13415-010-0015-9
![]() |
[25] |
Deutch AY, Lee MC, Iadarola MJ (1992) Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: The nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 3: 332–341. doi: 10.1016/1044-7431(92)90030-6
![]() |
[26] |
Ma J, Ye N, Cohen BM (2006) Typical and atypical antipsychotic drugs target dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa and neurotensin-containing neurons, but not GABAergic interneurons in the shell of nucleus accumbens of ventral striatum. Neuroscience 141: 1469–1480. doi: 10.1016/j.neuroscience.2006.05.013
![]() |
[27] | Pierce RC, Kalivas PW (1995) Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J Pharmacol Exp Ther 275: 1019–1029. |
[28] |
Park SY, Kang UG (2013) Hypothetical dopamine dynamics in mania and psychosis--its pharmacokinetic implications. Prog Neuropsychopharmacol Biol Psychiatry 43: 89–95. doi: 10.1016/j.pnpbp.2012.12.014
![]() |
[29] |
Mosholder AD, Gelperin K, Hammad TA, et al. (2009) Hallucinations and other psychotic symptoms associated with the use of attention-deficit/hyperactivity disorder drugs in children. Pediatrics 123: 611–616. doi: 10.1542/peds.2008-0185
![]() |
[30] | Bassareo V, De Luca MA, Di Chiara G (2002) Differential Expression of Motivational Stimulus Properties by Dopamine in Nucleus Accumbens Shell versus Core and Prefrontal Cortex. J Neurosci Off J Soc Neurosci 22: 4709–4719. |
[31] |
Di Chiara G, Bassareo V, Fenu S, et al. (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47: 227–241. doi: 10.1016/j.neuropharm.2004.06.032
![]() |
[32] |
Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn't do. Curr Opin Pharmacol 7: 69–76. doi: 10.1016/j.coph.2006.11.003
![]() |
[33] |
Basar K, Sesia T, Groenewegen H, et al. (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92: 533–557. doi: 10.1016/j.pneurobio.2010.08.007
![]() |
[34] |
Ahima RS, Harlan RE (1990) Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 39: 579–604. doi: 10.1016/0306-4522(90)90244-X
![]() |
[35] |
Barrot M, Marinelli M, Abrous DN, et al. (2000) The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent. Eur J Neurosci 12: 973–979. doi: 10.1046/j.1460-9568.2000.00996.x
![]() |
[36] |
Piazza PV, Rougé-Pont F, Deroche V, et al. (1996) Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission. Proc Natl Acad Sci U S A 93: 8716–8720. doi: 10.1073/pnas.93.16.8716
![]() |
[37] |
van der Knaap LJ, Oldehinkel AJ, Verhulst FC, et al. (2015) Glucocorticoid receptor gene methylation and HPA-axis regulation in adolescents. The TRAILS study. Psychoneuroendocrinology 58: 46–50. doi: 10.1016/j.psyneuen.2015.04.012
![]() |
[38] |
Bustamante AC, Aiello AE, Galea S, et al. (2016) Glucocorticoid receptor DNA methylation, childhood maltreatment and major depression. J Affect Disord 206: 181–188. doi: 10.1016/j.jad.2016.07.038
![]() |
[39] | Roozendaal B, de Quervain DJ, Ferry B, et al. (2001) Basolateral amygdala-nucleus accumbens interactions in mediating glucocorticoid enhancement of memory consolidation. J Neurosci Off J Soc Neurosci 21: 2518–2525. |
[40] |
Schwarzer C, Berresheim U, Pirker S, et al. (2001) Distribution of the major gamma-aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol 433: 526–549. doi: 10.1002/cne.1158
![]() |
[41] |
Van Bockstaele EJ, Pickel VM (1995) GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res 682: 215–221. doi: 10.1016/0006-8993(95)00334-M
![]() |
[42] |
Root DH, Melendez RI, Zaborszky L, et al. (2015) The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130: 29–70. doi: 10.1016/j.pneurobio.2015.03.005
![]() |
[43] |
Cho YT, Fromm S, Guyer AE, et al. (2013) Nucleus accumbens, thalamus and insula connectivity during incentive anticipation in typical adults and adolescents. NeuroImage 66: 508–521. doi: 10.1016/j.neuroimage.2012.10.013
![]() |
[44] |
Kelley AE, Baldo BA, Pratt WE, et al. (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86: 773–795. doi: 10.1016/j.physbeh.2005.08.066
![]() |
[45] | Rada PV, Mark GP, Hoebel BG (1993) In vivo modulation of acetylcholine in the nucleus accumbens of freely moving rats: II. Inhibition by gamma-aminobutyric acid. Brain Res 619: 105–110. |
[46] |
Wong LS, Eshel G, Dreher J, et al. (1991) Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens. Pharmacol Biochem Behav 38: 829–835. doi: 10.1016/0091-3057(91)90250-6
![]() |
[47] |
Pitman KA, Puil E, Borgland SL (2014) GABA(B) modulation of dopamine release in the nucleus accumbens core. Eur J Neurosci 40: 3472–3480. doi: 10.1111/ejn.12733
![]() |
[48] | Kim JH, Vezina P (1997) Activation of metabotropic glutamate receptors in the rat nucleus accumbens increases locomotor activity in a dopamine-dependent manner. J Pharmacol Exp Ther 283: 962–968. |
[49] |
Angulo JA, McEwen BS (1994) Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res Brain Res Rev 19: 1–28. doi: 10.1016/0165-0173(94)90002-7
![]() |
[50] |
Vezina P, Kim JH (1999) Metabotropic glutamate receptors and the generation of locomotor activity: interactions with midbrain dopamine. Neurosci Biobehav Rev 23: 577–589. doi: 10.1016/S0149-7634(98)00055-4
![]() |
[51] | Khamassi M, Humphries MD (2012) Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front Behav Neurosci 6: 79. |
[52] |
Williams MJ, Adinoff B (2008) The role of acetylcholine in cocaine addiction. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 33: 1779–1797. doi: 10.1038/sj.npp.1301585
![]() |
[53] |
Avena NM, Bocarsly ME (2012) Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa. Neuropharmacology 63: 87–96. doi: 10.1016/j.neuropharm.2011.11.010
![]() |
[54] |
Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci Off J Soc Neurosci 27: 8161–8165. doi: 10.1523/JNEUROSCI.1554-07.2007
![]() |
[55] |
Liljeholm M, O'Doherty JP (2012) Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn Sci 16: 467–475. doi: 10.1016/j.tics.2012.07.007
![]() |
[56] |
Asaad WF, Eskandar EN (2011) Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J Neurosci Off J Soc Neurosci 31: 17772–17787. doi: 10.1523/JNEUROSCI.3793-11.2011
![]() |
[57] |
Burton AC, Nakamura K, Roesch MR (2015) From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making. Neurobiol Learn Mem 117: 51–59. doi: 10.1016/j.nlm.2014.05.003
![]() |
[58] |
Mattfeld AT, Gluck MA, Stark CEL (2011) Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learn Mem Cold Spring Harb N 18: 703–711. doi: 10.1101/lm.022889.111
![]() |
[59] |
Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56: 27–78. doi: 10.1016/j.brainresrev.2007.05.004
![]() |
[60] |
Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459: 837–841. doi: 10.1038/nature08028
![]() |
[61] |
Gottfried JA, O'Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301: 1104–1107. doi: 10.1126/science.1087919
![]() |
[62] | Stefani MR, Moghaddam B (2016) Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum. J Neurosci Off J Soc Neurosci 26: 8810–8818. |
[63] | Castro DC, Cole SL, Berridge KC (2015) Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 9: 90. |
[64] | Peciña S, Smith KS, Berridge KC (2006) Hedonic hot spots in the brain. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 12: 500–511. |
[65] |
Smith KS, Berridge KC, Aldridge JW (2011) Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A 108: E255-264. doi: 10.1073/pnas.1101920108
![]() |
[66] |
Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28: 309–369. doi: 10.1016/S0165-0173(98)00019-8
![]() |
[67] |
Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci Off J Soc Neurosci 27: 1594–1605. doi: 10.1523/JNEUROSCI.4205-06.2007
![]() |
[68] | Belujon P, Grace AA (2016) Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann N Y Acad Sci 1216: 114–121. |
[69] |
Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 32: 1433–1451. doi: 10.1038/sj.npp.1301263
![]() |
[70] |
Everitt BJ, Hutcheson DM, Ersche KD, et al. (2007) The orbital prefrontal cortex and drug addiction in laboratory animals and humans. Ann N Y Acad Sci 1121: 576–597. doi: 10.1196/annals.1401.022
![]() |
[71] |
Britt JP, Benaliouad F, McDevitt RA, et al. (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76: 790–803. doi: 10.1016/j.neuron.2012.09.040
![]() |
[72] |
Asher A, Lodge DJ (2012) Distinct prefrontal cortical regions negatively regulate evoked activity in nucleus accumbens subregions. Int J Neuropsychopharmacol 15: 1287–1294. doi: 10.1017/S146114571100143X
![]() |
[73] |
Ishikawa A, Ambroggi F, Nicola SM, et al. (2008) Dorsomedial prefrontal cortex contribution to behavioral and nucleus accumbens neuronal responses to incentive cues. J Neurosci Off J Soc Neurosci 28: 5088–5098. doi: 10.1523/JNEUROSCI.0253-08.2008
![]() |
[74] |
Connolly L, Coveleskie K, Kilpatrick LA, et al. (2013) Differences in brain responses between lean and obese women to a sweetened drink. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 25: 579–e460. doi: 10.1111/nmo.12125
![]() |
[75] |
Robbins TW, Ersche KD, Everitt BJ (2008) Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 1141: 1–21. doi: 10.1196/annals.1441.020
![]() |
[76] | Müller CP (2013) Episodic memories and their relevance for psychoactive drug use and addiction. Front Behav Neurosci 7: 34. |
[77] |
Naqvi NH, Bechara A (2010) The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct Funct 214: 435–450. doi: 10.1007/s00429-010-0268-7
![]() |
[78] |
Satterthwaite TD, Kable JW, Vandekar L, et al. (2015) Common and Dissociable Dysfunction of the Reward System in Bipolar and Unipolar Depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 40: 2258–2268. doi: 10.1038/npp.2015.75
![]() |
[79] |
Surguladze S, Brammer MJ, Keedwell P, et al. (2005) A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biol Psychiatry 57: 201–209. doi: 10.1016/j.biopsych.2004.10.028
![]() |
[80] |
Elliott R, Rubinsztein JS, Sahakian BJ, et al. (2002) The neural basis of mood- congruent processing biases in depression. Arch Gen Psychiatry 59: 597–604. doi: 10.1001/archpsyc.59.7.597
![]() |
[81] |
Keedwell PA, Andrew C, Williams SCR, et al. (2005) A double dissociation of ventromedial prefrontal cortical responses to sad and happy stimuli in depressed and healthy individuals. Biol Psychiatry 58: 495–503. doi: 10.1016/j.biopsych.2005.04.035
![]() |
[82] |
Yurgelun-Todd DA, Gruber SA, Kanayama G, et al. (2000) fMRI during affect discrimination in bipolar affective disorder. Bipolar Disord 2: 237–248. doi: 10.1034/j.1399-5618.2000.20304.x
![]() |
[83] |
Caseras X, Murphy K, Lawrence NS, et al. (2015) Emotion regulation deficits in euthymic bipolar I versus bipolar II disorder: a functional and diffusion-tensor imaging study. Bipolar Disord 17: 461–470. doi: 10.1111/bdi.12292
![]() |
[84] |
Redlich R, Dohm K, Grotegerd D, et al. (2015) Reward Processing in Unipolar and Bipolar Depression: A Functional MRI Study. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 40: 2623–2631. doi: 10.1038/npp.2015.110
![]() |
[85] |
Namburi P, Beyeler A, Yorozu S, et al. (2015) A circuit mechanism for differentiating positive and negative associations. Nature 520: 675–678. doi: 10.1038/nature14366
![]() |
[86] |
Mahon K, Burdick KE, Szeszko PR (2010) A Role for White Matter Abnormalities in the Pathophysiology of Bipolar Disorder. Neurosci Biobehav Rev 34: 533–554. doi: 10.1016/j.neubiorev.2009.10.012
![]() |
[87] |
Franklin TR, Wang Z, Wang J, et al. (2007) Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 32: 2301–2309. doi: 10.1038/sj.npp.1301371
![]() |
[88] | Garavan H, Pankiewicz J, Bloom A, et al. (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157(11): 1789–1798. |
[89] |
Diekhof EK, Falkai P, Gruber O (2008) Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Res Rev 59: 164–184. doi: 10.1016/j.brainresrev.2008.07.004
![]() |
[90] |
White NM, Packard MG, McDonald RJ (2013) Dissociation of memory systems: The story unfolds. Behav Neurosci 127: 813–834. doi: 10.1037/a0034859
![]() |
[91] |
Wrase J, Schlagenhauf F, Kienast T, et al. (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage 35: 787–794. doi: 10.1016/j.neuroimage.2006.11.043
![]() |
[92] |
Drevets WC, Gautier C, Price JC, et al. (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49: 81–96. doi: 10.1016/S0006-3223(00)01038-6
![]() |
[93] | Ding YS, Logan J, Bermel R, et al. (2000) Dopamine receptor-mediated regulation of striatal cholinergic activity: positron emission tomography studies with norchloro[18F]fluoroepibatidine. J Neurochem 74: 1514–1521. |
[94] |
Greenberg BD, Gabriels LA, Malone DA, et al. (2010) Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry 15: 64–79. doi: 10.1038/mp.2008.55
![]() |
[95] |
Denys D, Mantione M, Figee M, van den Munckhof P, et al. (2010) Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 67: 1061-1068. doi: 10.1001/archgenpsychiatry.2010.122
![]() |
[96] |
Scott DJ, Stohler CS, Egnatuk CM, et al. (2008) Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry 65: 220–231. doi: 10.1001/archgenpsychiatry.2007.34
![]() |