The role of gamma-band synchronization and NMDA receptors in cognitive functions and neuropsychiatric disorders has received increased attention over the past two decades, with significant controversy about their roles. The role of the cortical column as a basic unit in cortical processing has also been debated. The current paper presents the theoretical argument that the dynamically formed column is the binary unit (bit) involved in all cortical processing and memory, and that gamma-band synchronization is required for columnar formation. Moreover, the role of NMDA receptors is explained as allowing the consolidation of synchronized boundary minicolumns that serve as the bit, as well as strengthening the connections among the circuit of columns that are involved with any given memory. Following a discussion of the microcircuitry that may be involved, there is a brief discussion on how the serious neuropsychiatric disorders of schizophrenia, autism, and Alzheimer’s disease can be conceptualized as disorders of disrupted column formation. The arguments presented provide a theoretical basis for future research to determine the validity of this novel view.
Citation: Robert A. Moss, Jarrod Moss. The Role of Dynamic Columns in Explaining Gamma-band Synchronization and NMDA Receptors in Cognitive Functions[J]. AIMS Neuroscience, 2014, 1(1): 65-88. doi: 10.3934/Neuroscience.2014.1.65
[1] | Joseph L. Shomberg . Well-posedness and global attractors for a non-isothermal viscous relaxationof nonlocal Cahn-Hilliard equations. AIMS Mathematics, 2016, 1(2): 102-136. doi: 10.3934/Math.2016.2.102 |
[2] | Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko . Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123 |
[3] | Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels . Distributed optimal control of a nonstandard nonlocal phase field system. AIMS Mathematics, 2016, 1(3): 225-260. doi: 10.3934/Math.2016.3.225 |
[4] | Dieunel DOR . On the modified of the one-dimensional Cahn-Hilliard equation with a source term. AIMS Mathematics, 2022, 7(8): 14672-14695. doi: 10.3934/math.2022807 |
[5] | Aymard Christbert Nimi, Daniel Moukoko . Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term. AIMS Mathematics, 2020, 5(2): 1383-1399. doi: 10.3934/math.2020095 |
[6] | Martin Stoll, Hamdullah Yücel . Symmetric interior penalty Galerkin method for fractional-in-space phase-field equations. AIMS Mathematics, 2018, 3(1): 66-95. doi: 10.3934/Math.2018.1.66 |
[7] | Taishi Motoda . Time periodic solutions of Cahn-Hilliard systems with dynamic boundary conditions. AIMS Mathematics, 2018, 3(2): 263-287. doi: 10.3934/Math.2018.2.263 |
[8] | Mingliang Liao, Danxia Wang, Chenhui Zhang, Hongen Jia . The error analysis for the Cahn-Hilliard phase field model of two-phase incompressible flows with variable density. AIMS Mathematics, 2023, 8(12): 31158-31185. doi: 10.3934/math.20231595 |
[9] | Alain Miranville . The Cahn–Hilliard equation and some of its variants. AIMS Mathematics, 2017, 2(3): 479-544. doi: 10.3934/Math.2017.2.479 |
[10] | Scala Riccardo, Schimperna Giulio . On the viscous Cahn-Hilliard equation with singular potential and inertial term. AIMS Mathematics, 2016, 1(1): 64-76. doi: 10.3934/Math.2016.1.64 |
The role of gamma-band synchronization and NMDA receptors in cognitive functions and neuropsychiatric disorders has received increased attention over the past two decades, with significant controversy about their roles. The role of the cortical column as a basic unit in cortical processing has also been debated. The current paper presents the theoretical argument that the dynamically formed column is the binary unit (bit) involved in all cortical processing and memory, and that gamma-band synchronization is required for columnar formation. Moreover, the role of NMDA receptors is explained as allowing the consolidation of synchronized boundary minicolumns that serve as the bit, as well as strengthening the connections among the circuit of columns that are involved with any given memory. Following a discussion of the microcircuitry that may be involved, there is a brief discussion on how the serious neuropsychiatric disorders of schizophrenia, autism, and Alzheimer’s disease can be conceptualized as disorders of disrupted column formation. The arguments presented provide a theoretical basis for future research to determine the validity of this novel view.
In recent years there has been an increased focus on the mathematical modelling and analysis of tumour growth. Many new models have been proposed and numerical simulations have been carried out to provide new and important insights on cancer research, see for instance [8] and [13, Chap. 3]. In this work we analyse a diffuse interface model proposed in [20], which models a mixture of tumour cells and healthy cells in the presence of an unspecified chemical species acting as a nutrient. More precisely, for a bounded domain $\Omega \subset {\mathbb{R}^d}$ where the cells reside and T > 0, we consider the following set of equations,
$divv=ΓvinΩ×(0,T)=:Q,$ | (1.1a) |
$v = - K(\nabla p - (\mu + \chi \sigma )\nabla \varphi ){\text{ in }}Q, $ | (1.1b) |
${\partial _t}\varphi + {\text{div}}(\varphi v) = {\text{div}}(m(\varphi )\nabla \mu ) + {\Gamma _\varphi }{\text{ in }}Q, $ | (1.1c) |
$\mu = A\Psi '(\varphi ) - B\Delta \varphi - \chi \sigma {\text{ in }}Q, $ | (1.1d) |
${\partial _t}\sigma + {\text{div}}(\sigma v) = {\text{div}}(n(\varphi )(D\nabla \sigma - \chi \nabla \varphi )) - \mathcal{S}{\text{ in }}Q.$ | (1.1e) |
Here, ${v}$ denotes the volume-averaged velocity of the mixture, $p$ denotes the pressure, $\sigma$ denotes the concentration of the nutrient, $\varphi \in [-1, 1]$ denotes the difference in volume fractions, with $\{\varphi = 1\}$ representing the unmixed tumour tissue, and $\{\varphi = -1\}$ representing the surrounding healthy tissue, and $\mu$ denotes the chemical potential for $\varphi$.
The model treats the tumour and healthy cells as inertia-less fluids, leading to the appearance of a Darcy-type subsystem with a source term $\Gamma_{{v}}$. The order parameter $\varphi$ satisfies a convective Cahn--Hilliard type equation with additional source term $\Gamma_{\varphi}$, and similarly, the nutrient concentration $\sigma$ satisfies a convection-reaction-diffusion equation with a non-standard flux and a source term $\mathcal{S}$. We refer the reader to [20, x2] for the derivation from thermodynamic principles, and to [20, x2.5] for a discussion regarding the choices for the source terms $\Gamma_{\varphi}, \Gamma_{{v}}$ and $\mathcal{S}$.
The positive constants $K$ and $D$ denote the permeability of the mixture and the diffusivity of the nutrient, $m(\varphi)$ and $n(\varphi)$ are positive mobilities for $\varphi$ and $\sigma$, respectively. The parameter $\chi \geq 0$ regulates the chemotaxis effect (see [20] for more details), $\Psi(\cdot)$ is a potential with two equal minima at $\pm 1$, $A$ and $B$ denote two positive constants related to the thickness of the diffuse interface and the surface tension.
We supplement the above with the following boundary and initial conditions
${\partial _n}\varphi = {\partial _n}\mu = 0{\text{ on }}\partial \Omega \times (0, T) = :\Sigma , $ | (1.2a) |
$v \cdot n = {\partial _n}p = 0{\text{ on }}\Sigma , $ | (1.2b) |
$n(\varphi )D{\partial _n}\sigma = b({\sigma _\infty } - \sigma ){\text{ on }}\Sigma , $ | (1.2c) |
$\varphi (0) = {\varphi _0}, \quad \sigma (0) = {\sigma _0}{\text{ on }}\Omega .$ | (1.2d) |
Here $\varphi_{0}$, $\sigma_{0}$ and $\sigma_{\infty}$ are given functions and $b > 0$ is a constant. We denote ${\partial _n} f := \nabla f \cdot {n}$ as the normal derivative of $f$ at the boundary $\partial \Omega$, where ${n}$ is the outer unit normal. Associated to (1.1) is the free energy density $N(\varphi, \sigma)$ for the nutrient, which is defined as
$N(\varphi , \sigma ): = \frac{D}{2}{\left| \sigma \right|^2} + \chi \sigma (1 - \varphi ).$ | (1.3) |
Note that
${N_{, \sigma }}: = \frac{{\partial N}}{{\partial \sigma }} = D\sigma + \chi (1 - \varphi ), \quad {N_{, \varphi }}: = \frac{{\partial N}}{{\partial \varphi }} = - \chi \sigma , $ |
so that (1.1) may also be written as
${\text{div}} v = {\Gamma _v}, $ | (1.4a) |
$v = - K(\nabla p - \mu \nabla \varphi + {N_{, \varphi }}\nabla \varphi ), $ | (1.4b) |
${\partial _t}\varphi + {\text{div}}(\varphi v) = {\text{div}}(m(\varphi )\nabla \mu ) + {\Gamma _\varphi }, $ | (1.4c) |
$\mu = A\Psi '(\varphi ) - B\Delta \varphi + {N_{, \varphi }}, $ | (1.4d) |
${\partial _t}\sigma + {\text{div}}(\sigma v) = {\text{div}}(n(\varphi )\nabla {N_{, \sigma }}) - \mathcal{S}, $ | (1.4e) |
which is the general phase field model proposed in [20]. In this work we do not aim to analyse such a model with a general free energy density $N(\varphi, \sigma)$, but we will focus solely on the choice (1.3) and the corresponding model (1.1)-(1.2).
Our goal in this work is to prove the existence of weak solutions (see Definition 2.1 below) of (1.1)-(1.2) in two and three dimensions. Moreover, one might expect that by setting $\Gamma_{{v}} = 0$ and then sending $b \to 0$ and $K \to 0$, the weak solutions to (1.1)-(1.2) will converge (in some appropriate sense) to the weak solutions of
${\partial _t}\varphi = {\text{div}}(m(\varphi )\nabla \mu ) + {\Gamma _\varphi }{\text{ in }}Q, $ | (1.5a) |
$\mu = A\Psi '(\varphi ) - B\Delta \varphi - \chi \sigma {\text{ in }}Q, $ | (1.5b) |
${\partial _t}\sigma = {\text{div}}(n(\varphi )(D\nabla \sigma - \chi \nabla \varphi )) - \mathcal{S}{\text{ in }}Q, $ | (1.5c) |
$0 = {\partial _n}\varphi = {\partial _n}\mu = {\partial _n}\sigma {\text{ on }}\Sigma .$ | (1.5d) |
We denote (1.5) as the limit system of vanishing permeability, where the effects of the volume-averaged velocity are neglected. By substituting
$\Gamma_{\varphi} = \mathcal{S} = f(\varphi)(D \sigma + \chi(1-\varphi) - \mu)$ | (1.6) |
for some non-negative function $f(\varphi)$ leads to the model derived in [21]. The specific choices for $\Gamma_{\varphi}$ and $\mathcal{S}$ in (1.6) are motivated by linear phenomenological laws for chemical reactions. The analysis of (1.5) with the parameters
$D = 1, \quad \chi = 0, \quad n(\varphi) = m(\varphi) = 1$ |
has been the subject of study in [5, 6, 7, 16], where well-posedness and long-time behaviour have been established for a large class of functions $\Psi(\varphi)$ and $f(\varphi)$. Alternatively, one may consider the following choice of source terms
$\Gamma_{\varphi} = h(\varphi)(\lambda_{p} \sigma - \lambda_{a}), \quad \mathcal{S} = \lambda_{c} h(\varphi) \sigma, $ | (1.7) |
where $\lambda_{p}$, $\lambda_{a}$, $\lambda_{c}$ are non-negative constants representing the tumour proliferation rate, the apoptosis rate, and the nutrient consumption rate, respectively, and $h(\varphi)$ is a non-negative interpolation function such that $h(-1) = 0$ and $h(1) = 1$. The above choices for $\Gamma_{\varphi}$ and $\mathcal{S}$ are motivated from the modelling of processes experienced by a young tumour.
The well-posedness of model (1.5) with the choice (1.7) has been studied by the authors in [17] and [18] with the boundary conditions (1.2) (neglecting (1.2b)) in the former and for non-zero Dirichlet boundary conditions in the latter. It has been noted in [17] that the well-posedness result with the boundary conditions (1.2) requires $\Psi$ to have at most quadratic growth, which is attributed to the presence of the source term $\Gamma_{\varphi} \mu = h(\varphi) \mu (\lambda_{p} \sigma - \lambda_{a})$ when deriving useful a priori estimates. Meanwhile in [18] the Dirichlet boundary conditions and the application of the Poincaré inequality allows us to overcome this restriction and allow for $\Psi$ to be a regular potential with polynomial growth of order less than 6, and by a Yosida approximation, the case where $\Psi$ is a singular potential is also covered.
We also mention the work of [19] that utilises a Schauder's fixed point argument to show existence of weak solutions for $\Psi$ with quartic growth and $\Gamma_{\varphi}, \mathcal{S}$ as in (1.7). This is based on first deducing that $\sigma$ is bounded by a comparison principle, leading to $\Gamma_{\varphi} \in L^{\infty}(\Omega)$. Then, the standard a priori estimates are derived for a Cahn--Hilliard equation with bounded source terms. The difference between [19] and [17, 18] is the absence of the chemotaxis and active transport mechanisms, i.e., $\chi = 0$, so that the comparison principle can be applied to the nutrient equation. We refer to [9] for the application of a similar procedure to a multi-species tumour model with logarithmic potentials.
On the other hand, by sending $b \to 0$ and $\chi \to 0$ in (1.1), we should obtain weak solutions of
${\text{div}} v = {\Gamma _v}{\text{ in }}Q, $ | (1.8a) |
$v = - K(\nabla p - \mu \nabla \varphi ){\text{ in }}Q, $ | (1.8b) |
${\partial _t}\varphi + {\text{div}} (\varphi v) = {\text{div}}(m(\varphi )\nabla \mu ) + {\Gamma _\varphi }{\text{ in }}Q, $ | (1.8c) |
$\mu = A\Psi '(\varphi ) - B\Delta \varphi {\text{ in }}Q, $ | (1.8d) |
${\partial _t}\sigma + {\text{div}}(\sigma v) = {\text{div}}(n(\varphi )D\nabla \sigma ) - \mathcal{S}{\text{ in }}Q, $ | (1.8e) |
$0 = {\partial _n}\varphi = {\partial _n}\mu = {\partial _n}\sigma = v \cdot n{\text{ on }}\Sigma .$ | (1.8f) |
We denote (1.8) as the limit system of vanishing chemotaxis. If the source terms $\Gamma_{{v}}$ and $\Gamma_{\varphi}$ are independent of $\sigma$, then (1.8) consists of an independent Cahn--Hilliard--Darcy system and an equation for $\sigma$ which is advected by the volume-averaged velocity field ${v}$. In the case where there is no nutrient and source terms, i.e., $\sigma = \Gamma_{{v}} = \Gamma_{\varphi} = 0$, global existence of weak solutions in two and three dimensions has been established in [14] via the convergence of a fully discrete and energy stable implicit finite element scheme. For the well-posedness and long-time behaviour of strong solutions, we refer to [25]. Meanwhile, in the case where $\Gamma_{{v}} = \Gamma_{\varphi}$ is prescribed, global weak existence and local strong well-posedness for (1.8) without nutrient is shown in [22].
We also mention the work of [3] on the well-posedness and long-time behaviour of a related system also used in tumour growth, known as the Cahn--Hilliard--Brinkman system, where in (1.8) without nutrient an additional viscosity term is added to the left-hand side of the velocity equation (1.8b) and the mass exchange terms $\Gamma_{{v}}$ and $\Gamma_{\varphi}$ are set to zero. The well-posedness of a nonlocal variant of the Cahn--Hilliard--Brinkman system has been investigated in [10]. Furthermore, when $K$ is a function depending on $\varphi$, the model (1.8) with $\sigma = \Gamma_{{v}} = \Gamma_{\varphi} = 0$ is also referred to as the Hele--Shaw--Cahn--Hilliard model (see [23, 24]). In this setting, $K(\varphi)$ represents the reciprocal of the viscosity of the fluid mixture. We refer to [30] concerning the strong well-posedness globally in time for two dimensions and locally in time for three dimensions when $\Omega$ is the $d$-dimensional torus. Global well-posedness in three dimensions under additional assumptions and long-time behaviour of solutions to the Hele--Shaw--Cahn--Hilliard model are investigated in [29].
We point out that from the derivation of (1.1) in [20], the source terms $\Gamma_{{v}}$ and $\Gamma_{\varphi}$ are connected in the sense that $\Gamma_{{v}}$ is related to sum of the mass exchange terms for the tumour and healthy cells, and $\Gamma_{\varphi}$ is related to the difference between the mass exchange terms. Thus, if $\Gamma_{\varphi}$ would depend on the primary variables $\varphi$, $\sigma$ or $\mu$, then one expects that $\Gamma_{{v}}$ will also depend on the primary variables. Here, we are able to prove existence of weak solutions for $\Gamma_{\varphi}$ of the form (2.1), which generalises the choices (1.6) and (1.7), but in exchange $\Gamma_{{v}}$ has to be considered as a prescribed function. This is attributed to the presence of the source term ${\Gamma _v}\left( {\varphi \mu + \frac{D}{2}{{\left| \sigma \right|}^2}} \right)$ when deriving useful a priori estimates. We see that if $\Gamma_{{v}}$ depends on the primary variables, we obtain triplet products which cannot be controlled by the usual regularity of $\varphi$, $\mu$ and $\sigma$ in the absence of a priori estimates.
In this work we attempt to generalise the weak existence results for the models studied in [5, 16, 17, 18, 22, 25] by proving that the weak solutions of (1.1) with $\Gamma_{{v}} = 0$ converge (in some appropriate sense) to the weak solutions of (1.5) as $b \to 0$ and $K \to 0$, and the weak solutions of (1.1) converge to the weak solutions of (1.8) as $b \to 0$ and $\chi \to 0$.
This paper is organised as follows. In Section 2 we state the main assumptions and the main results. In Section 3 we introduce a Galerkin procedure and derive some a priori estimates for the Galerkin ansatz in Section 4 for the case of three dimensions. We then pass to the limit in Section 5 to deduce the existence result for three dimensions, while in Section 6 we investigate the asymptotic behaviour of solutions to (1.1) as $K \to 0$ and $\chi \to 0$. In Section 7, we outline the a priori estimates for two dimensions and show that the weak solutions for two dimensions yields better temporal regularity than the weak solutions for three dimensions. In Section 8 we discuss some of the issues present in the analysis of (1.1) using different formulations of Darcy's law and the pressure, and with different boundary conditions for the velocity and the pressure.
Notation. For convenience, we will often use the notation $L^{p} := L^{p}(\Omega)$ and $W^{k, p} := W^{k, p}(\Omega)$ for any $p \in [1, \infty]$, $k > 0$ to denote the standard Lebesgue spaces and Sobolev spaces equipped with the norms ${\left\| \cdot \right\|_{{L^p}}}$ and $\left\| \cdot \right\|_{W^{k, p}}$. In the case $p = 2$ we use $H^{k} := W^{k, 2}$ and the norm $\left\| \cdot \right\|_{H^{k}}$. For the norms of Bochner spaces, we will use the notation $L^{p}(X) := L^{p}(0, T;X)$ for Banach space $X$ and $p \in [1, \infty]$. Moreover, the dual space of a Banach space $X$ will be denoted by $X^{*}$, and the duality pairing between $X$ and $X^{*}$ is denoted by ${\left\langle { \cdot , \cdot } \right\rangle _{X, {X^*}}}$. For $d = 2$ or $3$, let $\mathcal{H}^{d-1}$ denote the $(d-1)$ dimensional Hausdorff measure on $\partial \Omega$, and we denote ${\mathbb{R}^d}$-valued functions and any function spaces consisting of vector-valued/tensor-valued functions in boldface. We will use the notation D${f}$ to denote the weak derivative of the vector function ${f}$.
Useful preliminaries. For convenience, we recall the Poincaré inequality: There exists a positive constant $C_{p}$ depending only on $\Omega$ such that, for all $f \in H^{1}$,
${\left\| {f - \bar f} \right\|_{{L^2}}} \leq {C_p}{\left\| {\nabla f} \right\|_{{L^2}}}, $ | (1.9) |
where $\bar f: = \frac{1}{{\left| \Omega \right|}}\int_\Omega f {\text{ dx}}$ denotes the mean of $f$. The Gagliardo--Nirenberg interpolation inequality in dimension $d$ is also useful (see [15, Thm. 10.1, p. 27], [11, Thm. 2.1] and [1, Thm. 5.8]): Let $\Omega$ be a bounded domain with Lipschitz boundary, and $f \in W^{m, r} \cap L^{q}$, $1 \leq q, r \leq \infty$. For any integer $j$, $0 \leq j < m$, suppose there is $\alpha \in \mathbb{R}$ such that
$\frac{1}{p} = \frac{j}{d} + \left ( \frac{1}{r} - \frac{m}{d} \right ) \alpha + \frac{1-\alpha}{q}, \quad \frac{j}{m} \leq \alpha \leq 1.$ |
Then, there exists a positive constant $C$ depending only on $\Omega$, $m$, $j$, $q$, $r$, and $\alpha$ such that
${\left\| {{D^j}f} \right\|_{{L^p}}} \leq C\left\| f \right\|_{{W^{m, r}}}^\alpha \left\| f \right\|_{{L^q}}^{1 - \alpha }.$ | (1.10) |
We will also use the following Gronwall inequality in integral form (see [17, Lem. 3.1] for a proof): Let $\alpha, \beta, u$ and $v$ be real-valued functions defined on $[0, T]$. Assume that $\alpha$ is integrable, $\beta$ is non-negative and continuous, $u$ is continuous, $v$ is non-negative and integrable. If $u$ and $v$ satisfy the integral inequality
$u(s) + \int_0^s v (t){\text{ dt}} \leq \alpha (s) + \int_0^s \beta (t)u(t){\text{ dt}}\quad {\text{ for }}s \in (0, T], $ |
then it holds that
$u(s) + \int_0^s v (t){\text{ dt}} \leq \alpha (s) + \int_0^s \beta (t)\alpha (t)\exp \left( {\int_0^t \beta (r){\text{ dr}}} \right){\text{ dt}}.$ | (1.11) |
To analyse the Darcy system, we introduce the spaces
$L20:={f∈L2:ˉf=0},H2N:={f∈H2:∂nf=0 on ∂Ω},(H1)∗0:={f∈(H1)∗:⟨f,1⟩H1=0}. $ |
Then, the Neumann-Laplacian operator $-\Delta _{N} : H^{1} \cap L^{2}_{0} \to (H^{1})^{*}_{0}$ is positively defined and self-adjoint. In particular, by the Lax--Milgram theorem and the Poincaré inequality (1.9) with zero mean, the inverse operator $(-\Delta _{N})^{-1} : (H^{1})^{*}_{0} \to H^{1} \cap L^{2}_{0}$ is well-defined, and we set $u := (-\Delta _{N})^{-1}f$ for $f \in (H^{1})^{*}_{0}$ if $\bar u = 0$ and
$- \Delta u = f{\text{ in }}\Omega , \quad {\text{ }}{\partial _n}u = 0{\text{ on }}\partial \Omega .$ |
We make the following assumptions.
Assumption 2.1.
(A1) The constants A, B, K, D, $\chi$ and b are positive and fixed.
(A2) The mobilities m, n are continuous on $\mathbb{R}$ and satisfy
${m_0} \leq m(t) \leq {m_1}, {\text{ }}\quad {n_0} \leq n(t) \leq {n_1}\quad \forall t \in \mathbb{R}, $ |
for positive constants m0, m1, n0 and n1.
(A3) $\Gamma_{\varphi}$ and $\mathcal{S}$ are of the form
$Γφ(φ,μ,σ)=Λφ(φ,σ)−Θφ(φ,σ)μ,S(φ,μ,σ)=ΛS(φ,σ)−ΘS(φ,σ)μ, $ | (2.1) |
where $\Theta_{\varphi}, \Theta_{S} : \mathbb{R}^{2} \to \mathbb{R}$ are continuous bounded functions with $\Theta_{\varphi}$ non-negative, and $\Lambda_{\varphi}, \Lambda_{S} : \mathbb{R}^{2} \to \mathbb{R}$ are continuous with linear growth
$\left| {{\Theta _i}(\varphi , \sigma )} \right| \leq {R_0}, {\text{ }}\quad {\text{ }}\left| {{\Lambda _i}(\varphi , \sigma )} \right| \leq {R_0}(1 + \left| \varphi \right| + \left| \sigma \right|)\quad {\text{ for }}i \in \{ \varphi , S\} , $ | (2.2) |
so that
$\left| {{\Gamma _\varphi }} \right| + \left| \mathcal{S} \right| \leq {R_0}(1 + \left| \varphi \right| + \left| \mu \right| + \left| \sigma \right|), $ | (2.3) |
for some positive constant R0.
(A4) $\Gamma_{{v}}$ is a prescribed function belonging to $L^{4}(0, T;L^{2}_{0})$.
(A5) $\Psi \in C^{2}(\mathbb{R})$ is a non-negative function satisfying
$\Psi (t) \geq {R_1}{\text{ }}{\left| t \right|^2} - {R_2}\quad \forall t \in \mathbb{R}$ | (2.4) |
and either one of the following,
1: if $\Theta_{\varphi}$ is non-negative and bounded, then
$\Psi (t) \leq {R_3}(1 + {\left| t \right|^2}), {\text{ }}\quad {\text{ }}\left| {\Psi '(t)} \right| \leq {R_4}(1 + \left| t \right|), \quad {\text{ }}\left| {\Psi ''(t)} \right| \leq {R_4};$ | (2.5) |
2: if $\Theta_{\varphi}$ is positive and bounded, that is,
$R_{0} \geq \Theta_{\varphi}(t, s) \geq R_{5} > 0 \quad \forall t, s \in \mathbb{R}, $ | (2.6) |
then
$\left| {\Psi ''(t)} \right| \leq {R_6}(1 + {\left| t \right|^q}), \;q \in [0, 4), $ | (2.7) |
for some positive constants R1, R2, R3, R4, R5, R6. Furthermore we assume that
$A > \frac{2 \chi^{2}}{D R_{1}} .$ | (2.8) |
(A6) The initial and boundary data satisfy
${\sigma _\infty } \in {L^2}(0, T;{L^2}(\partial \Omega )), \quad {\sigma _0} \in {L^2}, \quad {\varphi _0} \in {H^1}.$ |
We point out that some of the above assumptions are based on previous works on the well-posedness of Cahn--Hilliard systems for tumour growth. For instance, (2.5) and (2.8) reflect the situation encountered in [17], where if $\Theta_{\varphi} = 0$, i.e., $\Gamma_{\varphi}$ is independent of $\mu$, then the derivation of the a priori estimate requires a quadratic potential. But in the case where (2.6) is satisfied, we can allow $\Psi$ to be a regular potential with polynomial growth of order less than 6, and by a Yosida approximation, we can extend our existence results to the situation where $\Psi$ is a singular potential, see for instance [18]. Moreover, the condition (2.8) is a technical assumption based on the fact that the second term of the nutrient free energy $\chi \sigma (1-\varphi)$ does not have a positive sign.
Meanwhile, the linearity of the source terms $\Gamma_{\varphi}$ and $\mathcal{S}$ with respect to the chemical potential $\mu$ assumed in (2.1) is a technical assumption based on the expectation that, at best, we have weak convergence for Galerkin approximation to $\mu$, which is in contrast with $\varphi$ and $\sigma$ where we might expect a.e convergence and strong convergence for the Galerkin approximations. Moreover, if we consider
$\Theta_{\varphi}(\varphi, \sigma) = \Theta_{S}(\varphi, \sigma) = f(\varphi), \quad \Lambda_{\varphi}(\varphi, \sigma) = \Lambda_{S}(\varphi, \sigma) = f(\varphi)(D \sigma + \chi(1-\varphi)), $ |
for a non-negative function $f(\varphi)$, then we obtain the source terms in [5, 16, 21].
Compared to the set-up in [22], in (A4) we prescribe a higher temporal regularity for the prescribed source term $\Gamma_{{v}}$. This is needed when we estimate the source term ${\Gamma _v}\frac{D}{2}{\left| \sigma \right|^2}$ in the absence of a priori estimates, see Section 4.1.2 for more details. The mean zero condition is a consequence of the no-flux boundary condition ${v} \cdot {n} = 0$ on $\partial \Omega$ and the divergence equation (1.1a). In particular, we can express the Darcy subsystem (1.1a)-(1.1b) as an elliptic equation for the pressure $p$:
$- \Delta p = \frac{1}{K}{\Gamma _v} - {\text{div}}((\mu + \chi \sigma )\nabla \varphi ){\text{ in }}\Omega , $ | (2.9a) |
${\partial _n}p = 0{\text{ on }}\partial \Omega .$ | (2.9b) |
Solutions to (2.9) are uniquely determined up to an arbitrary additive function that may only depend on time, and thus without loss of generality, we impose the condition $\bar p = \frac{1}{{\left| \Omega \right|}}\int_\Omega p {\text{ dx}} = 0$ to (2.9). We may then define $p$ as
$p = {( - {\Delta _N})^{ - 1}}\left( {\frac{1}{K}{\Gamma _v} - {\text{div}}((\mu + \chi \sigma )\nabla \varphi )} \right), $ | (2.10) |
if $\frac{1}{K}{\Gamma _v} - {\text{div}}((\mu + \chi \sigma )\nabla \varphi ) \in ({H^1})_0^*$.
Remark 2.1. In the case $\Gamma_{{v}} = 0$, one can also consider the assumption
$\mathcal{S} N_{, \sigma} - \Gamma_{\varphi} \mu = \mathcal{S} (D \sigma + \chi(1-\varphi)) - \Gamma_{\varphi} \mu \geq 0$ | (2.11) |
instead of (2.6), which holds automatically if $\Gamma_{\varphi}$ and $\mathcal{S}$ are chosen to be of the form (1.6). In fact this property is used in [5, 16].
We make the following definition.
Definition 2.1 (Weak solutions for 3D). We call a quintuple $(\varphi, \mu, \sigma, {v}, p)$ a weak solution to (1.1)-(1.2) if
$φ∈L∞(0,T;H1)∩L2(0,T;H3)∩W1,85(0,T;(H1)∗),σ∈L∞(0,T;L2)∩L2(0,T;H1)∩W1,54(0,T;(W1,5)∗),μ∈L2(0,T;H1),p∈L85(0,T;H1∩L20),v∈L2(0,T;L2), $ |
such that $\varphi(0) = \varphi_{0}$,
${\left\langle {{\sigma _0}, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = {\left\langle {\sigma (0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}}\quad \forall \zeta \in {H^1}, $ |
and
${\left\langle {{\partial _t}\varphi, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }\zeta + \varphi v \cdot \nabla \zeta {\text{ dx}}, $ | (2.12a) |
$\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta - \chi \sigma \zeta {\text{ dx}}, $ | (2.12b) |
$⟨∂tσ,ϕ⟩W1,5,(W1,5)∗=∫Ω−n(φ)(D∇σ−χ∇φ)⋅∇ϕ−Sϕ+σv⋅∇ϕdx+∫∂Ωb(σ∞−σ)ϕ dHd−1, $ | (2.12c) |
$\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {\frac{1}{K}} {\Gamma _v}\zeta + (\mu + \chi \sigma )\nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ | (2.12d) |
$\int_\Omega {} v \cdot {\text{ }}\zeta {\text{ dx}} = \int_\Omega - K(\nabla p - (\mu + \chi \sigma )\nabla \varphi ) \cdot {\text{ }}\zeta {\text{ dx}}, $ | (2.12e) |
for a.e. $t \in (0, T)$ and for all $\zeta \in H^{1}$, $\phi \in W^{1, 5}$, and ${\zeta} \in {L}^{2}$.
Neglecting the nutrient $\sigma$, we observe that our choice of function spaces for $(\varphi, \mu, p, {v})$ coincide with those in [22, Defn. 2.1(i)]. In contrast to the usual $L^{2}(0, T;(H^{1})^{*})$-regularity (see [5, 16]) we obtain a less regular time derivative $\partial _{t}\varphi$. The drop in the time regularity from $2$ to $\frac{8}{5}$ is attributed to the convection term ${\text{div}} (\varphi {v})$ belonging to $L^{\frac{8}{5}}(0, T;(H^{1})^{*})$. The same is true for the regularity for the time derivative $\partial _{t}\sigma$ in $L^{\frac{5}{4}}(0, T;(W^{1, 5})^{*})$ as the convection term ${\text{div}}(\sigma {v})$ lies in the same space. We refer the reader to the end of Section 4.3 for a calculation motivating the choice of function spaces for ${\text{div}} (\sigma {v})$ and $\partial _{t} \sigma$. Furthermore, the embedding of $L^{\infty}(0, T;H^{1}) \cap W^{1, \frac{8}{5}}(0, T;(H^{1})^{*})$ into $C^{0}([0, T];L^{2})$ from [28, x8, Cor. 4] guarantees that the initial condition for $\varphi$ is meaningful. However, for $\sigma$ we have the embedding $L^{\infty}(0, T;L^{2}) \cap W^{1, \frac{5}{4}}(0, T;(W^{1, 5})^{*}) \subset \subset C^{0}([0, T];(H^{1})^{*})$, and so $\sigma(0)$ makes sense as a function in $(H^{1})^{*}$. Thus, the initial condition $\sigma_{0}$ is attained as an equality in $(H^{1})^{*}$. We now state the existence result for (1.1)-(1.2).
Theorem 2.1 (Existence of weak solutions in 3D and energy inequality). Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $C^{3}$-boundary $\partial \Omega$. Suppose Assumption 2.1 is satisfied. Then, there exists a weak solution quintuple $(\varphi, \mu, \sigma, {v}, p)$ to (1.1)-(1.2) in the sense of Definition 2.1 with
$p \in L^{\frac{8}{7}}(0, T;H^{2}) , \quad {v} \in L^{\frac{8}{7}}(0, T;{H}^{1}), $ | (2.13) |
and in addition satisfies
$‖φ‖L∞(H1)∩L2(H3)∩W1,85((H1)∗)+‖σ‖L∞(L2)∩W1,54((W1,5)∗))∩L2(H1)+‖μ‖L2(H1)+b12‖σ‖L2(L2(∂Ω))+‖p‖L85(H1)∩L87(H2)+K−12(‖v‖L2(L2)∩L87(H1)+‖div(φv)‖L85((H1)∗)+‖div(σv)‖L54((W1,5)∗))≤C, $ | (2.14) |
where the constant $C$ does not depend on $(\varphi, \mu, \sigma, {v}, p)$ and is uniformly bounded for $b, \chi \in (0, 1]$ and is also uniformly bounded for $K \in (0, 1]$ when $\Gamma_{{v}} = 0$.
The regularity result (2.13) is new compared to estimates for weak solutions in [22], which arises from a deeper study of the Darcy subsystem, and can be obtained even in the absence of the nutrient. We mention that higher regularity estimates for the pressure $p$ in $L^{2}(0, T;H^{2})$ and the velocity ${v}$ in $L^{2}(0, T;{H}^{1})$ are also established in [22, but these are for strong solutions local in time in three dimensions and global in time for two dimensions.
We now investigate the situation in two dimensions, where the Sobolev embeddings in two dimensions yields better integrability exponents.
Theorem 2.2 (Existence of weak solutions in 2D). Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with $C^{3}$-boundary $\partial \Omega$. Suppose Assumption 2.1is satisfied. Then, there exists a quintuple $(\varphi, \mu, \sigma, {v}, p)$ to (1.1)-(1.2) with the following regularity
$φ∈L∞(0,T;H1)∩L2(0,T;H3)∩W1,w(0,T;(H1)∗),μ∈L2(0,T;H1),σ∈L2(0,T;H1)∩L∞(0,T;L2)∩W1,r(0,T;(H1)∗),p∈Lk(0,T;H1∩L20)∩Lq(0,T;H2),v∈L2(0,T;L2)∩Lq(0,T;H1), $ |
for
$1 \leq k < 2, \quad 1 \leq q < \frac{4}{3}, \quad 1 < r < \frac{8}{7}, \quad \frac{4}{3} \leq w < 2, $ |
such that (2.12a), (2.12b), (2.12d), (2.12e) and
${\left\langle {{\partial _t}\sigma, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \zeta - \mathcal{S}\zeta + \sigma v \cdot \nabla \zeta {\text{ dx}} + \int_{\partial \Omega } b ({\sigma _\infty } - \sigma )\zeta {\text{ d}}{H^{d - 1}}$ |
are satisfied for a.e. $t \in (0, T)$, for all $\zeta \in H^{1}$, and all ${\zeta} \in {L}^{2}$. Furthermore, the initial conditions $\varphi(0) = \varphi_{0}$ and $\sigma(0) = \sigma_{0}$ are attained as in Definition 2.1, and an analogous inequality to (2.14) also holds.
The proof of Theorem 2.2 is similar to that of Theorem 2.1, and hence the details are omitted. In Section 7 we will only present the derivation of a priori estimates. It is due to the better exponents for embeddings in two dimensions and the regularity result for the velocity that we obtain better regularities for the time derivatives $\partial _{t}\varphi$ and $\partial _{t}\sigma$, namely $\partial _{t} \sigma(t)$ belongs to the dual space $(H^{1})^{*}$ for a.e. $t \in (0, T)$. Furthermore, as mentioned in Remark 7.1 below, if we only have ${v} \in L^{2}(0, T;{L}^{2})$, then the convection term ${\text{div}} (\sigma {v})$ and the time derivative $\partial _{t}\sigma$ would only belong to the dual space $L^{\frac{4}{3}}(0, T;(W^{1, 4})^{*})$. However, even with the improved temporal regularity, as $\partial _{t}\sigma \notin L^{2}(0, T;(H^{1})^{*})$, we do not have a continuous embedding into the space $C^{0}([0, T];L^{2})$ and so $\sigma(0)$ may not be well-defined as an element of $L^{2}$.
We now state the two asymptotic limits of (1.1) for three dimensions, and note that analogous asymptotic limits also hold for two dimensions.
Theorem 2.3 (Limit of vanishing permeability). For $b, K \in (0, 1]$, we denote a weak solution to (1.1)-(1.2) with $\Gamma_{{v}} = 0$ and initial conditions $(\varphi_{0}, \sigma_{0})$ by $(\varphi^{K}, \mu^{K}, \sigma^{K}, {v}^{K}, p^{K})$. Then, as $b \to 0$ and $K \to 0$, it holds that
$φK→φ weakly - ∗ in L∞(0,T;H1)∩L2(0,T;H3)∩W1,85(0,T;(H1)∗),σK→σ weakly - ∗ in L2(0,T;H1)∩L∞(0,T;L2)∩W1,54(0,T;(W1,5)∗),μK→μ weakly in L2(0,T;H1),pK→p weakly in L85(0,T;H1)∩L87(0,T;H2),vK→0 strongly in L2(0,T;L2)∩L87(0,T;H1), $ |
where $(\varphi, \mu, \sigma, p)$ satisfies
${\left\langle {{\partial _t}\varphi, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }(\varphi , \mu , \sigma )\zeta {\text{ dx}}, $ | (2.16a) |
$\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta - \chi \sigma \zeta {\text{ dx}}, $ | (2.16b) |
${\left\langle {{\partial _t}\sigma, \phi } \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}} = \int_\Omega - n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \phi - \mathcal{S}(\varphi , \mu , \sigma )\phi {\text{ dx}}, $ | (2.16c) |
$\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {(\mu + \chi \sigma )} \nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ | (2.16d) |
for all $\zeta \in H^{1}$, $\phi \in W^{1, 5}$ and a.e. $t \in (0, T)$. A posteriori, it holds that
${\partial _t}\varphi , {\text{ }}{\partial _t}\sigma \in {L^2}(0, T;{({H^1})^*}), $ |
and thus $\varphi(0) = \varphi_{0}$ and $\sigma(0) = \sigma_{0}$.
Theorem 2.4 (Limit of vanishing chemotaxis). For $b, \chi \in (0, 1]$, we denote a weak solution to (1.1)-(1.2) with corresponding initial conditions $(\varphi_{0}, \sigma_{0})$ by $(\varphi^{\chi}, \mu^{\chi}, \sigma^{\chi}, {v}^{\chi}, p^{\chi})$. Then, as $b \to 0$ and $\chi \to 0$, it holds that
$φχ→φ weakly - ∗ in L∞(0,T;H1)∩L2(0,T;H3)∩W1,85(0,T;(H1)∗),σχ→σ weakly - ∗ in L2(0,T;H1)∩L∞(0,T;L2)∩W1,54(0,T;(W1,5)∗),μχ→μ weakly in L2(0,T;H1),pχ→p weakly in L85(0,T;H1)∩L87(0,T;H2),vχ→v weakly in L2(0,T;L2)∩L87(0,T;H1), $ |
and
$div(φχvχ)→div(φv) weakly in L85(0,T;(H1)∗),div(σχvχ)→div(σv) weakly in L54(0,T;(W1,5)∗), $ |
where ($\varphi, \mu, \sigma, {v}, p)$ satisfies
${\left\langle {{\partial _t}\varphi, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }(\varphi , \mu , \sigma )\zeta + \varphi v \cdot \nabla \zeta {\text{ dx}}, $ | (2.19a) |
$\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ | (2.19b) |
${\left\langle {{\partial _t}\sigma, \phi } \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}} = \int_\Omega - n(\varphi )D\nabla \sigma \cdot \nabla \phi - \mathcal{S}(\varphi , \mu , \sigma )\phi + \sigma {\text{ }}v \cdot \nabla \phi {\text{ dx}}, $ | (2.19c) |
$\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {\frac{1}{K}} {\Gamma _v}\zeta + \mu \nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ | (2.19d) |
$\int_\Omega {} v \cdot {\text{ }}\zeta {\text{ dx}} = \int_\Omega - K(\nabla p - \mu \nabla \varphi ) \cdot \zeta {\text{ dx}}, $ | (2.19e) |
for all $\zeta \in H^{1}$, $\phi \in W^{1, 5}$, ${\zeta} \in {L}^{2}$ and a.e. $t \in (0, T)$, with the attainment of initial conditions as in Definition 2.1.
We will employ a Galerkin approximation similar to the one used in [22]. For the approximation, we use the eigenfunctions of the Neumann--Laplacian operator $\{w_{i}\}_{i \in \mathbb{N}}$. Recall that the inverse Neumann--Laplacian operator $\mathcal{L} := (-\Delta _{N})^{-1} \vert_{L^{2}_{0}} : L^{2}_{0} \to L^{2}_{0}$ is compact, positive and symmetric. Indeed, let $f, g \in L^{2}_{0}$ with $z = \mathcal{L}f$, $y = \mathcal{L}g$. Then,
${(\mathcal{L}f, f)_{{L^2}}} = \int_\Omega z f{\text{ dx}} = \int_\Omega {} {\left| {\nabla z} \right|^2}{\text{ dx}} \geq 0, \quad {(\mathcal{L}f, g)_{{L^2}}} = \int_\Omega \nabla z \cdot \nabla y{\text{ dx}} = {(f, \mathcal{L}g)_{{L^2}}}.$ |
Furthermore, let $\{f_{n}\}_{n \in \mathbb{N}} \subset L^{2}_{0}$ denote a sequence with corresponding solution sequence $\{z_{n} = \mathcal{L} f_{n} \}_{n \in \mathbb{N}} \subset H^{1} \cap L^{2}_{0}$. By elliptic regularity theory, we have that $z_{n} \in H^{2}_{N}$ for all $n \in \mathbb{N}$. Then, by reflexive weak compactness theorem and Rellich--Kondrachov theorem, there exists a subsequence such that $z_{n_{j}} \to z \in H^{1} \cap L^{2}_{0}$ as $j \to \infty$.
Thus, by the spectral theorem, the operator $\mathcal{L}$ admits a countable set of eigenfunctions $\{v_{n}\}_{n \in \mathbb{N}}$ that forms a complete orthonormal system in $L^{2}_{0}$. The eigenfunctions of the Neumann--Laplacian operator is then given by $w_{1} = 1$, $w_{i} = v_{i-1}$ for $i \geq 2$, and $\{w_{i}\}_{i \in \mathbb{N}}$ is a basis of $L^{2}$.
Elliptic regularity theory gives that $w_{i} \in H^{2}_{N}$ and for every $g \in H^{2}_{N}$, we obtain for $g_{k} := \sum_{i=1}^{k} (g, w_{i})_{L^{2}} w_{i}$ that
$\Delta {g_k} = \sum\limits_{i = 1}^k {{{(g, {w_i})}_{{L^2}}}} \Delta {w_i} = \sum\limits_{i = 1}^k {{{(g, {\lambda _i}{w_i})}_{{L^2}}}} {w_i} = \sum\limits_{i = 1}^k {{{(g, {\text{ }}\Delta {w_i})}_{{L^2}}}} {w_i} = \sum\limits_{i = 1}^k {{{(\Delta g, {w_i})}_{{L^2}}}} {w_i}, $ |
where $\lambda_{i}$ is the corresponding eigenvalue to $w_{i}$. This shows that $\Delta g_{k}$ converges strongly to $\Delta g$ in $L^{2}$. Making use of elliptic regularity theory again gives that $g_{k}$ converges strongly to $g$ in $H^{2}_{N}$. Thus the eigenfunction $\{w_{i}\}_{i \in \mathbb{N}}$ of the Neumann--Laplace operator forms an orthonormal basis of $L^{2}$ and is also a basis of $H^{2}_{N}$.
Later in Section 5, we will need to use the property that $H^{2}_{N}$ is dense in $H^{1}$ and $W^{1, 5}$. We now sketch the argument for the denseness of $H^{2}_{N}$ in $W^{1, 5}$ and the argument for $H^{1}$ follows in a similar fashion.
Lemma 3.1. $H^{2}_{N}$ is dense in $W^{1, 5}$.
Proof. Take $g \in W^{1, 5}$, as $\Omega$ has a $C^{3}$-boundary, by standard results [12, Thm. 3, x5.3.3] there exists a sequence $g_{n} \in C^{\infty}(\overline{\Omega})$ such that $g_{n} \to g$ strongly in $W^{1, 5}$. Let $\varepsilon > 0$ be fixed, and define $D_{\varepsilon } := \{ x \in \Omega : \text{ dist}(x, \partial \Omega) \leq \varepsilon \}$. Let $\zeta_{\varepsilon } \in C^{\infty}_{c}(\Omega)$ be a smooth cut-off function such that $\zeta_{\varepsilon } = 1$ in $\Omega \setminus \overline{D_{\varepsilon }}$ and $\zeta_{\varepsilon } = 0$ in $\overline{D_{\frac{\varepsilon }{2}}}$.
As $g_{n} \in C^{\infty}(\overline{\Omega})$, its trace on $\partial \Omega$ is well-defined. Choosing $\varepsilon $ sufficiently small allows us to use a classical result from differential geometry about tubular neighbourhoods, i.e., for any $z \in {\text{Tu}}{{\text{b}}_\varepsilon }(\partial \Omega ): = \{ x \in {\mathbb{R}^d}:{\text{ }}\left| {{\text{dist}}(z, \partial \Omega )} \right| \leq \varepsilon \} $ there exists a unique $y \in \partial \Omega$ such that
$z = y + {\text{dist}}(z, \partial \Omega )n(y), $ |
where ${n}$ is the outer unit normal of $\partial \Omega$. We consider a bounded smooth function $f_{n, \varepsilon }: \mathbb{R}^{d} \to \mathbb{R}$ such that
${f_{n, \varepsilon }}(z) = {g_n}(y){\text{ for all }}z \in {\text{Tu}}{{\text{b}}_\varepsilon }(\partial \Omega ){\text{ satisfying }}z = y + {\text{ dist}}(z, \partial \Omega )n(y).$ |
We now define the smooth function $G_{n, \varepsilon }$ as
$G_{n, \varepsilon }(x) := \zeta_{\varepsilon }(x) g_{n}(x) + (1-\zeta_{\varepsilon }(x)) f_{n, \varepsilon }(x).$ |
By construction, the values of the function $f_{n, \varepsilon }$ in $D_{\varepsilon } \subset \mathrm{Tub}_{\varepsilon }(\partial \Omega)$ are constant in the normal direction, so $\nabla G_{n, \varepsilon } \cdot {n} = 0$ on $\partial \Omega$ and thus $G_{n, \varepsilon } \in H^{2}_{N}$. Furthermore, we compute that
$‖Gn,ε−gn‖L5=‖(1−ζε)(fn,ε−gn)‖L5(Dε),‖∇(Gn,ε−gn)‖L5=‖(gn−fn,ε)∇ζε+(1−ζε)∇gn+(1−ζε)∇fn,ε‖L5. $ |
Using that $g_{n}, f_{n, \varepsilon }$ are smooth functions on $\overline{\Omega}$ and that the Lebesgue measure of $D_{\varepsilon }$ tends to zero as $\varepsilon \to 0$ we have the strong convergence of $G_{n, \varepsilon }$ to $g_{n}$ in $L^{5}$. For the difference in the gradients, we use that $\zeta_{\varepsilon } \to 1$ a.e. in $\Omega$, Lebesgue's dominated convergence theorem and the boundedness of $\nabla g_{n}$ and $\nabla f_{n, \varepsilon }$ to deduce that
${\left\| {(1 - {\zeta _\varepsilon })\nabla {g_n}} \right\|_{{L^5}}} + {\left\| {(1 - {\zeta _\varepsilon })\nabla {f_{n, \varepsilon }}} \right\|_{{L^5}}} \to 0{\text{ as }}\varepsilon \to 0.$ |
For the remaining term ${\left\| {({g_n} - {f_{n, \varepsilon }})\nabla {\zeta _\varepsilon }} \right\|_{{L^5}}}$ we use that the support of $\nabla \zeta_{\varepsilon }$ lies in $D_{\varepsilon } \setminus \overline{D_{\frac{\varepsilon }{2}}}$ and for any $z \in D_{\varepsilon } \setminus \overline{D_{\frac{\varepsilon }{2}}}$,
$|fn,ε(z)−gn(z)|=|gn(y)−gn(y+dist(z,∂Ω)n(y))|≤∫dist(z,∂Ω)0|∇gn(y+ξn(y))|dξ≤‖∇gn‖L∞dist(z,∂Ω)≤Cε. $ |
That is, $f_{n, \varepsilon }$ converges uniformly to $g_{n}$ in $D_{\varepsilon } \setminus \overline{D_{\frac{\varepsilon }{2}}}$. Furthermore, using ${\left\| {\nabla {\zeta _\varepsilon }} \right\|_{{L^\infty }}} \leq \frac{C}{\varepsilon }$ in $D_{\varepsilon } \setminus \overline{D_{\frac{\varepsilon }{2}}}$ and $\left| {{D_\varepsilon } \setminus \overline {{D_{\frac{\varepsilon }{2}}}} } \right| \leq C\varepsilon $ we obtain ${\left\| {({g_n} - {f_{\varepsilon , n}})\nabla {\zeta _\varepsilon }} \right\|_{{L^5}}} \leq C{\varepsilon ^{\frac{1}{5}}} \to 0$ as $\varepsilon \to 0$. This shows that $G_{n, \varepsilon }$ converges strongly to $g_{n}$ in $W^{1, 5}$.
We denote
$W_{k} := \mathrm{span} \{ w_{1}, \dots, w_{k} \}$ |
as the finite dimensional space spanned by the first k basis functions and consider
$\varphi_{k}(t, x) =\sum_{i=1}^{k} \alpha_{i}^{k}(t) w_{i}(x), \; \mu_{k}(t, x) = \sum_{i=1}^{k} \beta_{i}^{k}(t) w_{i}(x), \; \sigma_{k}(t, x) = \sum_{i=1}^{k} \gamma_{i}^{k}(t) w_{i}(x), $ | (3.1a) |
and the following Galerkin ansatz: For $1 \leq j \leq k$,
$\int_\Omega {{\partial _t}} {\varphi _k}{w_j}{\text{ dx}} = \int_\Omega - m({\varphi _k})\nabla {\mu _k} \cdot \nabla {w_j} + {\Gamma _{\varphi , k}}{w_j} + {\varphi _k}{v_k} \cdot \nabla {w_j}dx, $ | (3.2a) |
$\int_\Omega {{\mu _k}} {w_j}{\text{ dx}} = \int_\Omega A \Psi '({\varphi _k}){w_j} + B\nabla {\varphi _k} \cdot \nabla {w_j} - \chi {\sigma _k}{w_j}{\text{ dx}}, $ | (3.2b) |
$∫Ω∂tσkwjdx=∫Ω−n(φk)(D∇σk−χ∇φk)⋅∇wj−Skwj+σkvk⋅∇wjdx+∫∂Ωb(σ∞−σk)wj dHd−1, $ | (3.2c) |
where we define the Galerkin ansatz for the pressure $p_{k}$ and the velocity field ${v}_{k}$ by
${p_k} = {( - {\Delta _N})^{ - 1}}\left( {\frac{1}{K}{\Gamma _v} - {\text{div}} (({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k})} \right), $ | (3.3) |
${v_k} = - K(\nabla {p_k} - ({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k}), $ | (3.4) |
and we set
$\Gamma_{\varphi, k} := \Gamma_{\varphi}(\varphi_{k}, \mu_{k}, \sigma_{k}), \quad \mathcal{S}_{k} := \mathcal{S}(\varphi_{k}, \mu_{k}, \sigma_{k}).$ |
Note that in (3.3), the properties $\Gamma_{{v}} \in L^{2}_{0}$ and $\nabla \varphi_{k} \cdot {n} = 0$ on $\partial \Omega$ show that the term inside the bracket belongs to $L^{2}_{0}$ and hence $p_{k}$ is well-defined. Let ${M}$ and ${S}$ denote the following mass and stiffness matrices, respectively: For $1 \leq i, j \leq k$,
${M_{ij}} = \int_\Omega {{w_i}} {w_j}{\text{ dx}}, \quad {\text{ }}{S_{ij}}: = \int_\Omega \nabla {w_i} \cdot \nabla {w_j}{\text{ dx}}.$ |
Thanks to the orthonormality of $\{w_{i}\}_{i \in \mathbb{N}}$ in $L^{2}$, we see that ${M}$ is the identity matrix. It is convenient to define the following matrices with components
$(Ck)ji:=∫Ωwivk⋅∇wjdx,(M∂Ω)ji:=∫∂ΩwiwjdH,(Skm)ji:=∫Ωm(φk)∇wi⋅∇wjdx,(Skn)ji:=∫Ωn(φk)∇wi⋅∇wjdx, $ |
for $1 \leq i, j \leq k$. Furthermore, we introduce the notation
$R_{\varphi , j}^k: = \int_\Omega {{\Gamma _{\varphi , k}}} {w_j}{\text{ dx}}, \quad R_{S, j}^k: = \int_\Omega {{\mathcal{S}_k}} {w_j}{\text{ dx}}, \quad \psi _j^k: = \int_\Omega {\Psi '} ({\varphi _k}){w_j}{\text{ dx}}, \quad \Sigma _j^k: = \int_{\partial \Omega } {{\sigma _\infty }} {w_j}{\text{ dH}}, $ |
for $1 \leq i, j \leq k$, and denote
$R_\varphi ^k: = {(R_{\varphi , 1}^k, \ldots , R_{\varphi , k}^k)^ \top }, \quad {\text{ }}R_S^k: = {(R_{S, 1}^k, \ldots , R_{S, k}^k)^ \top }, \quad {\text{ }}{\psi ^k}: = {(\psi _1^k, \ldots , \psi _k^k)^ \top }, \quad {\text{ }}{\Sigma ^k}: = {(\Sigma _1^k, \ldots , \Sigma _k^k)^ \top }, $ |
as the corresponding vectors, so that we obtain an initial value problem for a system of equations for ${\alpha _k}: = {(\alpha _1^k, \ldots \alpha _k^k)^ \top }, {\beta _k}: = {(\beta _1^k, \ldots , \beta _k^k)^ \top }$, and ${\gamma _k}: = {(\gamma _1^k, \ldots , \gamma _k^k)^ \top }$ as follows,
$\frac{{\text{d}}}{{{\text{dt}}}}{\alpha _k} = - S_m^k{\beta _k} + R_\varphi ^k + {C^k}{\alpha _k}, $ | (3.5a) |
${\beta _k} = A{\psi ^k} + BS{\alpha _k} - \chi {\gamma _k}, $ | (3.5b) |
$\frac{{\text{d}}}{{{\text{dt}}}}{\gamma _k} = - S_n^k(D{\gamma _k} - \chi {\alpha _k}) - R_S^k + {C^k}{\gamma _k} - b{M_{\partial \Omega }}{\gamma _k} + b{\Sigma ^k}, $ | (3.5c) |
${p_k} = {\left( { - {\Delta _N}} \right)^{ - 1}}\left( {\frac{1}{K}{\Gamma _v} - {\text{div}} (({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k})} \right)$ | (3.5d) |
${v_k} = - K(\nabla {p_k} - ({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k}), $ | (3.5e) |
and we supplement (3.5) with the initial conditions
${({\alpha _k})_j}(0) = \int_\Omega {{\varphi _0}} {w_j}{\text{ dx}}, \quad {({\gamma _k})_j}(0) = \int_\Omega {{\sigma _0}} {w_j}{\text{ dx}}, $ | (3.6) |
for $1 \leq j \leq k$, which satisfy
${\left\| {\sum\limits_{i = 1}^k {{{({\alpha _k})}_i}} (0){w_i}} \right\|_{{H^1}}} \leq C{\left\| {{\varphi _0}} \right\|_{{H^1}}}, \quad {\text{ }}{\left\| {\sum\limits_{j = 1}^k {{{({\gamma _k})}_i}} (0){w_i}} \right\|_{{L^2}}} \leq {\left\| {{\sigma _0}} \right\|_{{L^2}}}\quad \forall k \in \mathbb{N}, $ | (3.7) |
for some constant C not depending on k.
We can substitute (3.5b), (3.5d) and (3.5e) into (3.5a) and (3.5c), and obtain a coupled system of ordinary differential equations for ${\alpha}_{k}$ and ${\gamma}_{k}$, where ${S}_{m}^{k}$, ${C}^{k}$ and ${S}_{n}^{k}$ depend on the solutions ${\alpha}_{k}$ and ${\gamma}_{k}$ in a non-linear manner. Continuity of $m(\cdot)$, $n(\cdot)$, $\Psi'(\cdot)$ and the source terms, and the stability of $(-\Delta _{N})^{-1}$ under perturbations imply that the right-hand sides of (3.5) depend continuously on $({\alpha}_{k}, {\gamma}_{k})$. Thus, we can appeal to the theory of ODEs (via the Cauchy--Peano theorem [4, Chap. 1, Thm. 1.2]) to infer that the initial value problem (3.5)-(3.6) has at least one local solution pair $({\alpha}_{k}, {\gamma}_{k})$ defined on $[0, t_{k}]$ for each $k \in \mathbb{N}$.
We may define ${\beta}_{k}$ via the relation (3.5b) and hence the Galerkin ansatz $\varphi_{k}, \mu_{k}$ and $\sigma_{k}$ can be constructed from (3.1). Then, we can define $p_{k}$ and ${v}_{k}$ via (3.3) and (3.4), respectively. Furthermore, as the basis function $w_{j}$ belongs to $H^{2}$ for each $j \in \mathbb{N}$, by the Sobolev embedding $H^{2} \subset L^{\infty}$, we obtain that ${\text{div}} (w_{i} \nabla w_{j}) \in L^{2}$ for $i, j \in \mathbb{N}$ and hence the function ${\text{div}} ((\mu_{k} + \chi \sigma_{k}) \nabla \varphi_{k})$ belongs to $L^{2}$. Then, by elliptic regularity theory, we find that $p_{k}(t) \in H^{2}_{N} \cap L^{2}_{0}$ for all $t \in [0, t_{k}]$. This in turn implies that
${v_k}(t) \in \{ f \in {\text{ }}{H^1}:{\text{div}} f = {\Gamma _v}, \;{\text{ }}f \cdot n = 0{\text{ on }}\partial \Omega \} {\text{ for all }}t \in [0, {t_k}].$ | (3.8) |
Next, we show that the Galerkin ansatz can be extended to the interval [0, T] using a priori estimates.
In this section, the positive constants $C$ are independent of $k$, $\Gamma_{{v}}$, $K$, $b$ and $\chi$, and may change from line to line. We will denote positive constants that are uniformly bounded for $b, \chi \in (0, 1]$ and are also uniformly bounded for $K \in (0, 1]$ when $\Gamma_{{v}} = 0$ by the symbol $\mathcal{E}$.
We first state the energy identity satisfied by the Galerkin ansatz. Let $\delta_{ij}$ denote the Kronecker delta. Multiplying (3.2a) with $\beta_{j}^{k}$, (3.2b) with $\frac{{\text{d}}}{{{\text{dt}}}}\alpha _j^k$, (3.2c) with $N_{, \sigma}^{k} := D \gamma_{j}^{k} + \chi (\delta_{1j} - \alpha_{j}^{k})$, and then summing the product from $j = 1$ to $k$ lead to
$∫Ω∂tφkμkdx=∫Ω−m(φk)|∇μk|2+Γφ,kμk+φkvk⋅∇μkdx,∫Ωμk∂tφkdx=ddt∫ΩAΨ′(φk)+B2|∇φk|2dx−∫Ωχσk∂tφkdx,∫Ω∂tσkNk,σdx=∫Ω−n(φk)|∇Nk,σ|2−SkNk,σ+σkvk⋅∇Nk,σdx +∫∂Ωb(σ∞−σk)Nk,σdHd−1. $ |
Here, we used that $w_{1} = 1$ and $\nabla w_{1} = {0}$. Then, summing the three equations leads to
$ddt∫ΩAΨ(φk)+B2|∇φk|2+N(φk,σk)dx+∫Ωm(φk)|∇μk|2+n(φk)|∇Nk,σ|2dx+∫∂ΩDb|σk|2dHd−1=∫ΩΓφ,kμk−SkNk,σ+(φkvk⋅∇μk+σkvk⋅∇Nk,σ)dx+∫∂Ωb(σ∞Nk,σ−σkχ(1−φk))dHd−1. $ | (4.2) |
Next, multiplying (3.4) with $\frac{1}{K} {v}_{k}$, integrating over $\Omega$ and integrating by parts gives
$∫Ω1K|vk|2dx=∫Ω−∇pk⋅vk+(μk+χσk)∇φk⋅vkdx=∫ΩΓvpk+(μk+χσk)∇φk⋅vk dx, $ |
where we used that ${\text{div}} {v}_{k} = \Gamma_{{v}}$ and ${v}_{k} \cdot {n} = 0$ on $\partial \Omega$. Similarly, we see that
$∫Ω(φk∇μk+σk∇Nk,σ)⋅vkdx=∫Ωφkvk⋅∇μk+σkvk⋅∇(Dσk+χ(1−φk))dx=−∫ΩφkΓvμk+(μk+χσk)vk⋅∇φk−D2vk⋅∇|σk|2dx=−∫ΩΓv(φkμk+D2|σk|2)+(μk+χσk)∇φk⋅vk dx. $ |
In particular, we have
$\int_\Omega {\frac{1}{K}} {\left| {{v_k}} \right|^2}{\text{ dx}} = \int_\Omega {{\Gamma _v}} \left( {{p_k} - {\mu _k}{\varphi _k} - \frac{D}{2}{{\left| {{\sigma _k}} \right|}^2}} \right) - ({\varphi _k}\nabla {\mu _k} + {\sigma _k}\nabla N_{, \sigma }^k) \cdot {v_k}{\text{ dx}}.$ | (4.4) |
Adding (4.3) to (4.2) leads to
$ddt∫ΩAΨ(φk)+B2|∇φk|2+N(φk,σk)dx+∫Ωm(φk)|∇μk|2+n(φk)|∇Nk,σ|2+1K|vk|2dx+∫∂ΩDb|σk|2dHd−1=∫ΩΓφ,kμk−SkNk,σ+Γv(pk−μkφk−D2|σk|2)dx+∫∂Ωb(σ∞(Dσk+χ(1−φk))−σkχ(1−φk))dHd−1. $ | (4.3) |
To derive the first a priori estimate for the Galerkin ansatz, it suffices to bring (4.4) into a form where we can apply Gronwall's inequality. We start with estimating the boundary term on the right-hand side of (4.4). By Hölder's inequality and Young's inequality,
$|∫∂Ωb(σ∞(Dσk+χ(1−φk))−σkχ(1−φk))dHd−1|≤b(‖σ∞‖L2(∂Ω)‖Dσk+χ(1−φk)‖L2(∂Ω)+χ‖σk‖L2(∂Ω)(|∂Ω|12+‖φk‖L2(∂Ω)))≤Db2‖σk‖2L2(∂Ω)+b(1+χ2D)‖φk‖2L2(∂Ω)+bC(χ+(1+χ2)‖σ∞‖2L2(∂Ω)). $ |
By the trace theorem and the growth condition (2.4), we have
$‖φ‖2L2(∂Ω)≤C2tr(‖φ‖2L2+‖∇φ‖2L2)≤C2tr(1R1‖Ψ(φ)‖L1+‖∇φ‖2L2)+C(R2,|Ω|,Ctr), $ | (4.5) |
where the positive constant $C_{\mathrm{tr}}$ from the trace theorem only depends on $\Omega$, and so
$∫∂Ωb(σ∞(Dσk+χ(1−φk))−σkχ(1−φk))dHd−1≤Db2‖σk‖2L2(∂Ω)+Cb(1+χ2)(‖Ψ(φk)‖L1+‖∇φk‖2L2)+Cb(1+χ2)+bC(χ+(1+χ2)‖σ∞‖2L2(∂Ω)). $ | (4.6) |
For the source term
$\int_\Omega {{\Gamma _{\varphi , k}}} {\mu _k} - {\mathcal{S}_k}N_{, \sigma }^k + {\Gamma _v}\left( {{p_k} - {\mu _k}{\varphi _k} - \frac{D}{2}{{\left| {{\sigma _k}} \right|}^2}} \right){\text{ dx}}$ |
that appears on the right-hand side of (4.4) we will divide its analysis into two parts. We first analyse the part involving $\Gamma_{{v}}$, which will involve a closer look at the Darcy subsystem to deduce an estimate on ${\left\| {{p_k}} \right\|_{{L^2}}}$. For the remainder $\Gamma_{\varphi, k} \mu_{k} - \mathcal{S}_{k} N_{, \sigma}^{k}$ term we will estimate it differently based on the assumptions on $\Theta_{\varphi}$.
Before we estimate the source terms involving $\Gamma_{{v}}$, we look at the Darcy subsystem, which can be expressed as an elliptic equation for the pressure (we will drop the subscript $k$ for clarity)
$- \Delta p = \frac{1}{K}{\Gamma _v} - {\text{div}} ((\mu + \chi \sigma )\nabla \varphi ){\text{ in }}\Omega , {\text{ with }}\bar p = 0, $ | (4.7a) |
$\partial p = 0{\text{ on }}\partial \Omega .$ | (4.7b) |
The following lemma is similar to [22, Lem. 3.1], and the hypothesis is fulfilled by the Galerkin ansatz.
Lemma 4.1. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $C^{3}$-boundary. Given $\varphi \in H^{2}_{N}$, $\mu, \sigma \in H^{1}$, the source term $\Gamma_{{v}} \in L^{2}_{0}$, and the function $p$ satisfying the above elliptic equation (4.7). Then, the following estimate hold
${\left\| p \right\|_{{L^2}}} \leq \frac{C}{K}{\left\| {{\Gamma _v}} \right\|_{{L^2}}} + C\left( {{{\left\| {\nabla \mu } \right\|}_{{L^2}}} + \chi {{\left\| \sigma \right\|}_{{L^6}}}} \right){\left\| {\nabla \varphi } \right\|_{{L^{\frac{3}{2}}}}} + C\bar \mu {\left\| {\nabla \varphi } \right\|_{{L^2}}}, $ | (4.8) |
for some positive constant $C$ depending only on $\Omega$.
Proof. We first recall some properties of the inverse Neumann-Laplacian operator. Suppose for $g \in L^{2}_{0}$, $f = (-\Delta _{N})^{-1} g \in H^{1} \cap L^{2}_{0}$ solves
$- \Delta f = g{\text{ in }}\Omega , \quad {\text{ }}\partial f = 0{\text{ on }}\partial \Omega .$ | (4.9) |
Then, testing with $f$ and integrating over $\Omega$, applying integration by parts and the Poincaré inequality (1.9) leads to
${\left\| {{{\left( { - {\Delta _N}} \right)}^{ - 1}}g} \right\|_{{H^1}}} = {\left\| f \right\|_{{H^1}}} \leq c{\left\| {\nabla f} \right\|_{{L^2}}} \leq C{\left\| g \right\|_{{L^2}}}, $ | (4.10) |
for positive constants $c$ and $C$ depending only on $C_{p}$. Elliptic regularity theory then gives that $f \in H^{2}_{N}$ with
${\left\| f \right\|_{{H^2}}} \leq C\left( {{{\left\| f \right\|}_{{H^1}}} + {{\left\| g \right\|}_{{L^2}}}} \right) \leq C{\left\| g \right\|_{{L^2}}}, $ | (4.11) |
with a positive constant $C$ depending only on $\Omega$. Returning to the pressure system, we observe from (2.10) and the above that
$‖p‖L2≤1K‖(−ΔN)−1Γv‖L2+‖(−ΔN)−1(div((μ+χσ)∇φ))‖L2≤CK‖Γv‖L2+‖(−ΔN)−1(div((μ−ˉμ+χσ)∇φ))‖L2+‖(−ΔN)−1(div(ˉμ∇φ))‖L2, $ | (4.12) |
for some positive constant $C$ depending only on $C_{p}$. Note that the third term on the right-hand side can be estimated as
$\bar \mu {\left\| {{{\left( { - {\Delta _N}} \right)}^{ - 1}}{\text{div}}\nabla (\varphi - \bar \varphi )} \right\|_{{L^2}}} = \bar \mu {\left\| {\varphi - \bar \varphi } \right\|_{{L^2}}} \leq {C_p}\bar \mu {\left\| {\nabla \varphi } \right\|_{{L^2}}}.$ | (4.13) |
We now consider estimating the second term on the right-hand side of (4.12). By assumption $\mu, \sigma \in H^{1}$ and $\varphi \in H^{2}_{N}$, we have that
${\left\| {(\mu - \bar \mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}} \leq {\left\| {\mu - \bar \mu + \chi \sigma } \right\|_{{L^6}}}{\left\| {\nabla \varphi } \right\|_{{L^3}}}, $ | (4.14) |
and so if we consider the function $h: = {( - {\Delta _N})^{ - 1}}({\text{div}}((\mu - \bar \mu + \chi \sigma )\nabla \varphi ))$, then we obtain that
$\int_\Omega \nabla h \cdot \nabla \zeta {\text{ dx}} = \int_\Omega - (\mu - \bar \mu + \chi \sigma )\nabla \varphi \cdot \nabla \zeta {\text{ dx}}\quad \forall \zeta \in {H^1}$ | (4.15) |
must hold, and by (4.14) and the Poincaré inequality (1.9) with zero mean it holds that $h \in H^{1} \cap L^{2}_{0}$. We now define $f:= (-\Delta _{N})^{-1}(h) \in H^{2}_{N}$, and consider testing with $\zeta = f$ in (4.15), leading to
$\int_\Omega {} {\left| h \right|^2}{\text{ dx}} = \int_\Omega \nabla h \cdot \nabla f{\text{ dx}} = \int_\Omega - (\mu - \bar \mu + \chi \sigma )\nabla \varphi \cdot \nabla f{\text{ dx}}.$ |
Since $f \in H^{2}_{N}$, elliptic regularity theory and Hölder's inequality gives
$‖h‖2L2≤‖(μ−ˉμ+χσ)∇φ‖L65‖∇f‖L6≤C‖(μ−ˉμ+χσ)∇φ‖L65‖f‖H2≤C‖(μ−ˉμ+χσ)∇φ‖L65‖h‖L2, $ |
where the constant $C$ depends on $\Omega$ and the constant in (4.11). Thus we obtain
$‖(−ΔN)−1(div((μ−ˉμ+χσ)∇φ))‖L2≤C‖(μ−ˉμ+χσ)∇φ‖L65≤C(‖μ−ˉμ‖L6+χ‖σ‖L6)‖∇φ‖L32 $ | (4.16) |
for some constant $C$ depending only on $\Omega$. By the Sobolev embedding $H^{1} \subset L^{6}$ (with constant $C_{\mathrm{Sob}}$ that depends only on $\Omega$) and the Poincaré inequality, we find that
${\left\| {\mu - \bar \mu } \right\|_{{L^6}}} \leq {C_{{\text{Sob}}}}{\left\| {\mu - \bar \mu } \right\|_{{H^1}}} \leq c({C_{{\text{Sob}}}}, {C_p}){\left\| {\nabla \mu } \right\|_{{L^2}}}.$ | (4.17) |
Substituting the above elements into (4.12) yields (4.8).
Remark 4.1. We choose not to use the estimate
$c{\left\| h \right\|_{{L^2}}} \leq {\left\| {\nabla h} \right\|_{{L^2}}} \leq {\left\| {(\mu - \bar \mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}}$ | (4.18) |
obtained from substituting $\zeta = h$ in (4.15), where $c$ is a positive constant depending only on $C_{p}$, since by (4.14) we require control of $\nabla \varphi$ in the ${L}^{3}(\Omega)$-norm and this is not available when deriving the first a priori estimate. Thus, we make use of the auxiliary problem $f = (-\Delta _{N})^{-1}(h)$ to derive another estimate on ${\left\| h \right\|_{{L^2}}}$ that involves controlling $\nabla \varphi$ in the weaker ${L}^{\frac{3}{2}}(\Omega)$-norm.
Next, we state regularity estimates for the pressure and the velocity field. The hypothesis will be fulfilled for the Galerkin ansatz once we derived the a priori estimates in Section 4. Note that in Lemma 4.2 below, we consider a source term $\Gamma_{{v}} \in L^{2}(0, T;L^{2}_{0})$, so that our new regularity results for the pressure and the velocity is also applicable to the setting considered in [22].
Lemma 4.2. Let $\varphi \in L^{\infty}(0, T;H^{1}) \cap L^{2}(0, T;H^{2}_{N} \cap H^{3})$, $\sigma \in L^{2}(0, T;H^{1})$, $\mu \in L^{2}(0, T;H^{1})$, the source term $\Gamma_{{v}} \in L^{2}(0, T;L^{2}_{0})$, and the function $p$ satisfying (4.7). Then,
$\left\| p \right\|_{{L^{\frac{8}{5}}}({H^1})}^{\frac{8}{5}} \leq {C_1}\left\| \varphi \right\|_{{L^\infty }({H^1})}^{\frac{6}{5}}\left\| {\mu + \chi \sigma } \right\|_{{L^2}({H^1})}^{\frac{8}{5}}\left\| \varphi \right\|_{{L^2}({H^3})}^{\frac{2}{5}} + \frac{{{C_1}}}{K}{T^{\frac{1}{5}}}\left\| {{\Gamma _v}} \right\|_{{L^2}({L^2})}^{\frac{8}{5}}, $ | (4.19) |
for some positive constant $C_{1}$ depending only on $\Omega$, and
$‖p‖87L87(H2)≤C2T37K−87‖Γv‖87L2(L2)+C2T27‖p‖87L85(H1)+C2‖φ‖27L∞(H1)‖μ+χσ‖87L2(H1)‖φ‖67L2(H3), $ | (4.20) |
for some positive constant $C_{2}$ depending only on $\Omega$. Moreover, if we have the relation
$v = - K\left( {\nabla p - (\mu + \chi \sigma )\nabla \varphi } \right), $ |
then
$\left\| {{\text{D}}v} \right\|_{{L^{\frac{8}{7}}}({L^2})}^{\frac{8}{7}} \leq {C_3}K\left\| p \right\|_{{L^{\frac{8}{7}}}({H^2})}^{\frac{8}{7}} + {C_3}K\left\| {\mu + \chi \sigma } \right\|_{{L^2}({H^1})}^{\frac{8}{7}}\left\| \varphi \right\|_{{L^2}({H^3})}^{\frac{6}{7}}\left\| \varphi \right\|_{{L^\infty }({H^1})}^{\frac{2}{7}}, $ | (4.21) |
for some positive constant $C_{3}$ depending only on $\Omega$.
Proof. From (4.7) we see that $p$ satisfies $\bar p{\text{ = 0}}$ and
$\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {(\mu + \chi \sigma )} \nabla \varphi \cdot \nabla \zeta + \frac{1}{K}{\Gamma _v}\zeta {\text{ dx}}\quad \forall \zeta \in {H^1}(\Omega ).$ |
Testing with $\zeta = p$ and applying the Hölder's inequality and the Poincaré inequality (1.9) gives
${\left\| {\nabla p} \right\|_{{L^2}}} \leq {\left\| {(\mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}} + \frac{{{C_p}}}{K}{\left\| {{\Gamma _v}} \right\|_{{L^2}}}.$ | (4.22) |
Applying Hölder's inequality and the Sobolev embedding $H^{1} \subset L^{6}$ yields that
${\left\| {(\mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}} \leq {\left\| {\mu + \chi \sigma } \right\|_{{L^6}}}{\left\| {\nabla \varphi } \right\|_{{L^3}}} \leq {C_{{\text{Sob}}}}{\left\| {\mu + \chi \sigma } \right\|_{{H^1}}}{\left\| {\nabla \varphi } \right\|_{{L^3}}}.$ | (4.23) |
By the Gagliardo--Nirenberg inequality (1.10) with parameters $j = 0$, $p = 3$, $r = 2$, $m = 2$, $d = 3$ and $q = 2$,
${\left\| {\nabla \varphi } \right\|_{{L^3}}} \leq C\left\| {\nabla \varphi } \right\|_{{H^2}}^{\frac{1}{4}}\left\| {\nabla \varphi } \right\|_{{L^2}}^{\frac{3}{4}} \leq C\left\| \varphi \right\|_{{H^3}}^{\frac{1}{4}}\left\| \varphi \right\|_{{H^1}}^{\frac{3}{4}}, $ | (4.24) |
where $C > 0$ is a constant depending only on $\Omega$. Then, the boundedness of $\mu, \sigma$ in $L^{2}(0, T;H^{1})$ and $\varphi$ in $L^{2}(0, T;H^{3}) \cap L^{\infty}(0, T;H^{1})$ leads to
$∫T0‖(μ+χσ)∇φ‖85L2dt≤C∫T0‖μ+χσ‖85H1‖φ‖25H3‖φ‖65H1dt≤C‖φ‖65L∞(H1)‖μ+χσ‖85L2(H1)‖φ‖25L2(H3). $ |
By (4.22) we find that
$∫T0‖∇p‖85L2dt≤∫T0‖(μ+χσ)∇φ‖85L2+CK‖Γv‖85L2dt≤C[φ]65L∞(H1)‖μ+χσ‖85L2(H1)‖φ‖25L2(H3)+CKT15‖Γv‖85L2(L2), $ |
where the positive constant $C$ depends only on $\Omega$. As $\bar p{\text{ = 0}}$, by the Poincarö inequality (1.9), we see that
$\left\| p \right\|_{{L^{\frac{8}{5}}}({H^1})}^{\frac{8}{5}} \leq C\left\| \varphi \right\|_{{L^\infty }({H^1})}^{\frac{6}{5}}\left\| {\mu + \chi \sigma } \right\|_{{L^2}({H^1})}^{\frac{8}{5}}\left\| \varphi \right\|_{{L^2}({H^3})}^{\frac{2}{5}} + \frac{C}{K}{T^{\frac{1}{5}}}\left\| {{\Gamma _v}} \right\|_{{L^2}({L^2})}^{\frac{8}{5}}, $ |
for some positive constant $C$ depending only on $\Omega$. Next, we see that
$‖div((μ+χσ)∇φ)‖L2≤‖(μ+χσ)Δφ‖L2+‖∇(μ+χσ)⋅∇φ‖L2≤‖μ+χσ‖L6‖Δφ‖L3+‖∇(μ+χσ)‖L2‖∇φ‖L∞. $ |
By the Gagliardo-Nirenberg inequality (1.10), we find that
$‖D2φ‖L3≤C‖φ‖34H3‖φ‖14L6≤C‖φ‖34H3‖φ‖14H1,‖∇φ‖L∞≤C‖φ‖34H3‖φ‖14L6≤C‖φ‖34H3‖φ‖14H1, $ | (4.25) |
and so, we have
${\left\| {{\text{div}}((\mu + \chi \sigma )\nabla \varphi )} \right\|_{{L^2}}} \leq C{\left\| {\mu + \chi \sigma } \right\|_{{H^1}}}\left\| \varphi \right\|_{{H^3}}^{\frac{3}{4}}\left\| \varphi \right\|_{{H^1}}^{\frac{1}{4}}.$ | (4.26) |
That is, ${\text{div}} (( \mu + \chi \sigma) \nabla \varphi) \in L^{2}$. Since by assumption $\Gamma_{{v}} \in L^{2}_{0}$, using elliptic regularity theory, we find that $p(t, \cdot) \in H^{2}$ for a.e. $t$ and there exists a constant $C$ depending only on $\Omega$, such that
${\left\| p \right\|_{{H^2}}} \leq C\left( {{{\left\| p \right\|}_{{H^1}}} + {{\left\| {{\text{div}}((\mu + \chi \sigma )\nabla \varphi )} \right\|}_{{L^2}}} + {K^{ - 1}}{{\left\| {{\Gamma _v}} \right\|}_{{L^2}}}} \right).$ | (4.27) |
Furthermore, from (4.26), we see that
$∫T0div((μ+χσ)∇φ)87L2dt≤C‖φ‖27L∞(H1)∫T0‖μ+χσ‖87H1‖φ‖67H3dt≤C‖φ‖27L∞(H1)‖μ+χσ‖87L2(H1)‖φ‖67L2(H3), $ |
and so for some positive constant $C$ depending only on $\Omega$, it holds that
$∫T0‖p‖87H2dt≤CT37K−87‖Γv‖87L2(L2)+CT27‖p‖87L85(H1)+C‖φ‖27L∞(H1)‖μ+χσ‖87L2(H1)‖φ‖67L2(H3). $ | (4.28) |
For the velocity field ${v}$ we estimate as follows. Let $1 \leq i, j \leq 3$ be fixed, we obtain from (4.25),
$‖Divj‖L2=K‖DiDjp−Di(μ+χσ)Djφ−(μ+χσ)DiDjφ‖L2≤K(‖p‖H2+‖∇(μ+χσ)‖L2‖∇φ‖L∞+‖μ+χσ‖L6‖D2φ‖L3)≤K(‖p‖H2+C‖μ+χσ‖H1‖φ‖34H3‖φ‖14H1). $ | (4.29) |
Applying the same calculation as in (4.28) yields
$∫T0‖Dv‖87L2dt≤CK∫T0‖p‖87H2+‖μ+χσ‖87H1‖φ‖67H3‖φ‖27H1dt≤CK(‖p‖87L87(H2)+‖μ+χσ‖87L2(H1)‖φ‖67L2(H3)‖φ‖27L∞(H1)), $ |
for some positive constant $C$ depending only on $\Omega$.
To estimate the third source term
$\int_\Omega {{\Gamma _v}} \left( {{p_k} - {\mu _k}{\varphi _k} - \frac{D}{2}{{\left| {{\sigma _k}} \right|}^2}} \right){\text{ dx}} = \int_\Omega {{\Gamma _v}} \left( {{p_k} - {{\bar \mu }_k}{\varphi _k} + ({\mu _k} - {{\bar \mu }_k}){\varphi _k} - \frac{D}{2}{{\left| {{\sigma _k}} \right|}^2}} \right){\text{ dx}}$ |
of the energy equality we use Hölder’s inequality to obtain
$|∫ΩΓvD2|σk|2+Γvφk(μk−ˉμk)dx|≤D2‖Γv‖L2‖σk‖2L4+‖Γv‖L32‖μk−ˉμ‖kL6‖φ‖kL6. $ |
By the Gagliardo--Nirenberg inequality (1.10) with $j = 0$, $r = 2$, $m = 1$, $p = 4$, $q = 2$ and $\alpha = \frac{3}{4}$, we have
$\left\| {{\sigma _k}} \right\|_{{L^4}}^2 \leq C\left\| {{\sigma _k}} \right\|_{{H^1}}^{\frac{3}{2}}\left\| {{\sigma _k}} \right\|_{{L^2}}^{\frac{1}{2}} = C\left( {\left\| {{\sigma _k}} \right\|_{{L^2}}^2 + \left\| {{\sigma _k}} \right\|_{{L^2}}^{\frac{1}{2}}{{\left\| {\nabla \sigma } \right\|}_k}_{{L^2}}^{\frac{3}{2}}} \right).$ |
By Young's inequality with Hölder exponents (i.e., $ab \leq \frac{\varepsilon }{p} a^{p} + \frac{\varepsilon ^{-q/p}}{q} b^{q}$ for $\frac{1}{p} + \frac{1}{q} = 1$ and $\varepsilon > 0$), we find that
$\frac{D}{2}{\left\| {{\Gamma _v}} \right\|_{{L^2}}}\left\| {{\sigma _k}} \right\|_{{L^4}}^2 \leq C\left( {{{\left\| {{\Gamma _v}} \right\|}_{{L^2}}}\left\| {{\sigma _k}} \right\|_{{L^2}}^2 + \left\| {{\Gamma _v}} \right\|_{{L^2}}^4\left\| {{\sigma _k}} \right\|_{{L^2}}^2} \right) + \frac{{{n_0}{D^2}}}{4}\left\| {\nabla {\sigma _k}} \right\|_{{L^2}}^2, $ |
for some positive constant $C$ depending only in $n_{0}$, $D$ and $\Omega$. Then, by (4.17) we have
$|∫ΩΓvD2|σk|2+Γvφk(μk−¯μk)dx|≤n0D24‖∇σk‖2L2+C(1+‖Γv‖4L2)‖σk‖2L2+‖Γv‖L32c(Cp,CSob)‖∇μk‖L2‖φk‖H1≤n0D24‖∇σk‖2L2+C(1+‖Γv‖4L2)‖σk‖2L2+m08‖∇μk‖2L2+C‖Γv‖2L2φk2H1, $ |
where the positive constant $C$ depends only on $\Omega$, $m_{0}$, $n_{0}$ and $D$. Here we point out that the assumption $\Gamma_{{v}} \in L^{4}(0, T;L^{2}_{0})$ is needed. For the remainder term $\Gamma_{{v}} (p_{k} - \overline{\mu_{k}} \varphi_{k})$, we find that
$pk−¯μkφk=((−ΔN)−1(1KΓv−div((μk−¯μk+χσk)∇φk)−¯μkdiv∇(φk−¯φk)))−¯μkφk=((−ΔN)−1(1KΓv−div((μk−¯μk+χσk)∇φk)))−¯μk¯φk, $ |
where we used
${( - {\Delta _N})^{ - 1}}\left( { - \overline {{\mu _k}} {\text{div}}\nabla ({\varphi _k} - \overline {{\varphi _k}} )} \right) = \overline {{\mu _k}} ({\varphi _k} - \overline {{\varphi _k}} ).$ |
Then, by
$\int_\Omega {{\Gamma _v}} \overline {{\varphi _k}} \overline {{\mu _k}} {\text{ dx}} = \overline {{\mu _k}} \overline {{\varphi _k}} \int_\Omega {{\Gamma _v}} {\text{ dx}} = 0, $ |
it holds that
$\int_\Omega {{\Gamma _v}} ({p_k} - \overline {{\mu _k}} {\varphi _k}){\text{ dx}} = \int_\Omega {{\Gamma _v}} \left( {{{\left( { - {\Delta _N}} \right)}^{ - 1}}\left( {\frac{1}{K}{\Gamma _v} - {\text{div}}(({\mu _k} - \overline {{\mu _k}} + \chi {\sigma _k})\nabla {\varphi _k})} \right)} \right).$ |
Applying the calculations in the proof of Lemma 4.1 (specifically (4.10), (4.16) and (4.17)), H¨older’s inequality and Young’s inequality, we find that
$|∫ΩΓv(pk−¯μkφk)dx|≤CK‖Γv‖2L2+C‖Γv‖L2(‖∇μk‖L2+χ‖σk‖H1)‖∇φk‖L32≤CK‖Γv‖2L2+m08‖∇μk‖2L2+n0D24‖∇σk‖2L2+‖σk‖2L2+C(1+χ2)‖Γv‖2L2‖∇φk‖2L2, $ |
where $C$ is a positive constant depending only on $\left| \Omega \right|$, $C_{p}$, $C_{\mathrm{Sob}}$, $D$, $n_{0}$ and $m_{0}$. Here we point out that if we applied (4.18) instead of (4.8) then we obtain a term containing ${\left\| {\nabla \varphi } \right\|_{{L^3}}}$ on the right-hand side and this cannot be controlled by the left-hand side of (4.4). Using (2.4) we have
$\left\| {{\varphi _k}} \right\|_{{L^2}}^2 \leq \frac{1}{{{R_1}}}{\left\| {\Psi ({\varphi _k})} \right\|_{{L^1}}} + \frac{{{R_2}}}{{{R_1}}}\left| \Omega \right|.$ | (4.30) |
Then, we obtain the following estimate
$|∫ΩΓv(pk−μkφk−D2|σk|2)dx|≤C(1K‖Γv‖2L2+1)+n0D22‖∇σk‖2L2+m04‖∇μk‖2L2+C(1+‖Γv‖4L2)‖σk‖2L2+C‖Ψ(φk)‖L1+C(1+χ2)‖Γv‖2L2‖∇φk‖2L2, $ | (4.31) |
for some positive constant $C$ depending only on $R_{1}$, $R_{2}$, $\Omega$, $m_{0}$, $n_{0}$ and $D$. Here we point out that it is crucial for the source term $\Gamma_{{v}}$ to be prescribed and is not a function of $\varphi$, $\mu$ and $\sigma$, otherwise the product term $\left\| {{\Gamma _v}} \right\|_{{L^2}}^4\left\| {{\sigma _k}} \right\|_{{L^2}}^2$ and $\left\| {{\Gamma _v}} \right\|_{{L^2}}^2\left\| {\nabla {\varphi _k}} \right\|_{{L^2}}^2$ cannot be controlled in the absence of any a priori estimates. For the remaining source term
$\int_\Omega {{\Gamma _{\varphi , k}}} {\mu _k} - {\mathcal{S}_k}N_{, \sigma }^k{\text{ dx}}$ |
we split the analysis into two cases and combine with (4.31) to derive an energy inequality.
Suppose $\Theta_{\varphi}$ is non-negative and bounded, and $\Psi$ is a potential that satisfies (2.5). We will estimate the mean of $\mu_{k}$ by setting $j = 1$ in (3.2b), and using the growth condition (2.5) to obtain
$|∫Ωμkdx|2=|∫ΩAΨ′(φk)−χσkdx|2≤2A2‖Ψ′(φk)‖2L1+2χ2‖σk‖2L1≤2A2R24(|Ω|+|Ω|12‖φk‖L2)2+2χ2|Ω|‖σk‖2L2≤C(A,R4,|Ω|)+4A2R24|Ω|‖σk‖2L2+2χ2|Ω|‖σk‖2L2. $ |
Then, by the Poincarö inequality (1.9) and the growth condition (2.4), we find that
$‖μk‖2L2≤2C2P‖∇μk‖2L2+2|Ω||¯μk|2≤2C2p‖∇μk‖2L2+8A2R24‖φk‖2L2+4χ2‖σk‖2L2+C(A,R4,|Ω|)≤2C2p‖∇μk‖2L2+8A2R24R1‖Ψ(φk)‖L1+4χ2‖σk‖2L2+C(A,R4,R1,R2,|Ω|). $ | (4.32) |
Note that by the specific form (2.1) for $\Gamma_{\varphi}$ we have that
${\Gamma _{\varphi , k}}{\mu _k} = {\Lambda _\varphi }({\varphi _k}, {\sigma _k}){\mu _k} - {\Theta _\varphi }({\varphi _k}, {\sigma _k}){\text{ }}{\left| {{\mu _k}} \right|^2}.$ |
Moving the non-negative term ${\Theta _\varphi }({\varphi _k}, {\sigma _k}){\left| {{\mu _k}} \right|^2}$ to the left-hand side of (4.4) and subsequently neglecting it, we estimate the remainder using the growth condition (2.3) and Hölder's inequality as follows (here we use the notation $\Lambda_{\varphi, k} := \Lambda_{\varphi}(\varphi_{k}, \sigma_{k})$),
$|∫ΩΛφ,kμk−Sk(Dσk+χ(1−φk))dx|≤‖Λφ,k‖L2‖μk‖L2+(‖ΛS,k‖L2+R0‖μk‖L2)‖Dσk+χ(1−φk)‖L2≤C(1+χ+(1+χ)‖φk‖L2+(1+D)‖σk‖L2)‖μk‖L2+C(1+‖φk‖L2+‖σ‖L2)(χ|Ω|12+D‖σ‖L2+χ‖φk‖L2) $ | (4.33) |
where $C$ is a positive constant depending only on $R_{0}$ and $\left| \Omega \right|$. By Young's inequality, (4.32) and (4.30), we have
$|∫ΩΛφ,kμk−Sk(Dσk+χ(1−φk))dx|≤m08C2p‖μk‖2L2+C(1+χ+D+χ2)‖φk‖2L2+C(1+χ+D)2‖σk‖2L2+C(1+χ+χ2)≤m04‖∇μk‖2L2+C(1+χ2)‖σk‖2L2+C(1+χ2)‖Ψ(φk)‖L1+C(1+χ2), $ | (4.34) |
for some positive constant $C$ depending only on $\left| \Omega \right|$, $R_{0}$, $R_{1}$, $R_{2}$, $R_{4}$, $A$, $D$, $C_{p}$ and $m_{0}$. Using the fact that
${\left\| {D\nabla \sigma } \right\|_{{L^2}}} \leq {\left\| {\nabla (D\sigma + \chi (1 - \varphi ))} \right\|_{{L^2}}} + {\left\| {\chi \nabla \varphi } \right\|_{{L^2}}}, $ |
we now estimate the right-hand side of (4.4) using (4.6), (4.31) and (4.34), which leads to
$ddt∫ΩAΨ(φk)+B2|∇φk|2+D2|σk|2+χσk(1−φk)dx+m02‖∇μk‖2L2+n0D22‖∇σk‖2L2+1K‖vk‖2L2+Db2‖σk‖2L2(∂Ω)≤C(1+b)(1+χ2)‖Ψ(φk)‖L1+C(‖Γv‖2L2+b)(1+χ2)‖∇φk‖2L2+C(1+χ2+‖Γv‖4L2)‖σk‖2L2+C(1+b)(1+χ2)+CK‖Γv‖2L2+bC(1+χ2)‖σ∞‖2L2(∂Ω), $ | (4.35) |
for some positive constant $C$ not depending on $\Gamma_{{v}}$, $K$, $b$ and $\chi$. Integrating (4.35) with respect to $t$ from $0$ to $s \in (0, T]$ leads to
$A‖Ψ(φk(s))‖L1+B2‖∇φk(s)‖2L2+D2‖σk(s)‖2L2+∫Ωχσk(s)(1−φk(s))dx+∫s0m02‖∇μk‖2L2+n0D22‖∇σk‖2L2+1K‖vk‖2L2+Db2‖σk‖2L2(∂Ω)dt≤∫s0C(1+b)(1+χ2)(1+‖Γv‖4L2)(‖Ψ(φk)‖L1+‖∇φk‖2L2+‖σk‖2L2)dt+C(1+b)(1+χ2)T+CK‖Γv‖2L2(0,T;L2)+Cb(1+χ2)‖σ∞‖2L2(0,T;L2(∂Ω))+C(‖Ψ(φ0)‖L1+‖φ0‖2H1+‖σ0‖2L2), $ | (4.36) |
for some positive constant $C$ independent of $\Gamma_{{v}}$, $K$, $\chi$ and $b$. Here we used $\sigma_{0} \in L^{2}$ and $\varphi_{0} \in H^{1}$, which implies by the growth condition (2.5) that $\Psi(\varphi_{0}) \in L^{1}$. Next, by Hölder's inequality and Young's inequality we have
$|∫Ωχσk(x,s)(1−φk(x,s))dx|≤2D8‖σk(s)‖2L2+2χ2|Ω|D+2χ2D‖φk(s)‖2L2≤D4‖σk(s)‖2L2+2χ2DR1‖Ψ(φk(s))‖L1+2χ2|Ω|D(1+R2). $ | (4.37) |
Substituting (4.37) into (4.36) then yields
$min(A−2χ2DR1,B2,D4)(‖Ψ(φk(s))‖L1(Ω)+‖∇φk(s)‖2L2(Ω)+‖σk(s)‖2L2(Ω))+∫s0‖∇μk‖2L2+‖∇σk‖2L2+1K‖vk‖2L2+b2‖σk‖2L2(∂Ω)dt≤∫s0C(1+b)(1+χ2)(1+‖Γv‖4L2)(‖Ψ(φk)‖L1+‖∇φk‖2L2+‖σk‖2L2)dt+C(1+b)(1+χ2)(1+T)+CK‖Γv‖2L2(0,T;L2), $ | (4.38) |
for some positive constant $C$ independent of $\Gamma_{{v}}$, $K$, $b$ and $\chi$. Setting
$α:=C(1+b)(1+χ2)(1+T)+CK‖Γv‖2L2(0,T;L2),β:=C(1+b)(1+χ2)(1+‖Γv‖4L2)∈L1(0,T), $ | (4.39) |
and noting that
$\alpha \left( {1 + \int_0^s \beta (t)\exp \left( {\int_0^t \beta (r){\text{ dr}}} \right){\text{ dt}}} \right) \leq \alpha \left( {1 + {{\left\| \beta \right\|}_{{L^1}(0, T)}}\exp \left( {{{\left\| \beta \right\|}_{{L^1}(0, T)}}} \right)} \right) < \infty , $ |
we find after applying the Gronwall inequality (1.11) to (4.38) leads to
$sups∈(0,T](‖Ψ(φk(s))‖L1+‖∇φk(s)‖2L2+‖σk(s)‖2L2)+∫T0‖∇μk‖2L2+‖∇σk‖2L2+1K‖vk‖2L2+b2‖σk‖2L2(∂Ω)dt≤E, $ | (4.40) |
where we recall that $\mathcal{E}$ denotes a constant that is uniformly bounded for $b, \chi \in (0, 1]$ and is also uniformly bounded for $K \in (0, 1]$ when $\Gamma_{{v}} = 0$.
Suppose $\Theta_{\varphi}$ satisfies (2.6) and $\Psi$ is a potential satisfying the growth condition (2.7). Similar to the previous case, we see that the specific form for $\Gamma_{\varphi}$ leads to
${\Gamma _{\varphi , k}}{\mu _k} = {\Lambda _\varphi }({\varphi _k}, {\sigma _k}){\mu _k} - {\Theta _\varphi }({\varphi _k}, {\sigma _k}){\text{ }}{\left| {{\mu _k}} \right|^2}.$ |
We move the term ${\Theta _\varphi }({\varphi _k}, {\sigma _k}){\left| {{\mu _k}} \right|^2}$ to the left-hand side of (4.4) and estimate the remainder as in (4.33). Using Young's inequality differently and also (4.30), we have
$|∫ΩΛφ,kμk−Sk(Dσk+χ(1−φk))dx|≤R52‖μk‖2L2+C(1+χ+D+χ2)‖φk‖2L2+C(1+χ+D)2‖σk‖2L2+C(1+χ+χ2)≤R52‖μk‖2L2+C(1+χ2)‖σk‖2L2+C(1+χ2)‖Ψ(φk)‖L1+C(1+χ2), $ | (4.41) |
for some positive constant $C$ depending only on $\left| \Omega \right|$, $R_{5}$, $R_{1}$, $R_{2}$, $A$, $D$, and $C_{p}$. Using (4.6), (4.31), (4.41) and the lower bound $\Theta_{\varphi} \geq R_{5}$, instead of (4.35) we obtain from (4.4)
$ddt∫ΩAΨ(φk)+B2|∇φk|2+D2|σ|k2+χσk(1−φk)dx+R52‖μk‖2L2+m02‖∇μk‖2L2(Ω)+n0D22‖∇σk‖2L2+1K‖vk‖2L2+Db2‖σk‖2L2(∂Ω)≤C(1+b)(1+χ2)‖Ψ(φk)‖L1+C(‖Γv‖2L2+b)(1+χ2)‖∇φk‖2L2+C(1+χ2+‖Γv‖4L2)‖σk‖2L2+C(1+b)(1+χ2)+CK‖Γv‖2L2+Cb(1+χ2)‖σ∞‖2L2(∂Ω), $ | (4.42) |
for some positive constant $C$ independent of $\Gamma_{{v}}$, $K$, $b$ and $\chi$. We point out the main difference between (4.35) and the above is the appearance of the term $\frac{{{R_5}}}{2}\left\| {{\mu _k}} \right\|_{{L^2}}^2$ on the left-hand side. The positivity of $\Theta_{\varphi}$ allows us to absorb the $\left\| {{\mu _k}} \right\|_{{L^2}}^2$ term on the right-hand side of (4.41) and thus we do not need to use (4.32), which was the main reason why $\Psi$ has to be a quadratic potential for a non-negative $\Theta_{\varphi}$. Then, applying a similar argument as in Section 4.1.3, we arrive at an analogous energy inequality to (4.40),
$sups∈(0,T](‖Ψ(φk(s))‖L1+‖∇φk(s)‖2L2+‖σk(s)‖2L2)+∫T0‖μk‖2H1+‖∇σk‖2L2+1K‖vk‖2L2+b2‖σk‖2L2(∂Ω)dt≤E. $ | (4.43) |
Using (4.32) and (4.30) applied to (4.40), and similarly using (4.30) applied to (4.43) we obtain
$sups∈(0,T](‖Ψ(φk(s))‖L1+‖φk(s)‖2H1+‖σk(s)‖2L2)+∫T0‖μk‖2H1+‖∇σk‖2L2+1K‖vk‖2L2+b2‖σk‖2L2(∂Ω)dt≤E. $ | (4.44) |
This a priori estimate implies that the Galerkin ansatz $\varphi_{k}$, $\mu_{k}$, $\sigma_{k}$ and ${v}_{k}$ can be extended to the interval $[0, T]$. To determine if $p_{k}$ can also be extended to the interval $[0, T]$ we require some higher order estimates for $\varphi_{k}$ in order to use (4.19).
Let $\Pi_{k}$ denote the orthogonal projection onto the finite-dimensional subspace $W_{k}$. From (3.2b) we may view $\varphi_{k}$ as the solution to the following elliptic equation
$- B\Delta u + u = {\mu _k} - A{\Pi _k}\left( {\Psi '(u)} \right) + \chi {\sigma _k} + u{\text{ in }}\Omega , $ | (4.45a) |
${\partial _n}u = 0{\text{ on }}\partial \Omega .$ | (4.45b) |
For the case where $\Psi$ satisfies (2.5), as $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{\infty}(0, T;H^{1})$, we have that $\{ \Psi'(\varphi_{k})\}_{k \in \mathbb{N}}$ is also bounded in $L^{\infty}(0, T;H^{1})$. Using the fact that our basis functions $\{w_{i}\}_{i \in \mathbb{N}}$ are the eigenfunctions of the inverse Neumann-Laplacian operator and is therefore orthogonal in $H^{1}$, and the Sobolev embedding $H^{1} \subset L^{r}$ for $r \in [1, 6]$, there exists a positive constant $C$ independent of $\varphi_{k}$ such that
${\left\| {{\Pi _k}(\Psi '({\varphi _k}))} \right\|_X} \leq C{\left\| {\Psi '({\varphi _k})} \right\|_X}\quad {\text{ for }}X = {H^1}{\text{ or }}{L^r}, 1 \leq r \leq 6.$ | (4.46) |
Then, this implies that $\{\Pi_{k} \left ( \Psi'(\varphi_{k} ) \right )\}_{k \in \mathbb{N}}$ is also bounded in $L^{\infty}(0, T;H^{1})$. As the right-hand side of (4.45a) belongs to $H^{1}$ for a.e. $t \in (0, T)$, and the boundary $\partial \Omega$ is $C^{3}$, by elliptic regularity theory, we have
${\left\| {{\varphi _k}} \right\|_{{L^2}({H^3})}} \leq C\left( {1 + {{\left\| {{\varphi _k}} \right\|}_{{L^2}({H^1})}} + {{\left\| {{\mu _k} + \chi {\sigma _k}} \right\|}_{{L^2}({H^1})}}} \right) \leq \mathcal{E}, $ | (4.47) |
for some positive constant $C$ depending only on $\Omega$ and $R_{4}$. For the case where $\Psi$ satisfies (2.7), we employ a bootstrap argument from [18, x3.3]. The growth assumption (2.7) implies that
$\left| {\Psi '(y)} \right| \leq C\left( {1 + {{\left| y \right|}^m}} \right), \quad {\text{ }}\left| {\Psi ''(y)} \right| \leq C\left( {1 + {{\left| y \right|}^{m - 1}}} \right){\text{ for }}m \in [1, 5).$ | (4.48) |
For fixed $m \in [1, 5)$, we define a sequence of positive numbers $\{l_{j}\}_{j \in \mathbb{N}}$ by
$l_{1}m \leq 6, \quad l_{j+1} = \frac{6 l_{j}}{6 - (5-m)l_{j}}.$ |
It can be shown that $\{l_{j}\}_{j \in \mathbb{N}}$ is a strictly increasing sequence such that $l_{j} \to \infty$ as $j \to \infty$. The Gagliardo--Nirenberg inequality (1.10) then yields the following continuous embedding
$L^{2}(0, T;W^{2, l_{j}}) \cap L^{\infty}(0, T;L^{6}) \subset L^{2m}(0, T;L^{m l_{j+1}}).$ | (4.49) |
At the first step, the boundedness of $\{\varphi_{k}\}_{k \in \mathbb{N}}$ in $L^{\infty}(0, T;H^{1})$ yields
$\left\| {{\Pi _k}(\Psi '({\varphi _k}))} \right\|_{{L^{{l_1}}}}^2 \leq C\left( {1 + \left\| {{\varphi _k}} \right\|_{{L^6}}^{2m}} \right), $ |
which implies that $\{\Pi_{k}(\Psi'(\varphi_{k})) \}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;L^{l_{1}})$. As the other terms on the right-hand side of (4.45) are bounded in $L^{2}(0, T;H^{1})$, elliptic regularity then yields that $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;W^{2, l_{1}})$, and thus in $L^{2m}(0, T;L^{ml_{2}})$ by (4.49).
At the $j$-th step, we have $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T, W^{2, l_{j}}) \cap L^{2m}(0, T;L^{m l_{j+1}})$. Then, it holds that
$\left\| {{\Pi _k}(\Psi '({\varphi _k}))} \right\|_{{L^2}({L^{{l_{j + 1}}}})}^2 \leq C\left( {1 + \left\| {{\varphi _k}} \right\|_{{L^{2m}}({L^{m{l_{j + 1}}}})}^{2m}} \right), $ |
and so $\{\Pi_{k}(\Psi'(\varphi_{k})) \}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;L^{l_{j+1}})$. Elliptic regularity then implies that $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;W^{2, l_{j+1}})$.
We terminate the bootstrapping procedure once $l_{j} \geq 6$ for some $j \in \mathbb{N}$. This occurs after a finite number of steps as $\lim_{j \to \infty} l_{j} = \infty $. Altogether, we obtain that $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;W^{2, 6})$. From (4.48) it holds that
${\left\| {\Psi ''({\varphi _k})\nabla {\varphi _k}} \right\|^2} \leq C\left( {1 + {{\left| {{\varphi _k}} \right|}^{2m - 2}}} \right){\left| {\nabla {\varphi _k}} \right|^2}{\text{ for }}m \in [1, 5), $ |
and by the following continuous embeddings obtain from the Gagliardo-Nirenberg inequality (1.10),
$L^{2}(0, T;W^{2, 6}) \cap L^{\infty}(0, T;H^{1}) \subset L^{2m}(0, T;L^{2m}) \cap L^{2m-2}(0, T;L^{\infty}) \text{ for } m \in [1, 5), $ |
we find that $\{\Pi_{k}(\Psi'(\varphi_{k}))\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;H^{1})$. Applying elliptic regularity once more leads to the boundedness of $\{\varphi_{k}\}_{k \in \mathbb{N}}$ in $L^{2}(0, T;H^{3})$. Consequently, the hypotheses of Lemma 4.2 are satisfied and we obtain that
${\left\| {{p_k}} \right\|_{{L^{\frac{8}{5}}}({H^1})}} \leq \mathcal{E}, $ |
which implies that the Galerkin ansatz $p_{k}$ can be extended to the interval $[0, T]$.
By the Gagliardo-Nirenberg inequality (1.10) with $j = 0$, $p = \infty$, $m = 3$, $r = 2$, $q = 2$ and $d = 3$, we have
${\left\| {{\varphi _k}} \right\|_{{L^\infty }}} \leq C\left\| {{\varphi _k}} \right\|_{{H^3}}^{\frac{1}{4}}\left\| {{\varphi _k}} \right\|_{{L^6}}^{\frac{3}{4}} \leq C\left\| {{\varphi _k}} \right\|_{{H^3}}^{\frac{1}{4}}\left\| {{\varphi _k}} \right\|_{{H^1}}^{\frac{3}{4}}.$ |
For any $\zeta \in L^{\frac{8}{3}}(0, T;H^{1})$ with coefficients $\{\zeta_{kj}\}_{1 \leq j \leq k} \subset \mathbb{R}^{k}$ such that $\Pi_{k} \zeta = \sum_{j=1}^{k} \zeta_{kj} w_{j}$, we can estimate
$|∫T0∫Ωφkvk⋅∇Πkζdx dt|≤∫T0‖vk‖L2‖φk‖L∞‖∇Πkζ‖L2dt≤C‖φk‖34L∞(H1)‖vk‖L2(L2)‖φk‖14L2(H3)‖ζ‖L83(H1). $ | (4.50) |
Using (4.44) and (4.47), we find that
${\left\| {{\text{div}}({\varphi _k}{v_k})} \right\|_{{L^{\frac{8}{5}}}({{({H^1})}^*})}} \leq {K^{\frac{1}{2}}}\mathcal{E}.$ | (4.51) |
Next, multiplying (3.2a) by $\zeta_{kj}$, summing from $j = 1$ to $k$ and then integrating in time from $0$ to $T$ leads to
$|∫T0∫Ω∂tφkζdx dt|≤∫T0m1‖∇μk‖L2‖∇Πkζ‖L2dt+∫T0‖Γφ,k‖L2‖Πkζ‖L2+‖div(φkvk)‖(H1)∗‖Πkζ‖H1dt. $ |
By (2.1), (2.2) and (4.44), we find that
${\left\| {{\Gamma _{\varphi , k}}} \right\|_{{L^2}({L^2})}} \leq C({R_0}, \left| \Omega \right|, T)\left( {1 + {{\left\| {{\varphi _k}} \right\|}_{{L^2}({L^2})}} + {{\left\| {{\mu _k}} \right\|}_{{L^2}({L^2})}} + {{\left\| {{\sigma _k}} \right\|}_{{L^2}({L^2})}}} \right) \leq \mathcal{E}, $ |
and so, by Hölder’s inequality, we find that
$\left| {\int_0^T {\int_\Omega {{\partial _t}} } {\varphi _k}\zeta {\text{ dx dt}}} \right| \leq \left( {\mathcal{E}{T^{\frac{1}{8}}} + {{\left\| {{\text{div}}({\varphi _k}{v_k})} \right\|}_{{L^{\frac{8}{5}}}({{({H^1})}^*})}}} \right){\left\| \zeta \right\|_{{L^{\frac{8}{3}}}({H^1})}}.$ |
Taking the supremum over $\zeta \in L^{\frac{8}{3}}(0, T;H^{1})$ and using (4.44) and (4.51) yields that
${\left\| {{\partial _t}{\varphi _k}} \right\|_{{L^{\frac{8}{5}}}({{({H^1})}^*})}} \leq \mathcal{E}\left( {1 + {K^{\frac{1}{2}}}} \right), $ | (4.52) |
Similarly, by Hölder's inequality and the following Gagliardo--Nirenberg inequality (1.10) with $j = 0$, $r = 2$, $m = 1$, $p = \frac{10}{3}$, $q = 2$ and $d = 3$,
${\left\| f \right\|_{{L^{\frac{{10}}{3}}}}} \leq C\left\| f \right\|_{{H^1}}^{\frac{3}{5}}\left\| f \right\|_{{L^2}}^{\frac{2}{5}}, $ |
which in turn implies that $\{\sigma_{k}\}_{k \in \mathbb{N}}$ is bounded uniformly in $L^{\frac{10}{3}}(Q)$. Then, we find that for any $\zeta \in L^{5}(0, T;W^{1, 5})$,
$|∫T0∫Ωσkvk⋅∇Πkζdx dt|≤∫T0‖σk‖L103‖vk‖L2‖∇ζ‖L5dt≤‖σk‖L103(Q)‖vk‖L2(L2)‖∇ζ‖L5(L5), $ | (4.53) |
and
${\left\| {{\text{div}}({\sigma _k}{v_k})} \right\|_{{L^{\frac{5}{4}}}({{({W^{1, 5}})}^*})}} \leq {K^{\frac{1}{2}}}\mathcal{E}.$ | (4.54) |
A similar calculation to (4.52) yields that
${\left\| {{\partial _t}{\sigma _k}} \right\|_{{L^{\frac{5}{4}}}({{({W^{1, 5}})}^*})}} \leq \mathcal{E}\left( {1 + {K^{\frac{1}{2}}}} \right).$ | (4.55) |
Remark 4.2. We may also use the Gagliardo-Nirenberg inequality to deduce that
${\left\| f \right\|_{{L^r}}} \leq C\left\| f \right\|_{{H^1}}^{\frac{{3(r - 2)}}{{2r}}}\left\| f \right\|_{{L^2}}^{\frac{{6 - r}}{{2r}}}{\text{ for any }}r \in (2, 6).$ |
Then, the computation (4.53) becomes
$\left| {\int_0^T {\int_\Omega {{\sigma _k}} } {v_k} \cdot \nabla {\Pi _k}\zeta {\text{ dx dt}}} \right| \leq C{\left\| {{v_k}} \right\|_{{L^2}({L^2})}}\left\| {{\sigma _k}} \right\|_{{L^\infty }({L^2})}^{\frac{{6 - r}}{{2r}}}\left\| {{\sigma _k}} \right\|_{{L^2}({H^1})}^{\frac{{3(r - 2)}}{{2r}}}{\left\| {\nabla \zeta } \right\|_{{L^{\frac{{4r}}{{6 - r}}}}({L^{\frac{{2r}}{{r - 2}}}})}}, $ |
which implies that $\{ {\text{div}} (\sigma_{k} {v}_{k}) \}_{k \in \mathbb{N}}$ and $\{ \partial _{t}\sigma_{k}\}_{k \in \mathbb{N}}$ are bounded uniformly in
$L^{\frac{4r}{5r-6}}(0, T;(W^{1, \frac{2r}{r-2}})^{*}) \text{ for } r \in (2, 6).$ |
Note that the temporal exponent decreases while the spatial exponent increases as r increases, and they intersect at the point $r = \frac{10}{3}$
Here we point out that even with the improved regularity ${v}_{k} \in L^{\frac{8}{7}}(0, T;{H}^{1})$, we are unable to show ${\text{div}}(\sigma_{k} {v}_{k})$ is bounded in the dual space $(H^{1})^{*}$. Indeed, let $q$, $r > 1$ be constants yet to be determined such that $\frac{1}{q} + \frac{1}{r} = \frac{1}{2}$. Then, from Hölder's inequality we have
$\left| {\int_0^T {\int_\Omega {{\sigma _k}} } {v_k} \cdot \nabla {\Pi _k}\zeta {\text{ dx dt}}} \right| \leq \int_0^T {} {\left\| {{\sigma _k}} \right\|_{{L^q}}}{\left\| {{v_k}} \right\|_{{L^r}}}{\left\| {\nabla \zeta } \right\|_{{L^2}}}{\text{ dt}}.$ |
By the Gagliardo--Nirenberg inequality we have for $\alpha = \frac{3}{2} - \frac{3}{q} \leq 1$, $\beta = \frac{3}{2} - \frac{3}{r} \leq 1$,
$|∫T0∫Ωσkvk⋅∇Πkζdx dt|≤C∫T0‖σk‖1−αL2‖σk‖αH1‖vk‖βH1‖vk‖1−βL2‖∇ζ‖L2dt≤C‖σk‖1−αL∞(L2)∫T0‖σk‖αH1‖vk‖βH1‖vk‖1−βL2‖ζ‖H1dt≤C‖σk‖1−αL∞(L2)‖σk‖αLαx1(H1)‖vk‖βLβx2(H1)‖vk‖1−βL(1−β)x3(L2)‖ζ‖Lx4(H1), $ |
where
$\frac{1}{x_{1}} + \frac{1}{x_{2}} + \frac{1}{x_{3}} + \frac{1}{x_{4}} = 1, \quad \alpha x_{1} \leq 2, \quad \beta x_{2} \leq \frac{8}{7}, \quad (1-\beta) x_{3} \leq 2.$ | (4.56) |
Note that $\alpha = \frac{3}{2} - \frac{3}{q} = \frac{3}{r}$, and then substituting into the constraints (4.56) we find that
$\frac{1}{x_{1}} + \frac{1}{x_{2}} + \frac{1}{x_{3}} \geq \frac{\alpha}{2} + \frac{7}{8} \beta + \frac{1-\beta}{2} = \frac{3}{2r} + \frac{21}{16} - \frac{21}{8r} + \frac{3}{2r} - \frac{1}{4} = \frac{17}{16} + \frac{3}{8}r > 1.$ | (4.57) |
Hence, we cannot find $x_{1}$, $x_{2}$, $x_{3}$ and $x_{4}$ satisfying (4.56) and we are unable to deduce that ${\text{div}} (\sigma_{k} {v}_{k})$ lies in the dual space $(H^{1})^{*}$ even with the improved regularity ${v}_{k} \in L^{\frac{8}{7}}(0, T; {H}^{1})$.
From (4.44), (4.47), (4.19), (4.20), (4.21), (4.51), (4.52), (4.54), (4.55), we find that
${φk}k∈Nbounded in L∞(0,T;H1)∩L2(0,T;H3),{∂tφk}k∈N,{div(φkvk)}k∈N bounded in L85(0,T;(H1)∗),{σk}k∈N bounded in L∞(0,T;L2)∩L2(0,T;H1)∩L2(Σ),{∂tσk}k∈N,{div(σkvk)}k∈N bounded in L54(0,T;(W1,5)∗),{μk}k∈N bounded in L2(0,T;H1),{pk}k∈N bounded in L85(0,T;H1)∩L87(0,T;H2),{vk}k∈N bounded in L2(0,T;L2)∩L87(0,T;H1). $ |
By standard compactness results (Banach-Alaoglu theorem and reflexive weak compactness theorem), and [28, x8, Cor. 4], and the compact embeddings in dimension 3 (see [1, Thm. 6.3] and [15, Thm. 11.2, p. 31])
$H^{j+1}(\Omega) = W^{j+1, 2}(\Omega) \subset \subset W^{j, q}(\Omega) \quad \forall j \geq 0, j \in \mathbb{Z}, \; 1 \leq q < 6, $ |
and the compact embedding $L^{2} \subset \subset (H^{1})^{*}$, we obtain, for a relabelled subsequence, the following weak/weak-* convergences:
$φk→φ weakly - ∗ in L∞(0,T;H1)∩L2(0,T;H3)∩W1,85(0,T;(H1)∗),σk→σ weakly - ∗ in L2(0,T;H1)∩L∞(0,T;L2)∩L2(Σ),∂tσk→∂tσ weakly in L54(0,T;(W1,5)∗),μk→μ weakly in L2(0,T;H1),pk→p weakly in L85(0,T;H1)∩L87(0,T;H2),vk→v weakly in L2(0,T;L2)∩L87(0,T;H1),div(φkvk)→ξ weakly in L85(0,T;(H1)∗),div(σkvk)→θ weakly in L54(0,T;(W1,5)∗), $ |
and the following strong convergences:
$φk→φ strongly in C0([0,T];Lr)∩L2(0,T;W2,r) and a.e. in Q,σk→σ strongly in C0([0,T];(H1)∗)∩L2(0,T;Lr) and a.e. in Q, $ |
for any $r \in [1, 6)$ and some functions $\xi \in L^{\frac{8}{5}}(0, T;(H^{1})^{*})$, $\theta \in L^{\frac{5}{4}}(0, T;(W^{1, 5})^{*})$.
For the rest of this section, we fix $1 \leq j \leq k$ and $\delta \in C^{\infty}_{c}(0, T)$. Then, we have $\delta(t) w_{j} \in C^{\infty}(0, T;H^{2})$. By continuity of $m(\cdot)$, we see that $m(\varphi_{k}) \to m(\varphi)$ a.e. in $Q$. Thanks to the boundedness of $m(\cdot)$, applying Lebesgue's dominated convergence theorem to ${(m({\varphi _k}) - m(\varphi ))^2}{\left| {\delta \nabla {w_j}} \right|^2}$ yields
${\left\| {m({\varphi _k})\delta \nabla {w_j} - m(\varphi )\delta \nabla {w_j}} \right\|_{{L^2}(Q)}} \to 0{\text{ as }}k \to \infty .$ |
Together with the weak convergence $\mu_{k} \rightharpoonup \mu$ in $L^{2}(0, T;H^{1})$, we obtain by the product of weak-strong convergence
$\int_0^T {\int_\Omega m } ({\varphi _k})\delta \nabla {w_j} \cdot \nabla {\mu _k}{\text{ dx dt}} \to \int_0^T {\int_\Omega m } (\varphi )\delta \nabla {w_j} \cdot \nabla \mu {\text{ dx dt as }}k \to \infty .$ |
Terms involving $n(\cdot)$ can be dealt with in a similar fashion. For the source term $\Gamma_{\varphi, k} = \Lambda_{\varphi}(\varphi_{k}, \sigma_{k}) - \Theta_{\varphi}(\varphi_{k}, \sigma_{k})\mu_{k}$, by the continuity and boundedness of $\Theta_{\varphi}$, the a.e. convergence of $\varphi_{k} \to \varphi$ and $\sigma_{k} \to \sigma$ in $Q$, we may apply Lebesgue's dominated convergence theorem to deduce that
$\int_0^T {\int_\Omega {} } {\left| {\delta {w_j}({\Theta _\varphi }({\varphi _k}, {\sigma _k}) - {\Theta _\varphi }(\varphi , \sigma ))} \right|^2}{\text{ dx dt}} \to 0{\text{ as }}k \to \infty , $ |
that is, we obtain the strong convergence $\delta w_{j} \Theta_{\varphi}(\varphi_{k}, \sigma_{k}) \to \delta w_{j} \Theta_{\varphi}(\varphi, \sigma)$ in $L^{2}(Q)$. Hence, the weak convergence $\mu_{k} \rightharpoonup \mu$ in $L^{2}(0, T;H^{1})$ yields
$\int_0^T {\int_\Omega \delta } {w_j}{\Theta _\varphi }({\varphi _k}, {\sigma _k}){\mu _k}{\text{ dx dt}} \to \int_0^T {\int_\Omega \delta } {w_j}{\Theta _\varphi }(\varphi , \sigma )\mu {\text{ dx dt as }}k \to \infty .$ |
Meanwhile, by the triangle inequality $\left| {\left| a \right| - \left| b \right|} \right| \leq \left| {a - b} \right|$, and Hölder's inequality, we obtain
$\int_0^T {\int_\Omega {} } \left| {(\left| {{\varphi _k}} \right| - \left| \varphi \right|)(\delta {w_j})} \right|{\text{ dx dt}} \leq {\left\| {{\varphi _k} - \varphi } \right\|_{{L^2}(0, T;{L^2})}}{\left\| {\delta {w_j}} \right\|_{{L^2}(0, T;{L^2})}} \to 0$ |
and
$\int_0^T {\int_\Omega {} } \left| {(\left| {{\sigma _k}} \right| - \left| \sigma \right|)(\delta {w_j})} \right|{\text{ dx dt}} \leq {\left\| {{\sigma _k} - \sigma } \right\|_{{L^2}(0, T;{L^2})}}{\left\| {\delta {w_j}} \right\|_{{L^2}(0, T;{L^2})}} \to 0$ |
as $k \to \infty$. In particular, we have
$(1 + \left| {{\varphi _k}} \right| + \left| {{\sigma _k}} \right|)\left| {\delta {w_j}} \right| \to (1 + \left| \varphi \right| + \left| \sigma \right|)\left| {\delta {w_j}} \right|{\text{ strongly in }}{L^1}(Q){\text{ as }}k \to \infty .$ |
By the continuity of $\Lambda_{\varphi}$ we have
${\Lambda _\varphi }({\varphi _k}, {\sigma _k}) \to {\Lambda _\varphi }(\varphi , \sigma ){\text{ a}}{\text{.e}}{\text{. as }}k \to \infty , \quad \left| {{\Lambda _\varphi }({\varphi _k}, {\sigma _k})\delta {w_j}} \right| \leq {R_0}(1 + \left| {{\varphi _k}} \right| + \left| {{\sigma _k}} \right|)\left| {\delta {w_j}} \right|.$ |
which leads to
Then, the generalised Lebesgue dominated convergence theorem (see [27, Thm. 1.9, p. 89], or [2, Thm. 3.25, p. 60]) yields
$\Lambda_{\varphi}(\varphi_{k}, \sigma_{k}) \delta w_{j} \to \Lambda_{\varphi}(\varphi, \sigma) \delta w_{j} \text{ strongly in } L^{1}(Q) \text{ as } k \to \infty, $ |
which leads to
$\int_0^T {\int_\Omega {{\Gamma _\varphi }} } ({\varphi _k}, {\mu _k}, {\sigma _k})\delta {w_j}{\text{ dx dt}} \to \int_0^T {\int_\Omega {{\Gamma _\varphi }} } (\varphi , \mu , \sigma )\delta {w_j}{\text{ dx dt as }}k \to \infty .$ | (5.1) |
The same arguments can be applied for the source term $\mathcal{S}$ and for the derivative $\Psi'(\varphi)$ satisfying the linear growth condition (2.5). For potentials satisfying the growth condition (2.7), we refer to the argument in [18, x3.1.2].
To identify the limits $\xi$ and $\theta$ of the convection terms ${\text{div}} (\varphi_{k} {v}_{k})$ and ${\text{div}} (\sigma_{k} {v}_{k})$, respectively, we argue as follows. Since $\delta w_{j} \in C^{\infty}(0, T;H^{2}) \subset L^{\frac{8}{3}}(0, T;H^{1})$, by the weak convergence ${\text{div}} (\varphi_{k} {v}_{k}) \rightharpoonup \xi$ in $L^{\frac{8}{5}}(0, T;(H^{1})^{*})$, we have
$\int_0^T {\int_\Omega {{\text{div}}} } ({\varphi _k}{v_k})\delta {w_j}{\text{ dx dt}} \to \int_0^T {} {\left\langle {\xi, {w_j}} \right\rangle _{{H^1}, {{({H^1})}^*}}}\delta {\text{ dt as }}k \to \infty .$ |
Next, applying integrating by parts and by the boundary conditions ${v}_{k} \cdot {n} = 0$ on $\partial \Omega$ (see (3.8)), we see that
$\int_0^T {\int_\Omega {} } div({\varphi _k}{v_k})\delta {w_j}{\text{ dx dt}} = - \int_0^T {\int_\Omega \delta } {\varphi _k}{v_k} \cdot \nabla {w_j}{\text{ dx dt}}.$ | (5.2) |
Moreover, we claim that $\delta \varphi_{k} \nabla w_{j}$ converges strongly to $\delta \varphi \nabla w_{j}$ in $L^{2}(0, T;{L}^{2})$. Indeed, we compute
$∫T0∫Ω|δ|2|∇wj|2|φk−φ|2dx dt≤∫T0|δ|2‖∇wj‖2L6‖φk−φ‖2L3dt≤‖wj‖2H2‖δ‖2L∞(0,T)‖φk−φ‖2L2(L3)→0 $ |
as $k \to \infty$ by the strong convergence $\varphi_{k} \to \varphi$ in $L^{2}(0, T;L^{r})$ for $r \in [1, 6)$. Together with the weak convergence ${v}_{k} \rightharpoonup {v}$ in $L^{2}(0, T;{L}^{2})$, when passing to the limit $k \to \infty$ in (5.2) we find that
$\int_0^T {} {\left\langle {\xi , {w_j}} \right\rangle _{{H^1}, {{({H^1})}^*}}}\delta {\text{ dt}} = - \int_0^T {\int_\Omega \delta } \varphi v \cdot \nabla {w_j}{\text{ dx dt}}.$ |
Applying integration by parts on the right-hand side shows that $\xi = {\text{div}} (\varphi {v})$ in the sense of distributions.
Now considering $\delta(t)w_{j}$ as an element in $L^{5}(0, T;W^{1, 5})$, a similar argument can be used to show $\theta = {\text{div}}(\sigma {v})$ in the sense of distributions using the strong convergence $\sigma_{k} \to \sigma$ in $L^{2}(0, T;L^{r})$ for $r \in [1, 6)$, the weak convergence ${v}_{k} \rightharpoonup {v}$ in $L^{2}(0, T;{L}^{2})$, and the weak convergence ${\text{div}}(\sigma_{k} {v}_{k}) \rightharpoonup \phi$ in $L^{\frac{5}{4}}(0, T;(W^{1, 5})^{*})$.
For the pressure and the velocity, we apply $-\Delta _{N}$ to both sides of (3.3) and test with $w_{j}$, then integrating by parts leads to
$\int_\Omega \nabla {p_k} \cdot \nabla {w_j}{\text{ dx}} = \int_\Omega {\frac{1}{K}} {\Gamma _v}{w_j} + ({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k} \cdot \nabla {w_j}{\text{ dx}}.$ |
Multiplying by $\delta(t)$, integrating in time and passing to the limit $k \to \infty$, keeping in mind the weak convergences $p_{k} \rightharpoonup p$ in $L^{\frac{8}{5}}(0, T;H^{1})$, $\mu_{k} \rightharpoonup \mu$ in $L^{2}(0, T;H^{1})$, $\sigma_{k} \rightharpoonup \sigma$ in $L^{2}(0, T;H^{1})$, and the strong convergence $\varphi_{k} \to \varphi$ in $L^{2}(0, T;W^{2, r})$ for $r \in [1, 6)$ leads to
$\int_0^T {\int_\Omega \delta } (t)\nabla p \cdot \nabla {w_j}{\text{ dx dt}} = \int_0^T {\int_\Omega \delta } (t)\left( {\frac{1}{K}{\Gamma _v}{w_j} + (\mu + \chi \sigma )\nabla \varphi \cdot \nabla {w_j}} \right){\text{dx dt}}.$ | (5.3) |
Here we used that $w_{j} \in H^{2}$, and
$∫T0∫Ω|δ|2|∇φk−∇φ|2|∇wj|2dx dt≤‖δ‖2L∞(0,T)‖wj‖2W1,6‖φk−φ‖2L2(W1,3)→0 as k→∞, $ | (5.4) |
to deduce that $\delta \nabla \varphi_{k} \cdot \nabla w_{j} \to \delta \nabla \varphi \cdot \nabla w_{j}$ in $L^{2}(0, T;L^{2})$. Fix $1 \leq j_{1}, j_{2}, j_{3} \leq k$, and define ${\zeta} = (w_{j_{1}}, w_{j_{2}}, w_{j_{3}})^{\top}$. Then, we can consider $\delta(t) {\zeta}$ as an element in $L^{\frac{8}{3}}(0, T;{L}^{2}) \subset L^{2}(0, T;{L}^{2})$. Taking the scalar product of (3.4) with $\delta {\zeta}$, integrating over $\Omega$ and in time from $0$ to $T$ leads to
$\int_0^T {\int_\Omega \delta } (t)({v_k} + K\nabla {p_k}) \cdot \zeta {\text{ dx dt}} = \int_0^T {\int_\Omega \delta } K({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k} \cdot \zeta {\text{ dx dt}}.$ | (5.5) |
By the weak convergences ${v}_{k} \rightharpoonup {v}$ in $L^{2}(0, T;{L}^{2})$, $\mu_{k} \rightharpoonup \mu$ in $L^{2}(0, T;H^{1})$, $\sigma_{k} \rightharpoonup \sigma$ in $L^{2}(0, T;H^{1})$, $\nabla p_{k} \rightharpoonup \nabla p$ in $L^{\frac{8}{5}}(0, T;{L}^{2})$, and the strong convergence $\delta \nabla \varphi_{k} \cdot {\zeta} \to \delta \nabla \varphi \cdot {\zeta}$ in $L^{2}(0, T; L^{2})$ (which is proved in a similar manner as (5.4)), we find that passing to the limit in (5.5) yields
$\int_0^T {\int_\Omega \delta } (t)(v + K\nabla p) \cdot \zeta {\text{ dx dt}} = \int_0^T {\int_\Omega \delta } (t)K(\mu + \chi \sigma )\nabla \varphi \cdot \zeta {\text{ dx dt}}.$ | (5.6) |
Then, multiplying (3.2) with $\delta \in C^{\infty}_{c}(0, T)$, integrating with respect to time from $0$ to $T$, and passing to the limit $k \to \infty$, we obtain
$∫T0δ(t)⟨∂tφ,wj⟩H1,(H1)∗dt=∫T0∫Ωδ(t)(−m(φ)∇μ⋅∇wj+Γφwj+φv⋅∇wj)dx dt,∫T0∫Ωδ(t)μwjdx dt=∫T0∫Ωδ(t)(AΨ′(φ)wj+B∇φ⋅∇wj−χσwj)dx dt,∫T0δ(t)⟨∂tσ,wj⟩W1,5,(W1,5)∗dt=∫T0∫Ωδ(t)(−n(φ)(D∇σ−χ∇φ)⋅∇wj−Swj)dx dt+∫T0δ(t)(∫Ωσv⋅∇wj dx+∫Γb(σ∞−σ)wj dHd−1)dt. $ |
Since the above, (5.3) and (5.6) hold for all $\delta \in C^{\infty}_{c}(0, T)$, we infer that $\{\varphi, \mu, \sigma, p, {v}\}$ satisfies (2.12) with $\zeta = \phi = w_{j}$ for a.e. $t \in (0, T)$ and for all $j \geq 1$. As $\{ w_{j}\}_{j \in \mathbb{N}}$ is a basis for $H^{2}_{N}$, and $H^{2}_{N}$ is dense in both $H^{1}$ and $W^{1, 5}$ (see Section 3), we see that $\{ \varphi, \mu, \sigma, p, {v}\}$ satisfy (2.12a), (2.12b), (2.12d) for all $\zeta \in H^{1}$, (2.12c) for all $\phi \in W^{1, 5}$, and (2.12e) for all ${\zeta} \in {L}^{2}$.
Attainment of initial conditions. It remains to show that $\varphi$ and $\sigma$ attain their corresponding initial conditions. Strong convergence of $\varphi_{k}$ to $\varphi$ in $C^{0}([0, T];L^{2})$, and the fact that $\varphi_{k}(0) \to \varphi_{0}$ in $L^{2}$ imply that $\varphi(0) = \varphi_{0}$. Meanwhile, as the limit function $\sigma$ belongs to the function space $C^{0}([0, T]; (H^{1})^{*})$, we see that $\sigma(0):= \sigma(\cdot, 0)$ makes sense as an element of $(H^{1})^{*}$. Let $\zeta \in H^{1}$ be arbitrary, then by the strong convergence $\sigma_{k} \to \sigma$ in $C^{0}([0, T];(H^{1})^{*})$ we see that
${\left\langle {{\sigma _k}(0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} \to {\left\langle {\sigma (0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}}{\text{ as }}k \to \infty .$ |
On the other hand, by (3.7), we have $\sigma_{k}(0) \to \sigma_{0}$ in $L^{2}$. This yields
${\left\langle {{\sigma _0}, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \mathop {\lim }\limits_{k \to \infty } {\left\langle {{\sigma _k}(0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = {\left\langle {\sigma (0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}}.$ |
Energy inequality. For the energy inequality (2.14) we employ the weak/weak-* lower semicontinuity of the norms and dual norms to (4.44), (4.47), (4.19), (4.20), (4.21), (4.51), (4.52), (4.54), and (4.55).
For $K, b \in (0, 1]$ let $(\varphi^{K}, \mu^{K}, \sigma^{K}, {v}^{K}, p^{K})$ denote a weak solution to (1.1)-(1.2) with $\Gamma_{{v}} = 0$, obtain from Theorem 2.1. By we deduce that, for a relabelled subsequence as $b \to 0$ and $K \to 0$, the following weak/weak-* convergences:
$φK→φ weakly - ∗ in L∞(0,T;H1)∩L2(0,T;H3)∩W1,85(0,T;(H1)∗),σK→σ weakly - ∗ in L2(0,T;H1)∩L∞(0,T;L2)∩W1,54(0,T;(W1,5)∗),μK→μ weakly in L2(0,T;H1),pK→p weakly in L85(0,T;H1)∩L87(0,T;H2), $ |
and the following strong convergences:
$φK→φ strongly in C0([0,T];Lr)∩L2(0,T;W2,r) and a.e. in Q,σK→σ strongly in C0([0,T];(H1)∗)∩L2(0,T;Lr) and a.e. in Q,vK→0 strongly in L2(0,T;L2)∩L87(0,T;H1),div(φKvK)→0 strongly in L85(0,T;(H1)∗),div(σKvK)→0 strongly in L54(0,T;(W1,5)∗), $ |
for any $r \in [1, 6)$. The strong convergence of the velocity and the convection terms to zero follows from (2.14). Upon multiplying (2.12) by $\delta \in C^{\infty}_{c}(0, T)$ and passing to the limit $b, K \to 0$, we obtain that the limit functions $(\varphi, \mu, \sigma, p)$ satisfy
${\left\langle {{\partial _t}\varphi , \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }(\varphi , \mu , \sigma )\zeta {\text{ dx}}, $ | (6.1a) |
$\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta - \chi \sigma \zeta {\text{ dx}}, $ | (6.1b) |
${\left\langle {{\partial _t}\sigma , \phi } \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}} = \int_\Omega - n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \phi - \mathcal{S}(\varphi , \mu , \sigma )\phi {\text{ dx}}$ | (6.1c) |
$\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {(\mu + \chi \sigma )} \nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ | (6.1d) |
for all $\zeta \in H^{1}$ and $\phi \in W^{1, 5}$ and a.e. $t \in (0, T)$.
Note that substituting any $\zeta \in L^{2}(0, T;H^{1})$ into (6.1a), integrating in time from $0$ to $T$, using Hölder's inequality and the linear growth condition for $\Gamma_{\varphi}$ leads to the deduction that $\partial _{t} \varphi \in L^{2}(0, T;(H^{1})^{*})$. To show that $\partial _{t} \sigma \in L^{2}(0, T;(H^{1})^{*})$ we argue as follows. For any $\xi \in L^{2}(0, T;H^{1})$, we can define
$F(\xi ): = \int_0^T {\int_\Omega - } n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \xi - \mathcal{S}(\varphi , \mu , \sigma )\xi {\text{ dx dt}}.$ |
By Hölder's inequality and the growth condition on $\mathcal{S}$, we see that $F \in L^{2}(0, T;(H^{1})^{*})$. It is known that the set of functions that are finite linear combinations of $C^{1}_{c}(0, T) \cdot H^{2}_{N}(\Omega) := \{ \delta(t) \phi(x) : \delta \in C^{1}_{c}(0, T), \; \phi \in H^{2}_{N}(\Omega) \}$ is dense in $C^{1}_{c}(0, T;H^{1})$ (see for instance [26, p. 384], and in fact this is what we use in Section 5). Let $\zeta \in C^{1}_{c}(0, T;H^{1})$ and let $\{\zeta^{n}\}_{n \in \mathbb{N}}$ denote a sequence of functions of the above form such that $\zeta^{n} \to \zeta$ in $C^{1}_{c}(0, T;H^{1})$ as $n \to \infty$. Then, substituting $\phi = \zeta^{n}$ in (6.1c), integrating over $t$ from $0$ to $T$, and passing to the limit $n \to \infty$ yields
$\mathop {\lim }\limits_{n \to \infty } \int_0^T {} {\left\langle {{\partial _t}\sigma , {\zeta ^n}} \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}}{\text{ dt}} = \mathop {\lim }\limits_{n \to \infty } F({\zeta ^n}) = F(\zeta ).$ |
Moreover, by the definition of the weak time derivative, we have
$\int_0^T {} {\left\langle {{\partial _t}\sigma , {\zeta ^n}} \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}}{\text{ dt}} = - \int_0^T {\int_\Omega \sigma } {\partial _t}{\zeta ^n}{\text{ dx dt}} \to - \int_0^T {\int_\Omega \sigma } {\partial _t}\zeta {\text{ dx dt as }}n \to \infty .$ |
Hence, we obtain
$- \int_0^T {\int_\Omega \sigma } {\partial _t}\zeta {\text{ dx dt}} = F(\zeta ) = \int_0^T {\int_\Omega - } n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \zeta - \mathcal{S}(\varphi , \mu , \sigma )\zeta {\text{ dx dt}}$ |
for all $\zeta \in C^{1}_{c}(0, T;H^{1})$. This implies that the weak time derivative $\partial _{t} \sigma$ satisfies
$\int_0^T {} {\partial _t}\sigma {\zeta _{{H^1}, {{({H^1})}^*}}}{\text{ dt}} = F(\zeta )\quad \forall \zeta \in C_c^1(0, T;{H^1}), $ |
and as $F$ belongs to $L^{2}(0, T;(H^{1})^{*})$, we find that $\partial _{t} \sigma$ also belongs to $L^{2}(0, T;(H^{1})^{*})$. Furthermore, due to the improved regularity $\partial _{t} \sigma \in L^{2}(0, T;(H^{1})^{*})$, we use the continuous embedding
$L^{2}(0, T;H^{1}) \cap H^{1}(0, T;(H^{1})^{*}) \subset C^{0}([0, T];L^{2})$ |
to deduce that $\sigma(0) = \sigma_{0}$.
For $\chi, b \in (0, 1]$, let $(\varphi^{\chi}, \mu^{\chi}, \sigma^{\chi}, {v}^{\chi}, p^{\chi})$ denote a weak solution to (1.1)-(1.2) obtain from Theorem 2.1. By (2.14) we deduce that, for a relabelled subsequence as $b \to 0$ and $\chi \to 0$, the following weak/weak-* convergences:
$φχ→φ weakly - ∗ in L∞(0,T;H1)∩L2(0,T;H3)∩W1,85(0,T;(H1)∗),σχ→σ weakly - ∗ in L2(0,T;H1)∩L∞(0,T;L2)∩W1,54(0,T;(W1,5)∗),μχ→μ weakly in L2(0,T;H1),pχ→p weakly in L85(0,T;H1)∩L87(0,T;H2),vχ→v weakly in L2(0,T;L2)∩L87(0,T;H1),div(φχvχ)→div(φv) weakly in L85(0,T;(H1)∗),div(σχvχ)→div(σv) weakly in L54(0,T;(W1,5)∗), $ |
and the following strong convergences:
$φχ→φ strongly in C0([0,T];Lr)∩L2(0,T;W2,r) and a.e. in Q,σχ→σ strongly in C0([0,T];(H1)∗)∩L2(0,T;Lr) and a.e. in Q, $ |
for any $r \in [1, 6)$. For any $\delta \in C^{\infty}_{c}(0, T)$ and $\zeta \in H^{1}$, we have
$|∫T0∫Ωδχσχζdx dt|≤χ‖σχ‖L2(L2)‖ζ‖L2‖δ‖L2(0,T)→0,|∫T0∫Ωδn(φχ)χ∇φχ⋅∇ζdx dt|≤n1χ‖∇φχ‖L2(L2)‖∇ζ‖L2‖δ‖L2(0,T)→0,|∫T0∫Ωδχσχ∇φχ⋅∇ζ dx dt|≤χ‖∇ζ‖L2‖σχ‖L2(L4)‖∇φχ‖L2(L4)‖δ‖L∞(0,T)→0, $ |
as $\chi \to 0$. Thus, multiplying (2.12) with $\delta \in C^{\infty}_{c}(0, T)$, and then passing to the limit $b, \chi \to 0$, we see that $(\varphi, \mu, \sigma, {v}, p)$ satisfies
${\left\langle {{\partial _t}\varphi , \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }(\varphi , \mu , \sigma )\zeta + \varphi v \cdot \nabla \zeta {\text{ dx}}, $ | (6.2a) |
$\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ | (6.2b) |
${\left\langle {{\partial _t}\sigma , \phi } \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}} = \int_\Omega - n(\varphi )D\nabla \sigma \cdot \nabla \phi - \mathcal{S}(\varphi , \mu , \sigma )\phi + \sigma v \cdot \nabla \phi {\text{ dx}}, $ | (6.2c) |
$\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {\frac{1}{K}} {\Gamma _v}\zeta + \mu \nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ | (6.2d) |
$\int_\Omega {} v \cdot \zeta {\text{ dx}} = \int_\Omega - K(\nabla p - \mu \nabla \varphi ) \cdot \zeta {\text{ dx}}, $ | (6.2e) |
for all $\zeta \in H^{1}$, $\phi \in W^{1, 5}$, ${\zeta} \in {L}^{2}$ and a.e. $t \in (0, T)$.
We first derive an analogous result to Lemma 4.2 for two dimensions.
Lemma 7.1. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with $C^{3}$-boundary. Let $\varphi \in L^{\infty}(0, T;H^{1}) \cap L^{2}(0, T;H^{2}_{N} \cap H^{3})$, $\sigma \in L^{2}(0, T;H^{1})$, $\mu \in L^{2}(0, T;H^{1})$, the source term $\Gamma_{{v}} \in L^{2}(0, T;L^{2}_{0})$, and the function $p$ satisfying (4.7). Then,
$p \in {L^k}(0, T;{H^1}) \cap {L^q}(0, T;{H^2}), \quad {\text{ }}v \in {L^q}(0, T;{H^1}), $ |
for any
$1 \leq k < 2, \quad 1 \leq q < \frac{4}{3}.$ |
Proof. We estimate (4.23) differently than in the proof of Lemma 4.2. By Hölder’s inequality for any $1 \leq s < \infty$ we have
${\left\| {(\mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}} \leq {\left\| {\mu + \chi \sigma } \right\|_{{L^{2s}}}}{\left\| {\nabla \varphi } \right\|_{{L^{\frac{{2s}}{{s - 1}}}}}}.$ |
Then, by the Gagliardo--Nirenberg inequality (1.10) with $p = \frac{2s}{s-1}$, $j = 0$, $r = 2$, $m = 2$, $d = 2$, $q = 2$, and $\alpha = \frac{1}{2} - \frac{s-1}{2s} = \frac{1}{2s}$, we find that
${\left\| {\nabla \varphi } \right\|_{{L^{\frac{{2s}}{{s - 1}}}}}} \leq C\left\| {\nabla \varphi } \right\|_{{H^2}}^{\frac{1}{{2s}}}\left\| {\nabla \varphi } \right\|_{{L^2}}^{1 - \frac{1}{{2s}}} \leq C\left\| \varphi \right\|_{{H^3}}^{\frac{1}{{2s}}}\left\| \varphi \right\|_{{H^1}}^{1 - \frac{1}{{2s}}}.$ |
Then, by Hölder's inequality and the Sobolev embedding $H^{1} \subset L^{r}$ for $1 \leq r < \infty$ in two dimensions, we have for $w, y \geq 1$,
$∫T0‖(μ+χσ)∇φ‖wL2dt≤C∫T0‖μ+χσ‖wL2s‖∇φ‖wL2ss−1dt≤C‖φ‖w2s−12sL∞(H1)‖μ+χσ‖wLwy(H1)‖φ‖w2sLw2syy−1(H3). $ |
As $\mu, \sigma$ belong to $L^{2}(0, T;H^{1})$ and $\varphi$ belongs to $L^{2}(0, T;H^{3}) \cap L^{\infty}(0, T;H^{1})$, we need
$wy = 2, \quad \frac{w}{{2s}}\frac{y}{{y - 1}} = 2 \Rightarrow y = \frac{{2s + 1}}{{2s}}, \quad w = \frac{{4s}}{{1 + 2s}}.$ |
Since $w = \frac{4s}{1+2s} < 2$ for all $s \in [1, \infty)$, and $\Gamma_{{v}} \in L^{2}(0, T;L^{2}_{0})$, the computations in the proof of Lemma 4.2 yields that
$p \in L^{k}(0, T;H^{1}) \quad \text{ for } 1 \leq k < 2$ |
Next, we see that
$‖div((μ+χσ)∇φ)‖L2≤‖(μ+χσ)Δφ‖L2+‖∇(μ+χσ)⋅∇φ‖L2≤‖μ+χσ‖L2s‖Δφ‖L2ss−1+‖∇(μ+χσ)‖L2‖∇φ‖L∞. $ |
By the Gagliardo--Nirenberg inequality (1.10) with $p = \infty$, $j = 0$, $r = 2$, $m = 2$, $d = 2$, $q = 2$ and $\alpha = \frac{1}{2}$, we have
${\left\| {\nabla \varphi } \right\|_{{L^\infty }}} \leq C\left\| {\nabla \varphi } \right\|_{{H^2}}^{\frac{1}{2}}\left\| {\nabla \varphi } \right\|_{{L^2}}^{\frac{1}{2}} \leq C\left\| \varphi \right\|_{{H^3}}^{\frac{1}{2}}\left\| \varphi \right\|_{{H^1}}^{\frac{1}{2}}, $ | (7.1) |
and with $p = \frac{2s}{s-1}$, $j = 1$, $r = 2$, $m = 2$, $d = 2$, $q = 2$ and $\alpha = \frac{s+1}{2s} \in (\frac{1}{2}, 1]$ for $s \in [1, \infty)$, we have
${\left\| {\Delta \varphi } \right\|_{{L^{\frac{{2s}}{{s - 1}}}}}} \leq C\left\| {\nabla \varphi } \right\|_{{H^2}}^{\frac{{s + 1}}{{2s}}}\left\| {\nabla \varphi } \right\|_{{L^2}}^{\frac{{s - 1}}{{2s}}} \leq C\left\| \varphi \right\|_{{H^3}}^{\frac{{s + 1}}{{2s}}}\left\| \varphi \right\|_{{H^1}}^{\frac{{s - 1}}{{2s}}}.$ | (7.2) |
Hence, for $w, y, z \geq 1$, we find that
$∫T0‖div((μ+χσ)∇φ)‖wL2dt≤C‖φ‖w2L∞(H1)‖μ+χσ‖wLwz(H1)‖φ‖w2Lw2zz−1(H3)+C‖φ‖ws−12sL∞(H1)‖μ+χσ‖wLwy(H1)‖φ‖ws+12sLws+12syy−1(H3). $ |
Since $\frac{s+1}{2s} \leq 1$ for all $s \in [1, \infty)$, we require
$wy = 2, \quad \frac{{wy(s + 1)}}{{2s(y - 1)}} = 2 \Rightarrow y = \frac{{3s + 1}}{{2s}}, \quad w = \frac{{4s}}{{1 + 3s}}.$ |
We choose $z = \frac{3s+1}{2s} \in (\frac{3}{2}, 2]$ so that
$wz = 2, \quad \frac{w}{2} \frac{z}{z-1} = \frac{2s}{1 + 3s} \frac{3s+1}{s+1} = \frac{2s}{s+1} \in [1, 2), $ |
and thus we obtain
$∫T0‖div((μ+χσ)∇φ)‖4s1+3sL2dt≤C‖φ‖2s1+3sL∞(H1)‖μ+χσ‖4s1+3sL2(H1)‖φ‖2s1+3sL2ss+1(H3)+C‖φ‖2s−21+3sL∞(H1)‖μ+χσ‖4s1+3sL2(H1)‖φ‖2s+21+3sL2(H3). $ |
From (4.27) and using the fact that $\frac{4s}{1+3s} < \frac{4s}{1+2s}$ for all $s \in [1, \infty)$, we see that
$p \in L^{q}(0, T;H^{2}) \quad \text{ for } 1 \leq q < \frac{4}{3}.$ |
Similarly, from (4.29), (7.1) and (7.2), we obtain for fixed $1 \leq i, j \leq 2$, and any $s \in [1, \infty)$,
$‖Divj‖L2=K‖DiDjp−(Di(μ+χσ)Djφ−(μ+χσ)DiDjφ‖L2≤K(‖p‖H2+‖∇(μ+χσ)‖L2‖∇φ‖L∞+‖μ+χσ‖L2s‖D2φ‖L2ss−1)≤K(‖p‖H2+C‖μ+χσ‖H1(‖φ‖12H3‖φ‖12H1+‖φ‖s+12sH3‖φ‖s−12sH1)). $ | (7.3) |
Then, a similar calculation shows that the right-hand side is bounded in $L^{\frac{4s}{1+3s}}(0, T)$, which in turn implies that
$v \in {L^q}(0, T;{H^1}){\text{ for }}1 \leq q < \frac{4}{3}.$ |
By the above new estimates we can show that ${\text{div}}(\varphi {v})$ and $\partial _{t} \varphi$ have improved temporal regularity, and that ${\text{div}} (\sigma {v})$ and $\partial _{t}\sigma$ belong to the dual space $(H^{1})^{*}$.
Lemma 7.2. For dimension $d = 2$, let $(\varphi_{k}, \mu_{k}, \sigma_{k}, p_{k}, {v}_{k})$ denote the Galerkin ansatz from Section 3 satisfying (4.44). Then, it holds that for $\frac{4}{3} \leq w < 2$ and $1 < r < \frac{8}{7}$,
$‖div(φkvk)‖Lw((H1)∗)+‖div(σkvk)‖Lr((H1)∗)≤K12E,‖∂tφk‖Lw((H1)∗)+‖∂tσk‖Lr((H1)∗)≤E(1+K12), $ |
where $\mathcal{E}$ denotes positive constants that are uniformly bounded for $b, \chi \in (0, 1]$ and are also uniformly bounded for $K \in (0, 1]$ when $\Gamma_{{v}} = 0$.
Proof. The assertions for $\partial _{t}\varphi_{k}$ and $\partial _{t}\sigma_{k}$ will follow via similar arguments in Section 4.3 once we establish the assertion for the convection terms. In dimension $d = 2$, we have the embedding $L^{2}(0, T;H^{1}) \cap L^{\infty}(0, T;L^{2}) \subset L^{4}(Q)$, and by the Gagliardo--Nirenberg inequality (1.10) with $p = 4$, $j = 0$, $r = 2$, $d = 2$, $m = 1$, $q = 2$ and $\alpha = \frac{1}{2}$,
${\left\| f \right\|_{{L^4}}} \leq C\left\| f \right\|_{{H^1}}^{\frac{1}{2}}\left\| f \right\|_{{L^2}}^{\frac{1}{2}}.$ |
Consider an arbitrary $\zeta \in L^{s}(0, T;H^{1})$ for some $s \geq 1$ yet to be determined. Then, we compute that
$|∫T0∫Ωσkvk⋅∇Πkζdx dt|≤∫T0‖σk‖L4‖vk‖L4‖∇ζ‖L2dt≤C‖σk‖L4(Q)(∫T0‖vk‖23H1‖vk‖23L2‖ζ‖43H1dt)34≤C‖σk‖L4(Q)‖vk‖12L23x1(H1)‖vk‖12L23x2(L2)‖ζ‖L43x3(H1), $ |
where $x_{1}, x_{2}, x_{3} \geq 1$ satisfy
$\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \frac{1}{{{x_3}}} = 1, \quad \frac{2}{3}{x_1} < \frac{4}{3}, \quad \frac{2}{3}{x_2} \leq 2 \Rightarrow {x_3} > 6.$ |
Then, from (4.44) and (7.3), it holds that
$\left| {\int_0^T {\int_\Omega {{\sigma _k}} } {v_k} \cdot \nabla {\Pi _k}\zeta {\text{ dx dt}}} \right| \leq \mathcal{E}{K^{\frac{1}{2}}}{\left\| \zeta \right\|_{{L^s}({H^1})}}\quad {\text{ for }}s = \frac{4}{3}{x_3} > 8, $ |
that is, $\{{\text{div}} (\sigma_{k} {v}_{k})\}_{k \in \mathbb{N}}$ is uniformly bounded in the dual space of $L^{s}(0, T;H^{1})$ for $s > 8$. Similarly, by the Gagliardo--Nirenberg inequality (1.10) with $p = \infty$, $j = 0$, $r = 2$, $d = 2$, $m = 3$, $q \in [1, \infty)$ and $\alpha = \frac{1}{q+1}$,
${\left\| {{\varphi _k}} \right\|_{{L^\infty }}} \leq C\left\| {{\varphi _k}} \right\|_{{H^3}}^{\frac{1}{{q + 1}}}\left\| {{\varphi _k}} \right\|_{{L^q}}^{\frac{q}{{q + 1}}} \leq C\left\| {{\varphi _k}} \right\|_{{H^3}}^{\frac{1}{{q + 1}}}\left\| {{\varphi _k}} \right\|_{{H^1}}^{\frac{q}{{q + 1}}}.$ |
Proceeding as in (4.50), we find that for an arbitrary $\zeta \in L^{s}(0, T;H^{1})$, where $s \geq 1$ is yet to be determined,
$|∫T0∫Ωφkvk⋅∇Πkζdx dt|≤∫T0‖vk‖L2‖φk‖L∞‖∇Πkζ‖L2dt≤C‖φk‖qq+1L∞(H1)‖vk‖L2(L2)‖φk‖1q+1L2(H3)‖ζ‖L2(q+1)q(H1)≤EK12‖ζ‖L2(q+1)q(H1), $ |
and so $\{{\text{div}}(\varphi_{k} {v}_{k})\}_{k \in \mathbb{N}}$ is uniformly bounded in the dual space of $L^{s}(0, T;H^{1})$ for $s = 2 + \frac{2}{q} \in (2, 4]$.
Remark 7.1. We point out that in the absence of the regularity result ${v}_{k} \in L^{q}(0, T;{H}^{1})$ from Lemma 7.1, and if we only have ${v}_{k} \in L^{2}(0, T;{L}^{2})$, then we obtain
$\left| {\int_0^T {\int_\Omega {{\sigma _k}} } {v_k} \cdot \nabla {\Pi _k}\zeta {\text{ dx dt}}} \right| \leq {\left\| {{\sigma _k}} \right\|_{{L^4}(Q)}}{\left\| {{v_k}} \right\|_{{L^2}({L^2})}}{\left\| {\nabla \zeta } \right\|_{{L^4}({L^4})}}, $ |
and this implies that both $\{{\text{div}}(\sigma_{k} {v}_{k})\}_{k \in \mathbb{N}}$ and $\{\partial _{t}\sigma_{k}\}_{k \in \mathbb{N}}$ are bounded uniformly only in $L^{\frac{4}{3}}(0, T;(W^{1, 4})^{*})$.
Reformulations of Darcy’s law and the pressure. Associated to Darcy's law (1.1b) is the term ${\lambda _v}: = p - \mu \varphi - \frac{D}{2}{\left| \sigma \right|^2}$ which will contribute the source term $\Gamma_{{v}} \lambda_{{v}}$ in the energy identity (4.4). In [20, Rmk. 2.1] three other reformulations of Darcy's law (1.1b) and the pressure are considered:
(R1) Let $q: = p - A\Psi (\varphi ) - \frac{B}{2}{\left| {\nabla \varphi } \right|^2}$ so that
${\lambda _v} = q + A\Psi (\varphi ) + \frac{B}{2}{\left| {\nabla \varphi } \right|^2} - \frac{D}{2}{\left| \sigma \right|^2} + \chi \sigma (1 - \varphi ) - \mu \varphi , $ | (8.1a) |
$v = K(\nabla ( - q - \tfrac{B}{2}{\left| {\nabla \varphi } \right|^2}) - B\Delta \varphi \nabla \varphi ) = - K(\nabla q + B {\text{div}} (\nabla \varphi \otimes \nabla \varphi )).$ | (8.1b) |
(R2) Let $\hat p: = p + \frac{D}{2}{\left| \sigma \right|^2} + \chi \sigma (1 - \varphi )$ so that
${\lambda _v} = \hat p - \mu \varphi - D{\left| \sigma \right|^2} - \chi \sigma (1 - \varphi ), $ | (8.2a) |
$v = - K(\nabla \hat p - \mu \nabla \varphi - (D\sigma + \chi (1 - \varphi ))\nabla \sigma ).$ | (8.2b) |
(R3) Let $\tilde p: = p - \frac{D}{2}{\left| \sigma \right|^2} - \mu \varphi $ so that
${\lambda _v} = \tilde p, $ | (8.3a) |
$v = - K(\nabla \tilde p + \varphi \nabla \mu + \sigma \nabla (D\sigma + \chi (1 - \varphi ))).$ | (8.3b) |
From the viewpoint of estimating the source term $\Gamma_{{v}} \lambda_{{v}}$, we see that (8.3a) has the advantage of being the simplest. Meanwhile, for (8.2a) the analysis for $\Gamma_{{v}} \lambda_{{v}}$ is similar to that performed in Section 4.1.2, but for (8.1a) the main difficulty will be to estimate the terms $(A\Psi (\varphi ) + \frac{B}{2}{\left| {\nabla \varphi } \right|^2}){\Gamma _v}$ and $( - \frac{D}{2}{\left| \sigma \right|^2} + \chi \sigma \varphi ){\Gamma _v}$, which at first glance would require the assumption that $\Gamma_{{v}} \in L^{\infty}(Q)$, and obtaining an $L^{2}$-estimate for the pressure $q$ from the Darcy law (8.1b) would be difficult due to the term ${\text{div}} (\nabla \varphi \otimes \nabla \varphi)$.
Other boundary conditions for the pressure and velocity. In [20, x2.4.4] the authors have discussed possible boundary conditions for the velocity and for the pressure. As discussed in Section 2 following Assumption 2.1, we require the source term $\Gamma_{{v}}$ to have zero mean due to the no-flux boundary condition ${v} \cdot {n} = 0$ on $\partial \Omega$. The general energy identity (with homogeneous Neumann boundary conditions for $\varphi$ and $\mu$) from [20, Equ. (2.27)] reads as
$ddt∫ΩAΨ(φ)+B2|∇φ|2+D2|σ|2+χσ(1−φ)dx+∫Ωm(φ)|∇μ|2+n(φ)|∇(Dσ+χ(1−φ))|2+1K|v|2dx=∫ΩΓφμ−S(Dσ+χ(1−φ))+Γvλvdx+∫∂Ω(Dσ+χ(1−φ))n(φ)(D∂nσ)−(v⋅n)(D2|σ|2+χσ(1−φ)+p) dHd−1, $ |
and we see the appearance of an extra boundary source term involving the normal component of the velocity and the pressure. Here it would be advantageous to use the rescaled pressure $\hat{p}$ and the Darcy law (8.2b), as the extra boundary source term will become
$\int_{\partial \Omega } - (v \cdot n)\hat p{\text{ d}}{H^{d - 1}}, $ |
which motivates the consideration of a Robin-type boundary condition for $\hat{p}$
$g = a\hat p - v \cdot n = a\hat p + K{\partial _n}\hat p - K(D\sigma + \chi (1 - \varphi )){\partial _n}\sigma {\text{ on }}\partial \Omega , $ |
for some given datum $g$ and positive constant $a$. On one hand, this would allow us to consider source terms $\Gamma_{{v}}$ that need not have zero mean, but on the other hand, the analysis of the Darcy system becomes more complicated. In particular, the weak formulation of the pressure system now reads as
$∫ΩK∇ˆp⋅∇ζdx+∫∂ΩaˆpζdHd−1=∫ΩΓvζ+K(μ∇φ+(Dσ+χ(1−φ))∇σ)⋅∇ζdx+∫∂ΩgζdHd−1, $ |
and we observe that the term $D\sigma \nabla \sigma$ on the right-hand side belongs to ${L}^{1}$ as $\sigma$ has at most $H^{1}$-spatial regularity from the energy identity. Thus, it is not clear if the pressure system can be solved with the regularities stated in Lemma 4.1. A deeper study into the theory of linear elliptic equations with right-hand sides of the form ${\text{div}} {f}$ where ${f} \in {L}^{1}$ is required.
All authors declare no conflicts of interest in this paper.
[1] |
Gray CM, Singer W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci 86: 1698-1702. doi: 10.1073/pnas.86.5.1698
![]() |
[2] |
Yang J-W, An S, Sun J-J, Reyes-Puerta V, Kindler J, Berger T, Kilb W, Luhmann HJ. (2013) Thalamic Network Oscillations Synchronize Ontogenetic Columns in the Newborn Rat Barrel Cortex. Cereb Cortex 23: 1299-1316. doi: 10.1093/cercor/bhs103
![]() |
[3] |
Steriade M, Amzica F. (1996) Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proc Natl Acad Sci 93: 2533-2538. doi: 10.1073/pnas.93.6.2533
![]() |
[4] |
Singer W. (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49-65. doi: 10.1016/S0896-6273(00)80821-1
![]() |
[5] |
Fries P. (2009) Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation. Annu Rev Neurosci 32: 209-224. doi: 10.1146/annurev.neuro.051508.135603
![]() |
[6] |
Ray S, Maunsell, JHR. (2010) Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation. Neuron 67: 885-896. doi: 10.1016/j.neuron.2010.08.004
![]() |
[7] |
Jia X, Xing D Kohn A. (2013) No Consistent Relationship between Gamma Power and Peak Frequency in Macaque Primary Visual Cortex. J Neurosci 33: 17-25. doi: 10.1523/JNEUROSCI.1687-12.2013
![]() |
[8] |
Burns SP, Xing D, Shapley RM. (2011) Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a “Clock” or Filtered Noise? J Neurosci 31: 9658-9664. doi: 10.1523/JNEUROSCI.0660-11.2011
![]() |
[9] |
Merker B. (2013) Cortical gamma oscillations: the functional key is activation, not cognition. Neurosci Biobehav Rev 37: 401-417. doi: 10.1016/j.neubiorev.2013.01.013
![]() |
[10] |
Guo W, Chambers AR, Darrow KN, et al. (2012) Robustness of Cortical Topography across Fields, Laminae, Anesthetic States, and Neurophysiological Signal Types. J Neurosci 32:9159-9172. doi: 10.1523/JNEUROSCI.0065-12.2012
![]() |
[11] | Mountcastle VB. (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol 20: 408-434. |
[12] |
Mountcastle VB. (1997) The columnar organization of the neocortex. Brain 120: 701-722. doi: 10.1093/brain/120.4.701
![]() |
[13] |
Horton JC Adams DL. (2005) The cortical column: a structure without a function. Philos Trans R Soc B Biol Sci 360: 837-862. doi: 10.1098/rstb.2005.1623
![]() |
[14] | Moss RA. (2006) Of bits and logic: Cortical columns in learning and memory. J Mind Behav 27:215-246. |
[15] | Moss RA, Hunter BP, Shah D Havens TL. (2012) A Theory of Hemispheric Specialization Based on Cortical Columns. J Mind Behav 33: 141-172. |
[16] | Moss RA. (2013) Psychotherapy and the Brain: The Dimensional Systems Model and Clinical Biopsychology. J Mind Behav 34: 63-89. |
[17] | Moss RA. (2013) Gamma-band Synchronization & Cortical Columns. Neuropsychotherapist 3:126-127. |
[18] | Luria AR. (1966) Higher cortical functions in man. New York: Basic Books. |
[19] | Lezak MD, Howieson DB, Loring DW and Hannay HJ. (2004) Neuropsychological Assessment 4 Eds., Oxford: Oxford University Press. |
[20] | Calvin W. (1995) Cortical columns, modules, and Hebbian cell assemblies. In Handbook of brain theory and neural networks, Arbib MA. Author. Cambridge, MA: MIT Press. 269-275. |
[21] |
Tulving E, Thomson DM. (1973) Encoding specificity and retrieval processes in episodic memory. Psychol Rev 80: 352-373. doi: 10.1037/h0020071
![]() |
[22] |
Rissman J Wagner AD. (2012) Distributed representations in memory: Insights from functional brain imaging. Annu Rev Psychol 63: 101-128. doi: 10.1146/annurev-psych-120710-100344
![]() |
[23] |
Polyn SM, Natu VS, Cohe JD and Norman KA. (2005) Category-specific cortical activity precedes retrieval during memory search. Science 310: 1963-1966. doi: 10.1126/science.1117645
![]() |
[24] | Gazzaniga MS. (2002) Consciousness. In Encyclopedia of the human brain, Ramachandran VS, Eds. New York: Academic Press, 31-35. |
[25] |
Moss RA. (2007) Negative emotional memories in clinical treatment: Theoretical considerations. J Psychother Integr 17: 209-224. doi: 10.1037/1053-0479.17.2.209
![]() |
[26] |
Olshausen BA Field DJ. (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481-487. doi: 10.1016/j.conb.2004.07.007
![]() |
[27] |
Song S, Sjöström PJ, Reigl M, Nelson S Chklovskii DB. (2005) Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. PLoS Biol 3: e68. doi: 10.1371/journal.pbio.0030068
![]() |
[28] |
Perin R, Berger TK Markram H. (2011) A synaptic organizing principle for cortical neuronal groups. Proc Natl Acad Sci 108: 5419-5424. doi: 10.1073/pnas.1016051108
![]() |
[29] |
Feldmeyer D, Brecht M, Helmchen F, Petersen CCH, Poulet JFA, Staiger JF, Luhmann HJ Schwarz C. (2013) Barrel cortex function. Prog Neurobiol 103: 3-27. doi: 10.1016/j.pneurobio.2012.11.002
![]() |
[30] |
Avermann M, Tomm, C, Mateo C, Gerstner W Petersen CCH. (2012) Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J Neurophysiol 107: 3116-3134. doi: 10.1152/jn.00917.2011
![]() |
[31] |
Crochet S, Poulet JF, Kremer Y, Petersen CC. (2011) Synaptic Mechanisms Underlying Sparse Coding of Active Touch. Neuron 69: 1160-1175. doi: 10.1016/j.neuron.2011.02.022
![]() |
[32] |
Kerr JN, de Kock CP, Greenberg DS, Bruno RM, Sakmann B, Helmchen F. (2007) Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex. J Neurosci 27:13316-13328. doi: 10.1523/JNEUROSCI.2210-07.2007
![]() |
[33] |
Lefort S, Tomm C, Floyd Sarria JC, Petersen CC. (2009) The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex. Neuron 61: 301-316. doi: 10.1016/j.neuron.2008.12.020
![]() |
[34] |
O'Connor DH, Peron SP, Huber D, Svoboda K. (2010) Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice. Neuron 67: 1048-1061. doi: 10.1016/j.neuron.2010.08.026
![]() |
[35] |
Yassin L, Benedetti BL, Jouhanneau JS, Wen JA, Poulet JF, Barth AL. (2010) An Embedded Subnetwork of Highly Active Neurons in the Neocortex. Neuron 68: 1043-1050. doi: 10.1016/j.neuron.2010.11.029
![]() |
[36] |
Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433: 597-603. doi: 10.1038/nature03274
![]() |
[37] | Bruno RM, Khatri V, Land PW, Simons DJ. (2003) Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex. J Neurosci 23: 9565-9574. |
[38] |
Favorov OV, Diamond ME, Whitsel BL. (1987) Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat. Proc Natl Acad Sci 84: 6606-6610. doi: 10.1073/pnas.84.18.6606
![]() |
[39] |
Packer AM, Yuste R. (2011) Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? J Neurosci 31:13260-13271. doi: 10.1523/JNEUROSCI.3131-11.2011
![]() |
[40] |
Fino E, Packer AM, Yuste R. (2013) The logic of inhibitory connectivity in the neocortex. The Neuroscientist 19: 228-237. doi: 10.1177/1073858412456743
![]() |
[41] |
Berger TK, Silberberg G, Perin R, Markram H. (2010) Brief Bursts Self-Inhibit and Correlate the Pyramidal Network. PLoS Biol 8: e1000473. doi: 10.1371/journal.pbio.1000473
![]() |
[42] |
Börgers C, Talei Franzesi G, LeBeau FEN, Boyden ES, Kopell NJ. (2012) Minimal Size of Cell Assemblies Coordinated by Gamma Oscillations. PLoS Comput Biol 8: e1002362. doi: 10.1371/journal.pcbi.1002362
![]() |
[43] |
Börgers C, Epstein S, Kopell NJ. (2005) Background gamma rhythmicity and attention in cortical local circuits: A computational study. Proc Natl Acad Sci USA 102: 7002-7007. doi: 10.1073/pnas.0502366102
![]() |
[44] |
Hirata Y, and Sawaguchi T. (2008) Functional columns in the primate prefrontal cortex revealed by optical imaging in vitro. Neurosci Res 61: 1-10. doi: 10.1016/j.neures.2008.01.003
![]() |
[45] |
Khazipov R, Minlebaev M Valeeva G. (2013) Early gamma oscillations. Neuroscience 250:240-252. doi: 10.1016/j.neuroscience.2013.07.019
![]() |
[46] |
Minlebaev M, Colonnese M, Tsintsadze T, Sirota A, Khazipov R. (2011) Early Gamma Oscillations Synchronize Developing Thalamus and Cortex. Science 334: 226-229. doi: 10.1126/science.1210574
![]() |
[47] |
Vicente R, Gollo LL, Mirasso CR, Fischer I Pipa G. (2008) Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc Natl Acad Sci 105:17157-17162. doi: 10.1073/pnas.0809353105
![]() |
[48] |
Gruber T Müller MM. (2002) Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Cogn Brain Res 13: 377-392. doi: 10.1016/S0926-6410(01)00130-6
![]() |
[49] | Ahmed OJ Cash SS. (2013) Finding synchrony in the desynchronized EEG: the history and interpretation of gamma rhythms. Front Integr Neurosci 7: 58. |
[50] |
Isaacson JS, Scanziani M. (2011) How Inhibition Shapes Cortical Activity. Neuron 72: 231-243. doi: 10.1016/j.neuron.2011.09.027
![]() |
[51] | Uhlhaas P, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolić D, Singer W, Uhlhaas PJ, Pipa G, Lima B, et al. (2009) Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci 3: 17. |
[52] |
Amzica F Steriade M. (1996) Progressive cortical synchronization of ponto-geniculo-occipital potentials during rapid eye movement sleep. Neuroscience 72: 309-314. doi: 10.1016/0306-4522(96)00012-7
![]() |
[53] | Loebel A, Nelken I Tsodyks M. (2007) Processing of sounds by population spikes in a model of primary auditory cortex. Front Neurosci 1: 1. |
[54] |
Bathellier B, Ushakova L Rumpel S. (2012) Discrete Neocortical Dynamics Predict Behavioral Categorization of Sounds. Neuron 76: 435-449. doi: 10.1016/j.neuron.2012.07.008
![]() |
[55] |
Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P De Weerd P. (2013) Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching. Neuron 78:523-536. doi: 10.1016/j.neuron.2013.03.003
![]() |
[56] |
Ince RAA, Panzeri S Kayser C. (2013) Neural Codes Formed by Small and Temporally Precise Populations in Auditory Cortex. J Neurosci 33: 18277-18287. doi: 10.1523/JNEUROSCI.2631-13.2013
![]() |
[57] |
Bragin A, Almajano J, Kheiri F, Engel JJ. (2014) Functional Connectivity in the Brain Estimated by Analysis of Gamma Events. PLoS ONE 9: e85900. doi: 10.1371/journal.pone.0085900
![]() |
[58] |
Buzsáki G, Wang XJ. (2012) Mechanisms of Gamma Oscillations. Annu Rev Neurosci 35:203-225. doi: 10.1146/annurev-neuro-062111-150444
![]() |
[59] |
Wang L, Liu X, Guise KG, Knight RT, Ghajar J Fan J. (2010) Effective Connectivity of the Fronto-parietal Network during Attentional Control. J Cogn Neurosci 22: 543-553. doi: 10.1162/jocn.2009.21210
![]() |
[60] |
Douglas RJ Martin KAC. (2004) Neuronal Circuits of the Neocortex. Annu Rev Neurosci 27:419-451. doi: 10.1146/annurev.neuro.27.070203.144152
![]() |
[61] |
Tiesinga P Sejnowski TJ. (2009) Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? Neuron 63: 727-732. doi: 10.1016/j.neuron.2009.09.009
![]() |
[62] |
Wester JC Contreras D. (2012) Columnar Interactions Determine Horizontal Propagation of Recurrent Network Activity in Neocortex. J Neurosci 32: 5454-5471. doi: 10.1523/JNEUROSCI.5006-11.2012
![]() |
[63] | Amzica F Steriade M. (1995) Short- and long-range neuronal synchronization of the slow. (< 1 Hz) cortical oscillation. J Neurophysiol 73: 20-38. |
[64] |
Rutishauser U, Slotine JJ Douglas RJ. (2012) Competition Through Selective Inhibitory Synchrony. Neural Comput 24: 2033-2052. doi: 10.1162/NECO_a_00304
![]() |
[65] |
Gonzalez-Burgos G Lewis DA. (2012) NMDA Receptor Hypofunction, Parvalbumin-Positive Neurons, and Cortical Gamma Oscillations in Schizophrenia. Schizophr Bull 38: 950-957. doi: 10.1093/schbul/sbs010
![]() |
[66] |
Wang H, Hu Y Tsien JZ. (2006) Molecular and systems mechanisms of memory consolidation and storage. Prog Neurobiol 79: 123-135. doi: 10.1016/j.pneurobio.2006.06.004
![]() |
[67] |
Shimizu E, Tang YP, Rampon C Tsien J Z. (2000) NMDA Receptor-Dependent Synaptic Reinforcement as a Crucial Process for Memory Consolidation. Science 290: 1170-1174. doi: 10.1126/science.290.5494.1170
![]() |
[68] | Luczak A and MacLean JN. (2012) Default activity patterns at the neocortical microcircuit level. Front Integr Neurosci 6: 30. |
[69] |
Bermudez Contreras EJ, Schjetnan AGP, Muhammad A, Bartho P, McNaughton BL, Kolb B, Gruber AJ Luczak A. (2013) Formation and Reverberation of Sequential Neural Activity Patterns Evoked by Sensory Stimulation Are Enhanced during Cortical Desynchronization. Neuron 79:555-566. doi: 10.1016/j.neuron.2013.06.013
![]() |
[70] |
Fukushima M, Saunders RC, Leopold DA, Mishkin M Averbeck BB. (2012) Spontaneous High-Gamma Band Activity Reflects Functional Organization of Auditory Cortex in the Awake Macaque. Neuron 74: 899-910. doi: 10.1016/j.neuron.2012.04.014
![]() |
[71] |
Chen X, Rochefort NL, Sakmann B Konnerth A. (2013) Reactivation of the Same Synapses during Spontaneous Up States and Sensory Stimuli. Cell Rep 4: 31-39. doi: 10.1016/j.celrep.2013.05.042
![]() |
[72] | Shlosberg D, Buskila Y, Abu-Ghanem Y Amitai Y. (2012) Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons. Front Neural Circuits 6: 3. |
[73] |
Peyrache A, Dehghani N, Eskandar EN, Madsen JR, Anderson WS, Donoghue JA, Hochberg LR, Halgren E, Cash SS Destexhe A. (2012) Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc Natl Acad Sci 109: 1731-1736. doi: 10.1073/pnas.1109895109
![]() |
[74] |
Pi HJ, Hangya B, Kvitsiani D, Sanders, JI, Huang ZJ Kepecs A. (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503: 521-524. doi: 10.1038/nature12676
![]() |
[75] |
Jiang X, Wang G, Lee AJ, Stornetta RL Zhu JJ. (2013) The organization of two new cortical interneuronal circuits. Nat Neurosci 16: 210-218. doi: 10.1038/nn.3305
![]() |
[76] |
Lee CK Huguenard JR. (2011) Martinotti Cells: Community Organizers. Neuron 69: 1042-1045. doi: 10.1016/j.neuron.2011.03.003
![]() |
[77] |
Buchanan KA, Blackman AV, Moreau AW, Elgar D, Costa RP, Lalanne T, Tudor JAA, Oyrer J and Sjöström PJ. (2012) Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits. Neuron 75: 451-466. doi: 10.1016/j.neuron.2012.06.017
![]() |
[78] |
Moss, R A. (2013) A Clinical Biopsychological Theory of Loss-Related Depression. J Neuropsychother 1: 56-65. doi: 10.12744/ijnpt.2013.0056-0065
![]() |
[79] |
Huang, Y-J, Lin, C-H, Lane, H-Y, Tsai, G E. (2012) NMDA Neurotransmission Dysfunction in Behavioral and Psychological Symptoms of Alzheimer's Disease. Curr Neuropharmacol 10:272-285. doi: 10.2174/157015912803217288
![]() |
[80] |
Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso,PJ, Gouras GK, et al. (2005) Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 8: 1051-1058. doi: 10.1038/nn1503
![]() |
[81] |
Stam CJ, van Walsum, A M van C, Pijnenburg YA, Berendse HW, de Munck JC, Scheltens P, van Dijk BW. (2002) Generalized synchronization of MEG recordings in Alzheimer's disease: evidence for involvement of the gamma band. J Clin Neurophysiol 19: 562-574. doi: 10.1097/00004691-200212000-00010
![]() |
[82] |
Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TPL, Siegel SJ. (2010) Validating γ Oscillations and Delayed Auditory Responses as Translational Biomarkers of Autism. Biol Psychiatry 68: 1100-1106. doi: 10.1016/j.biopsych.2010.09.031
![]() |
[83] |
Tarabeux J, Kebir O, Gauthier J, Hamdan FF, Xiong L, Piton A, Spiegelman D, Henrion É Millet, B Fathalli, F et al. (2011) Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry 1: e55. doi: 10.1038/tp.2011.52
![]() |
[84] |
Chance SA, Casanova MF, Switala AE, Crow TJ. (2008) Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain 131: 3178-3192. doi: 10.1093/brain/awn211
![]() |
[85] |
Di Rosa E, Crow TJ, Walker MA, Black G, Chance SA. (2009) Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res 166: 102-115. doi: 10.1016/j.psychres.2008.04.007
![]() |
[86] |
Casanova MF, Kooten IAJ van, Switala AE, Engeland H van, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C. (2006) Minicolumnar abnormalities in autism. Acta Neuropathol (Berl) 112: 287-303. doi: 10.1007/s00401-006-0085-5
![]() |
[87] | Courchesne E, Mouton PR, Calhoun ME, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K, Semendeferi K (2013). An Overabundance of Prefrontal Cortex Neurons Underlies Early Brain Overgrowth in Autism. Neurostereology Unbiased Stereol Neural Syst: 73-83. |
[88] |
Chance SA, Casanova MF, Switala AE, Crow TJ Esiri MM. (2006) Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol (Berl) 111: 459-464. doi: 10.1007/s00401-005-0014-z
![]() |
[89] |
Chance SA, Clover L, Cousijn H, Currah L, Pettingill R Esiri MM. (2011) Microanatomical Correlates of Cognitive Ability and Decline: Normal Ageing, MCI, and Alzheimer's Disease. Cereb Cortex 21: 1870-1878. doi: 10.1093/cercor/bhq264
![]() |
[90] |
Courchesne E and Pierce K. (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225-230. doi: 10.1016/j.conb.2005.03.001
![]() |
[91] |
Cho RY, Konecky RO, Carter CS. (2006) Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci 103: 19878-19883. doi: 10.1073/pnas.0609440103
![]() |
1. | Harald Garcke, Kei Fong Lam, Elisabetta Rocca, Optimal Control of Treatment Time in a Diffuse Interface Model of Tumor Growth, 2018, 78, 0095-4616, 495, 10.1007/s00245-017-9414-4 | |
2. | Andrea Giorgini, Maurizio Grasselli, Hao Wu, The Cahn–Hilliard–Hele–Shaw system with singular potential, 2018, 35, 02941449, 1079, 10.1016/j.anihpc.2017.10.002 | |
3. | Harald Garcke, Kei Fong Lam, Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, 2017, 37, 1553-5231, 4277, 10.3934/dcds.2017183 | |
4. | Alain Miranville, Elisabetta Rocca, Giulio Schimperna, On the long time behavior of a tumor growth model, 2019, 267, 00220396, 2616, 10.1016/j.jde.2019.03.028 | |
5. | Andrea Signori, Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential, 2021, 41, 1553-5231, 2519, 10.3934/dcds.2020373 | |
6. | Harald Garcke, Kei Fong Lam, 2018, Chapter 12, 978-3-319-75939-5, 243, 10.1007/978-3-319-75940-1_12 | |
7. | KEI FONG LAM, HAO WU, Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis, 2018, 29, 0956-7925, 595, 10.1017/S0956792517000298 | |
8. | Matthias Ebenbeck, Harald Garcke, On a Cahn--Hilliard--Brinkman Model for Tumor Growth and Its Singular Limits, 2019, 51, 0036-1410, 1868, 10.1137/18M1228104 | |
9. | Luca Dedè, Alfio Quarteroni, Isogeometric Analysis of a Phase Field Model for Darcy Flows with Discontinuous Data, 2018, 39, 0252-9599, 487, 10.1007/s11401-018-0079-3 | |
10. | Andrea Signori, Optimal Distributed Control of an Extended Model of Tumor Growth with Logarithmic Potential, 2020, 82, 0095-4616, 517, 10.1007/s00245-018-9538-1 | |
11. | Marvin Fritz, Ernesto A. B. F. Lima, Vanja Nikolić, J. Tinsley Oden, Barbara Wohlmuth, Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation, 2019, 29, 0218-2025, 2433, 10.1142/S0218202519500519 | |
12. | Matthias Ebenbeck, Harald Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, 2019, 266, 00220396, 5998, 10.1016/j.jde.2018.10.045 | |
13. | Cecilia Cavaterra, Elisabetta Rocca, Hao Wu, Long-Time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth, 2019, 0095-4616, 10.1007/s00245-019-09562-5 | |
14. | Michele Colturato, Sliding mode control for a diffuse interface tumor growth model coupling a Cahn–Hilliard equation with a reaction–diffusion equation, 2020, 43, 0170-4214, 6598, 10.1002/mma.6403 | |
15. | Harald Garcke, Kei Fong Lam, Andrea Signori, On a phase field model of Cahn–Hilliard type for tumour growth with mechanical effects, 2021, 57, 14681218, 103192, 10.1016/j.nonrwa.2020.103192 | |
16. | Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels, A Distributed Control Problem for a Fractional Tumor Growth Model, 2019, 7, 2227-7390, 792, 10.3390/math7090792 | |
17. | Andrea Signori, Vanishing parameter for an optimal control problem modeling tumor growth, 2020, 117, 18758576, 43, 10.3233/ASY-191546 | |
18. | Sergio Frigeri, Kei Fong Lam, Elisabetta Rocca, 2017, Chapter 9, 978-3-319-64488-2, 217, 10.1007/978-3-319-64489-9_9 | |
19. | Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels, Asymptotic analysis of a tumor growth model with fractional operators, 2020, 120, 18758576, 41, 10.3233/ASY-191578 | |
20. | Matthias Ebenbeck, Kei Fong Lam, Weak and stationary solutions to a Cahn–Hilliard–Brinkman model with singular potentials and source terms, 2020, 10, 2191-950X, 24, 10.1515/anona-2020-0100 | |
21. | Jürgen Sprekels, Hao Wu, Optimal Distributed Control of a Cahn–Hilliard–Darcy System with Mass Sources, 2021, 83, 0095-4616, 489, 10.1007/s00245-019-09555-4 | |
22. | Matthias Ebenbeck, Patrik Knopf, Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation, 2019, 58, 0944-2669, 10.1007/s00526-019-1579-z | |
23. | Marvin Fritz, Ernesto A. B. F. Lima, J. Tinsley Oden, Barbara Wohlmuth, On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models, 2019, 29, 0218-2025, 1691, 10.1142/S0218202519500325 | |
24. | Pierluigi Colli, Andrea Signori, Jürgen Sprekels, Optimal Control of a Phase Field System Modelling Tumor Growth with Chemotaxis and Singular Potentials, 2019, 0095-4616, 10.1007/s00245-019-09618-6 | |
25. | Luca Dedè, Harald Garcke, Kei Fong Lam, A Hele–Shaw–Cahn–Hilliard Model for Incompressible Two-Phase Flows with Different Densities, 2018, 20, 1422-6928, 531, 10.1007/s00021-017-0334-5 | |
26. | Harald Garcke, Sema Yayla, Long-time dynamics for a Cahn–Hilliard tumor growth model with chemotaxis, 2020, 71, 0044-2275, 10.1007/s00033-020-01351-3 | |
27. | Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca, Sliding Mode Control for a Phase Field System Related to Tumor Growth, 2019, 79, 0095-4616, 647, 10.1007/s00245-017-9451-z | |
28. | Harald Garcke, Kei Fong Lam, Robert Nürnberg, Emanuel Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, 2018, 28, 0218-2025, 525, 10.1142/S0218202518500148 | |
29. | Matthias Ebenbeck, Harald Garcke, Robert Nürnberg, Cahn–Hilliard–Brinkman systems for tumour growth, 2021, 0, 1937-1179, 0, 10.3934/dcdss.2021034 | |
30. | Marvin Fritz, Prashant K. Jha, Tobias Köppl, J. Tinsley Oden, Barbara Wohlmuth, Analysis of a new multispecies tumor growth model coupling 3D phase-fields with a 1D vascular network, 2021, 61, 14681218, 103331, 10.1016/j.nonrwa.2021.103331 | |
31. | Cecilia Cavaterra, Sergio Frigeri, Maurizio Grasselli, Nonlocal Cahn–Hilliard–Hele–Shaw Systems with Singular Potential and Degenerate Mobility, 2022, 24, 1422-6928, 10.1007/s00021-021-00648-1 | |
32. | Luca Scarpa, Andrea Signori, On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis, and active transport, 2021, 34, 0951-7715, 3199, 10.1088/1361-6544/abe75d | |
33. | Patrik Knopf, Andrea Signori, Existence of weak solutions to multiphase Cahn–Hilliard–Darcy and Cahn–Hilliard–Brinkman models for stratified tumor growth with chemotaxis and general source terms, 2022, 47, 0360-5302, 233, 10.1080/03605302.2021.1966803 | |
34. | Pierluigi Colli, Andrea Signori, Jürgen Sprekels, Optimal Control Problems with Sparsity for Tumor Growth Models Involving Variational Inequalities, 2022, 194, 0022-3239, 25, 10.1007/s10957-022-02000-7 | |
35. | Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels, Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term, 2022, 15, 1937-1632, 2135, 10.3934/dcdss.2022001 | |
36. | Andrea Giorgini, Kei Fong Lam, Elisabetta Rocca, Giulio Schimperna, On the Existence of Strong Solutions to the Cahn--Hilliard--Darcy System with Mass Source, 2022, 54, 0036-1410, 737, 10.1137/20M1376443 | |
37. | Pierluigi Colli, Andrea Signori, Jürgen Sprekels, Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis, 2021, 27, 1292-8119, 73, 10.1051/cocv/2021072 | |
38. | Mostafa Bendahmane, Kenneth H. Karlsen, Martingale solutions of stochastic nonlocal cross-diffusion systems, 2022, 17, 1556-1801, 719, 10.3934/nhm.2022024 | |
39. | Tania Biswas, Elisabetta Rocca, Long time dynamics of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, 2022, 27, 1531-3492, 2455, 10.3934/dcdsb.2021140 | |
40. | Elisabetta Rocca, Luca Scarpa, Andrea Signori, Parameter identification for nonlocal phase field models for tumor growth via optimal control and asymptotic analysis, 2021, 31, 0218-2025, 2643, 10.1142/S0218202521500585 | |
41. | Giulio Schimperna, On the Cahn-Hilliard-Darcy system with mass source and strongly separating potential, 2022, 15, 1937-1632, 2305, 10.3934/dcdss.2022008 | |
42. | Xiaopeng Zhao, Optimal Distributed Control of Two-Dimensional Navier–Stokes–Cahn–Hilliard System with Chemotaxis and Singular Potential, 2023, 88, 0095-4616, 10.1007/s00245-023-09976-2 | |
43. | Marvin Fritz, Tumor Evolution Models of Phase-Field Type with Nonlocal Effects and Angiogenesis, 2023, 85, 0092-8240, 10.1007/s11538-023-01151-6 | |
44. | Christoph Helmer, Ansgar Jüngel, Existence analysis for a reaction-diffusion Cahn–Hilliard-type system with degenerate mobility and singular potential modeling biofilm growth, 2023, 0, 1078-0947, 0, 10.3934/dcds.2023069 | |
45. | Jürgen Sprekels, Fredi Tröltzsch, Second-Order Sufficient Conditions in the Sparse Optimal Control of a Phase Field Tumor Growth Model with Logarithmic Potential, 2024, 30, 1292-8119, 13, 10.1051/cocv/2023084 | |
46. | Helmut Abels, Harald Garcke, Jonas Haselböck, Existence of weak solutions to a Cahn–Hilliard–Biot system, 2025, 81, 14681218, 104194, 10.1016/j.nonrwa.2024.104194 | |
47. | Cecilia Cavaterra, Sergio Frigeri, Maurizio Grasselli, A Nonlocal Cahn–Hilliard–Darcy System with Singular Potential, Degenerate Mobility, and Sources, 2025, 91, 0095-4616, 10.1007/s00245-025-10239-5 | |
48. | Cedric Riethmüller, Erlend Storvik, Jakub Wiktor Both, Florin Adrian Radu, Well-posedness analysis of the Cahn–Hilliard–Biot model, 2025, 84, 14681218, 104271, 10.1016/j.nonrwa.2024.104271 |