Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer

Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark

Topical Section: Mathematical Analysis in Fluid Dynamics

We present a full 3D numerical simulation of the acoustic streaming observed in full-image micro-particle velocimetry by Hagsäter et al., Lab Chip 7, 1336 (2007) in a 2 mm by 2 mm by 0.2 mm microcavity embedded in a 49 mm by 15 mm by 2 mm chip excited by 2-MHz ultrasound. The model takes into account the piezo-electric transducer, the silicon base with the water-filled cavity, the viscous boundary layers in the water, and the Pyrex lid. The model predicts well the experimental results.
  Article Metrics

Keywords microscale acoustofluidics; acoustic streaming; numerical simulation; 3D modeling

Citation: Nils R. Skov, Jacob S. Bach, Bjørn G. Winckelmann, Henrik Bruus. 3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer. AIMS Mathematics, 2019, 4(1): 99-111. doi: 10.3934/Math.2019.1.99


  • 1. A. Lenshof, C. Magnusson and T. Laurell, Acoustofluidics 8: Applications in acoustophoresis in continuous flow microsystems, Lab Chip, 12 (2012), 1210-1223.    
  • 2. M. Gedge and M. Hill, Acoustofluidics 17: Surface acoustic wave devices for particle manipulation, Lab Chip, 12 (2012), 2998-3007.    
  • 3. E. K. Sackmann, A. L. Fulton and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, 507 (2014), 181-189.    
  • 4. T. Laurell and A. Lenshof, Microscale Acoustofluidics, Cambridge: Royal Society of Chemistry, 2015.
  • 5. M. Antfolk and T. Laurell, Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood - a review, Anal. Chim. Acta, 965 (2017), 9-35.    
  • 6. P. B. Muller and H. Bruus, Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels, Phys. Rev. E, 90 (2014), 043016.
  • 7. P. B. Muller and H. Bruus, Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels, Phys. Rev. E, 92 (2015), 063018.
  • 8. N. Nama, R. Barnkob, Z. Mao, et al. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves, Lab Chip, 15 (2015), 2700-2709.    
  • 9. J. Lei, P. Glynne-Jones and M. Hill, Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices, Lab Chip, 13 (2013), 2133-2143.    
  • 10. J. Lei, P. Glynne-Jones and M. Hill, Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices, Lab Chip, 3 (2014), 532-541.
  • 11. I. Gralinski, S. Raymond, T. Alan, et al. Continuous flow ultrasonic particle trapping in a glass capillary, J. Appl. Phys., 115 (2014), 054505.
  • 12. M. W. H. Ley and H. Bruus, Three-dimensional numerical modeling of acoustic trapping in glass capillaries, Phys. Rev. Appl., 8 (2017), 024020.
  • 13. P. Hahn and J. Dual, A numerically efficient damping model for acoustic resonances in microfluidic cavities, Phys. Fluids, 27 (2015), 062005.
  • 14. COMSOL Multiphysics 53a, 2017. Available from: www.comsol.com.
  • 15. J. S. Bach and H. Bruus, Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities, J. Acoust. Soc. Am., 144 (2018), 766-784.    
  • 16. S. M. Hagsäter, T. G. Jensen, H. Bruus, et al. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations, Lab Chip, 7 (2007), 1336-1344.    
  • 17. CORNING, Glass Silicon Constraint Substrates, Houghton Park C-8, Corning, NY 14831, USA, accessed 23 October 2018. Available from: http://www.valleydesign.com/Datasheets/Corning Pyrex 7740.pdf.
  • 18. M. A. Hopcroft, W. D. Nix and T. W. Kenny, What is the Young's modulus of silicon, IEEEASME Journal of Microelectromechanical Systems, 19 (2010), 229-238.    
  • 19. J. Dual and D. Möller, Acoustofluidics 4: Piezoelectricity and Application to the Excitation of Acoustic Fields for Ultrasonic Particle Manipulation, Lab Chip, 12 (2012), 506-514.    
  • 20. Meggit A/S, Ferroperm Matdat 2017, Porthusvej 4, DK-3490 Kvistgaard, Denmark, accessed 23 October 2018. Available from: https://www.meggittferroperm.com/materials/.
  • 21. J. T. Karlsen and H. Bruus, Forces acting on a small particle in an acoustical field in a thermoviscous fluid, Phys. Rev. E, 92 (2015), 043010.
  • 22. M. Settnes and H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid, Phys. Rev. E, 85 (2012), 016327.
  • 23. P. B. Muller, R. Barnkob, M. J. H. Jensen, et al. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces, Lab Chip, 12 (2012), 4617-4627.    
  • 24. J. S. Bach and H. Bruus, Different origins of acoustic streaming at resonance, Proceedings of Meeting on Acoustics 21ISNA, 34 (2018), 022005.


This article has been cited by

  • 1. Jacob S. Bach, Henrik Bruus, Bulk-driven acoustic streaming at resonance in closed microcavities, Physical Review E, 2019, 100, 2, 10.1103/PhysRevE.100.023104
  • 2. Nils R. Skov, Prateek Sehgal, Brian J. Kirby, Henrik Bruus, Three-Dimensional Numerical Modeling of Surface-Acoustic-Wave Devices: Acoustophoresis of Micro- and Nanoparticles Including Streaming, Physical Review Applied, 2019, 12, 4, 10.1103/PhysRevApplied.12.044028
  • 3. Jacob S. Bach, Henrik Bruus, Theory of acoustic trapping of microparticles in capillary tubes, Physical Review E, 2020, 101, 2, 10.1103/PhysRevE.101.023107
  • 4. William Naundrup Bodé, Lei Jiang, Thomas Laurell, Henrik Bruus, Microparticle Acoustophoresis in Aluminum-Based Acoustofluidic Devices with PDMS Covers, Micromachines, 2020, 11, 3, 292, 10.3390/mi11030292
  • 5. Jacob S. Bach, Henrik Bruus, Suppression of Acoustic Streaming in Shape-Optimized Channels, Physical Review Letters, 2020, 124, 21, 10.1103/PhysRevLett.124.214501
  • 6. Guangyao Xu, Zhengyang Ni, Xizhou Chen, Juan Tu, Xiasheng Guo, Henrik Bruus, Dong Zhang, Acoustic Characterization of Polydimethylsiloxane for Microscale Acoustofluidics, Physical Review Applied, 2020, 13, 5, 10.1103/PhysRevApplied.13.054069
  • 7. Amir Tahmasebipour, Leanne Friedrich, Matthew Begley, Henrik Bruus, Carl Meinhart, Toward optimal acoustophoretic microparticle manipulation by exploiting asymmetry, The Journal of the Acoustical Society of America, 2020, 148, 1, 359, 10.1121/10.0001634

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved