Citation: Muzzammil Wasim Syed, Ji Zu Li, Muhammad Junaid, Muhammad Ziaullah. Relationship between human resource management practices, relationship commitment and sustainable performance[J]. Green Finance, 2020, 2(3): 227-242. doi: 10.3934/GF.2020013
[1] | Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138 |
[2] | Mingzhou Xu, Kun Cheng, Wangke Yu . Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094 |
[3] | Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992 |
[4] | Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706 |
[5] | Mingzhou Xu . On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2024, 9(2): 3369-3385. doi: 10.3934/math.2024165 |
[6] | He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340 |
[7] | Chengcheng Jia, Qunying Wu . Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470 |
[8] | Mingzhou Xu . Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871 |
[9] | Xiaocong Chen, Qunying Wu . Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations. AIMS Mathematics, 2022, 7(6): 9694-9715. doi: 10.3934/math.2022540 |
[10] | Haiwu Huang, Yuan Yuan, Hongguo Zeng . An extension on the rate of complete moment convergence for weighted sums of weakly dependent random variables. AIMS Mathematics, 2023, 8(1): 622-632. doi: 10.3934/math.2023029 |
Peng [1,2] introduced seminal concepts of the sub-linear expectations space to study the uncertainty in probability. The works of Peng [1,2] stimulate many scholars to investigate the results under sub-linear expectations space, extending those in classic probability space. Zhang [3,4] got exponential inequalities and Rosenthal's inequality under sub-linear expectations. For more limit theorems under sub-linear expectations, the readers could refer to Zhang [5], Xu and Zhang [6,7], Wu and Jiang [8], Zhang and Lin [9], Zhong and Wu [10], Chen [11], Chen and Wu [12], Zhang [13], Hu et al. [14], Gao and Xu [15], Kuczmaszewska [16], Xu and Cheng [17,18,19], Xu et al. [20] and references therein.
In probability space, Shen et al. [21] obtained equivalent conditions of complete convergence and complete moment convergence for extended negatively dependent random variables. For references on complete moment convergence and complete convergence in probability space, the reader could refer to Hsu and Robbins [22], Chow [23], Ko [24], Meng et al. [25], Hosseini and Nezakati [26], Meng et al. [27] and refercences therein. Inspired by the work of Shen et al. [21], we try to investigate complete convergence and complete moment convergence for negatively dependent (ND) random variables under sub-linear expectations, and the Marcinkiewicz-Zygmund type result for ND random variables under sub-linear expectations, which complements the relevant results in Shen et al. [21].
Recently, Srivastava et al. [28] introduced and studied comcept of statistical probability convergence. Srivastava et al. [29] investigated the relevant results of statistical probability convergence via deferred Nörlund summability mean. For more recent works, the interested reader could refer to Srivastava et al. [30,31,32], Paikary et al. [33] and references therein. We conjecture the relevant notions and results of statistical probability convergence could be extended to that under sub-linear expectation.
We organize the remainders of this article as follows. We cite relevant basic notions, concepts and properties, and present relevant lemmas under sub-linear expectations in Section 2. In Section 3, we give our main results, Theorems 3.1 and 3.2, the proofs of which are given in Section 4.
In this article, we use notions as in the works by Peng [2], Zhang [4]. Suppose that (Ω,F) is a given measurable space. Assume that H is a collection of all random variables on (Ω,F) satisfying φ(X1,⋯,Xn)∈H for X1,⋯,Xn∈H, and each φ∈Cl,Lip(Rn), where Cl,Lip(Rn) represents the space of φ fulfilling
|φ(x)−φ(y)|≤C(1+|x|m+|y|m)(|x−y|),∀x,y∈Rn |
for some C>0, m∈N relying on φ.
Definition 2.1. A sub-linear expectation E on H is a functional E:H↦ˉR:=[−∞,∞] fulfilling the following: for every X,Y∈H,
(a) X≥Y yields E[X]≥E[Y];
(b) E[c]=c, ∀c∈R;
(c) E[λX]=λE[X], ∀λ≥0;
(d) E[X+Y]≤E[X]+E[Y] whenever E[X]+E[Y] is not of the form ∞−∞ or −∞+∞.
We name a set function V:F↦[0,1] a capacity if
(a)V(∅)=0, V(Ω)=1;
(b)V(A)≤V(B), A⊂B, A,B∈F.
Moreover, if V is continuous, then V obey
(c) An↑A concludes V(An)↑V(A);
(d) An↓A concludes V(An)↓V(A).
V is named to be sub-additive when V(A+B)≤V(A)+V(B), A,B∈F.
Under the sub-linear expectation space (Ω,H,E), set V(A):=inf{E[ξ]:IA≤ξ,ξ∈H}, ∀A∈F (cf. Zhang [3,4,9,13], Chen and Wu [12], Xu et al. [20]). V is a sub-additive capacity. Set
V∗(A)=inf{∞∑n=1V(An):A⊂∞⋃n=1An},A∈F. |
By Definition 4.2 and Lemma 4.3 of Zhang [34], if E=E is linear expectation, V∗ coincide with the probability measure introduced by the linear expectation E. As in Zhang [3], V∗ is countably sub-additive, V∗(A)≤V(A). Hence, in Theorem 3.1, Corollary 3.1, V could be replaced by V∗, implying that the results here could be considered as natural extensions of the corresponding ones in classic probability space. Write
CV(X):=∫∞0V(X>x)dx+∫0−∞(V(X>x)−1)dx. |
Assume X=(X1,⋯,Xm), Xi∈H and Y=(Y1,⋯,Yn), Yi∈H are two random vectors on (Ω,H,E). Y is called to be negatively dependent to X, if for ψ1 on Cl,Lip(Rm), ψ2 on Cl,Lip(Rn), we have E[ψ1(X)ψ2(Y)]≤E[ψ1(X)]E[ψ2(Y)] whenever ψ1(X)≥0, E[ψ2(Y)]≥0, E[|ψ1(X)ψ2(Y)|]<∞, E[|ψ1(X)|]<∞, E[|ψ2(Y)|]<∞, and either ψ1 and ψ2 are coordinatewise nondecreasing or ψ1 and ψ2 are coordinatewise nonincreasing (cf. Definition 2.3 of Zhang [3], Definition 1.5 of Zhang [4]).
{Xn}∞n=1 is called to be negatively dependent, if Xn+1 is negatively dependent to (X1,⋯,Xn) for each n≥1. The existence of negatively dependent random variables {Xn}∞n=1 under sub-linear expectations could be yielded by Example 1.6 of Zhang [4] and Kolmogorov's existence theorem in classic probabililty space. We below give an concrete example.
Example 2.1. Let P={Q1,Q2} be a family of probability measures on (Ω,F). Suppose that {Xn}∞n=1 are independent, identically distributed under each Qi, i=1,2 with Q1(X1=−1)=Q1(X1=1)=1/2, Q2(X1=−1)=1. Define E[ξ]=supQ∈PEQ[ξ], for each random variable ξ. Here E[⋅] is a sub-linear expectation. By the discussion of Example 1.6 of Zhang [4], we see that {Xn}∞n=1 are negatively dependent random variables under E.
Assume that X1 and X2 are two n-dimensional random vectors in sub-linear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2) repectively. They are named identically distributed if for every ψ∈Cl,Lip(Rn),
E1[ψ(X1)]=E2[ψ(X2)]. |
{Xn}∞n=1 is called to be identically distributed if for every i≥1, Xi and X1 are identically distributed.
In this article we assume that E is countably sub-additive, i.e., E(X)≤∑∞n=1E(Xn) could be implied by X≤∑∞n=1Xn, X,Xn∈H, and X≥0, Xn≥0, n=1,2,…. Write Sn=∑ni=1Xi, n≥1. Let C denote a positive constant which may vary in different occasions. I(A) or IA represent the indicator function of A. The notion ax≈bx means that there exist two positive constants C1, C2 such that C1|bx|≤|ax|≤C2|bx|.
As in Zhang [4], by definition, if X1,X2,…,Xn are negatively dependent random variables and f1, f2,…,fn are all non increasing (or non decreasing) functions, then f1(X1), f2(X2),…,fn(Xn) are still negatively dependent random variables.
We cite the useful inequalities under sub-linear expectations.
Lemma 2.1. (See Lemma 4.5 (III) of Zhang [3]) If E is countably sub-additive under (Ω,H,E), then for X∈H,
E|X|≤CV(|X|). |
Lemma 2.2. (See Lemmas 2.3, 2.4 of Xu et al. [20] and Theorem 2.1 of Zhang [4]) Assume that p≥1 and {Xn;n≥1} is a sequence of negatively dependent random varables under (Ω,H,E). Then there exists a positive constant C=C(p) relying on p such that
E[|n∑j=1Xj|p]≤C{n∑i=1E|Xi|p+(n∑i=1[|E(−Xi)|+|E(Xi)|])p},1≤p≤2, | (2.1) |
E[max1≤i≤n|i∑j=1Xj|p]≤C(logn)p{n∑i=1E|Xi|p+(n∑i=1[|E(−Xi)|+|E(Xi)|])p},1≤p≤2, | (2.2) |
E[max1≤i≤n|i∑j=1Xi|p]≤C{n∑i=1E|Xi|p+(n∑i=1EX2i)p/2+(n∑i=1[|E(−Xi)|+|E(Xi)|])p},p≥2. | (2.3) |
Lemma 2.3. Assume that X∈H, α>0, γ>0, CV(|X|α)<∞. Then there exists a positive constant C relying on α,γ such that
∫∞0V{|X|>γy}yα−1dy≤CCV(|X|α)<∞. |
Proof. By the method of substitution of definite integral, letting γy=z1/α, we get
∫∞0V{|X|>γy}yα−1dy≤∫∞0V{|X|α>z}(z1/α/γ)α−1z1/α−1/γdz≤CCV(|X|α)<∞. |
Lemma 2.4. Let Yn,Zn∈H. Then for any q>1, ε>0 and a>0,
E(max1≤j≤n|j∑i=1(Yi+Zi)|−εa)+≤(1εq+1q−1)1aq−1E(max1≤j≤n|j∑i=1Yi|q)+E(max1≤j≤n|j∑i=1Zi|). | (2.4) |
Proof. By Markov' inequality under sub-linear expectations, Lemma 2.1, and the similar proof of Lemma 2.4 of Sung [35], we could finish the proof. Hence, the proof is omitted here.
Our main results are below.
Theorem 3.1. Suppose α>12 and αp>1. Assume that {Xn,n≥1} is a sequence of negatively dependent random variables, and for each n≥1, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Moreover, assume E(X)=E(−X)=0 if p≥1. Suppose CV(|X|p)<∞. Then for all ε>0,
∞∑n=1nαp−2V{max1≤j≤n|j∑i=1Xi|>εnα}<∞. | (3.1) |
Remark 3.1. By Example 2.1, the assumption E(X)=E(−X)=0 if p≥1 in Theorem 3.1 can not be weakened to E(X)=0 if p≥1. In fact, in the case of Example 2.1, if 12<α≤1, αp>1, then for any 0<ε<1,
∞∑n=1nαp−2V{max1≤j≤n|j∑i=1Xi|>εnα}≥∞∑n=1nαp−2V{max1≤j≤n|j∑i=1Xi|≥n}=∞∑n=1nαp−2=+∞, |
which implies that Theorems 3.1, 3.2, Corollary 3.1 do not hold. However, by Example 1.6 of Zhang [4], the assumptions of Theorem 3.3, Corollary 3.2 hold for random variables in Example 2.1, hence Theorem 3.3, Corollary 3.2 are valid in this example.
By Theorem 3.1, we could get the Marcinkiewicz-Zygmund strong law of large numbers for negatively dependent random variables under sub-linear expectations below.
Corollary 3.1. Let α>12 and αp>1. Assume that under sub-linear expectation space (Ω,H,E), {Xn} is a sequence of negatively dependent random variables and for each n, Xn is identically distributed as X. Moreover, assume E(X)=E(−X)=0 if p≥1. Assume that V induced by E is countably sub-additive. Suppose CV{|X|p}<∞. Then
V(lim supn→∞1nα|n∑i=1Xi|>0)=0. | (3.2) |
Theorem 3.2. If the assumptions of Theorem 3.1 hold for p≥1 and CV{|X|plogθ|X|}<∞ for some θ>max{αp−1α−12,p}, then for any ε>0,
∞∑n=1nαp−2−αE(max1≤j≤n|j∑i=1Xi|−εnα)+<∞. | (3.3) |
By the similar proof of Theorem 3.1, with Theorem 2.1 (b) for negative dependent random variables of Zhang [4] (cf. the proof of Theorem 2.1 (c) there) in place of Lemma 2.2 here, we could obtain the following result.
Theorem 3.3. Suppose α>12, p≥1, and αp>1. Assume that Xk is negatively dependent to (Xk+1,…,Xn), for each k=1,…,n, n≥1. Suppose for each n, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Suppose CV(|X|p)<∞. Then for all ε>0,
∞∑n=1nαp−2V{max1≤j≤nj∑i=1[Xi−E(Xi)]>εnα}<∞, |
∞∑n=1nαp−2V{max1≤j≤nj∑i=1[−Xi−E(−Xi)]>εnα}<∞. |
By the similar proof of Corollary 3.1, with Theorem 3.3 in place of Theorem 3.1, we get the following result.
Corollary 3.2. Let α>12, p≥1, and αp>1. Assume that Xk is negatively dependent to (Xk+1,…,Xn), for each k=1,…,n, n≥1. Suppose for each n, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Assume that V induced by E is countably sub-additive. Suppose CV{|X|p}<∞. Then
V({lim supn→∞1nαn∑i=1[Xi−E(Xi)]>0}⋃{lim supn→∞1nαn∑i=1[−Xi−E(−Xi)]>0})=0. |
By the similar proof of Theorem 3.1 and Corollary 3.1, and adapting the proof of (4.10), we could obtain the following result.
Corollary 3.3. Suppose α>1 and p≥1. Assume that {Xn,n≥1} is a sequence of negatively dependent random variables, and for each n≥1, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Suppose CV(|X|p)<∞. Then for all ε>0,
∞∑n=1nαp−2V{max1≤j≤nj∑i=1[Xi−E(Xi)]>εnα}<∞, |
∞∑n=1nαp−2V{max1≤j≤nj∑i=1[−Xi−E(−Xi)]>εnα}<∞. |
Moreover assume that V induced by E is countably sub-additive. Then
V({lim supn→∞1nαn∑i=1[Xi−E(Xi)]>0}⋃{lim supn→∞1nαn∑i=1[−Xi−E(−Xi)]>0})=0. |
By the discussion below Definition 4.1 of Zhang [34], and Corollary 3.2, we conjecture the following.
Conjecture 3.1. Suppose 12<α≤1 and αp>1. Assume that {Xn,n≥1} is a sequence of negatively dependent random variables, and for each n≥1, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Assume that V induced by E is continuous. Suppose CV{|X|p}<∞. Then
V({lim supn→∞1nαn∑i=1[Xi−E(Xi)]>0}⋃{lim supn→∞1nαn∑i=1[−Xi−E(−Xi)]>0})=0. |
Proof of Theorem 3.1. We investigate the following cases.
Case 1. 0<p<1.
For fixed n≥1, for 1≤i≤n, write
Yni=−nαI{Xi<−nα}+XiI{|Xi|≤nα}+nαI{Xi>nα}, |
Zni=(Xi−nα)I{Xi>nα}+(Xi+nα)I{Xi<−nα}, |
Yn=−nαI{X<−nα}+XI{|X|≤nα}+nαI{X>nα}, |
Zn=X−Yn. |
Observing that Xi=Yni+Zni, we see that for all ε>0,
∞∑n=1nαp−2V{max1≤j≤n|j∑i=1Xi|>εnα}≤∞∑n=1nαp−2V{max1≤j≤n|j∑i=1Yni|>εnα/2}+∞∑n=1nαp−2V{max1≤j≤n|j∑i=1Zni|>εnα/2}=:I1+I2. | (4.1) |
By Markov's inequality under sub-linear expectations, Cr inequality, and Lemmas 2.1, 2.3, we conclude that
I1≤C∞∑n=1nαp−2−αn∑i=1E|Yni|=C∞∑n=1nαp−1−αE|Yn|≤C∞∑n=1nαp−1−αCV(|Yn|)≤C∞∑n=1nαp−1−α∫nα0V{|Yn|>x}dx=C∞∑n=1nαp−1−αn∑k=1∫kα(k−1)αV{|X|>x}dx=C∞∑k=1∫kα(k−1)αV{|X|>x}dx∞∑n=knαp−1−α=C∞∑k=1kα−1V{|X|>(k−1)α}kαp−α≤C∞∑k=1kαp−1V{|X|>kα}+C≤C∫∞0xαp−1V{|X|>xα}dx+C≤CCV{|X|p}+C<∞, | (4.2) |
and
I2≤C∞∑n=1nαp−2−αp/2n∑i=1E|Zni|p/2≤C∞∑n=1nαp/2−1E|Zn|p/2≤C∞∑n=1nαp/2−1CV{|Zn|p/2}≤C∞∑n=1nαp/2−1CV{|X|p/2I{|X|>nα}}≤C∞∑n=1nαp/2−1[∫nα0V{|X|>nα}sp/2−1ds+∫∞nαV{|X|>s}sp/2−1ds]≤C∞∑n=1nαp−1V{|X|>nα}+C∞∑n=1nαp/2−1∞∑k=n∫(k+1)αkαV{|X|>s}sp/2−1ds≤CCV{|X|p}+C∞∑k=1∫(k+1)αkαV{|X|>s}sp/2−1dsk∑n=1nαp/2−1≤CCV{|X|p}+C∞∑k=1V{|X|>kα}kαp−1≤CCV{|X|p}+CCV{|X|p}<∞. | (4.3) |
Therefore, by (4.1)–(4.3), we deduce that (3.1) holds.
Case 2. p≥1.
Observing that αp>1, we choose a suitable q such that 1αp<q<1. For fixed n≥1, for 1≤i≤n, write
X(1)ni=−nαqI{Xi<−nαq}+XiI{|Xi|≤nαq}+nαqI(Xi>nαq), |
X(2)ni=(Xi−nαq)I{Xi>nαq},X(3)ni=(Xi+nαq)I{Xi<−nαq}, |
and X(1)n, X(2)n, X(3)n is defined as X(1)ni, X(2)ni, X(3)ni only with X in place of Xi above. Observing that ∑ji=1Xi=∑ji=1X(1)ni+∑ji=1X(2)ni+∑ji=1X(3)ni, for 1≤j≤n, we see that for all ε>0,
∞∑n=1nαp−2V{max1≤j≤n|j∑i=1Xi|>εnα}≤∞∑n=1nαp−2V{max1≤j≤n|j∑i=1X(1)ni|>εnα/3}+∞∑n=1nαp−2V{max1≤j≤n|j∑i=1X(2)ni|>εnα/3}+∞∑n=1nαp−2V{max1≤j≤n|j∑i=1X(3)ni|>εnα/3}=:II1+II2+II3. | (4.4) |
Therefore, to establish (3.1), it is enough to prove that II1<∞, II2<∞, II3<∞.
For II1, we first establish that
n−αmax1≤j≤n|j∑i=1EX(1)ni|→0, as n→∞. | (4.5) |
By E(X)=0, Markov's inequality under sub-linear expectations, Lemma 2.1, we conclude that
n−αmax1≤j≤n|j∑i=1EX(1)ni|≤n−αn∑i=1|E(X(1)n)|≤n1−α|E(X(1)n)−E(X)|≤n1−αE|X(1)n−X|≤n1−αCV(|X(1)n−X|)≤Cn1−α[∫∞0V{|X|I{|X|>nαq}>x}dx]≤Cn1−α[∫nαq0V{|X|>nαq}dx+∫∞nαqV{|X|>y}dy]≤Cn1−α+αqV{|X|>nαq}+Cn1−α∫∞nαqV{|X|>y}yp−1nαq(p−1)dy≤Cn1−α+αqE|X|pnαqp+Cn1−α+αq−αqpCV{|X|p}≤Cn1−αqp−α+αqCV{|X|p}, |
which results in (4.5) by CV{|X|p}<∞ and 1/(αp)<q<1. Thus, from (4.5), it follows that
II1≤C∞∑n=1nαp−2V{max1≤j≤n|j∑i=1(X(1)ni−EX(1)ni)|>εnα6}. | (4.6) |
For fixed n≥1, we note that {X(1)ni−EX(1)ni,1≤i≤n} are negatively dependent random variables. By (4.6), Markov's inequality under sub-linear expectations, and Lemma 2.2, we see that for any β≥2,
II1≤C∞∑n=1nαp−2−αβE(max1≤j≤n|j∑i=1(X(1)ni−EX(1)ni)|β)≤C∞∑n=1nαp−2−αβ[n∑i=1E|X(1)ni|β+(n∑i=1E|X(1)ni|2)β/2+(n∑i=1[|EX(1)ni|+|E(−X(1)ni)|])β]=:II11+II12+II13. | (4.7) |
Taking β>max{αp−1α−1/2,2,p,αp−1αqp−αq+α−1}, we obtain
αp−αβ+αqβ−αpq−1=α(p−β)(1−q)−1<−1, |
αp−2−αβ+β/2<−1, |
and
αp−2−αβ+β−αq(p−1)β<−1. |
By Cr inequality, Markov's inequality under sub-linear expectations, Lemma 2.1, we see that
II11≤C∞∑n=1nαp−2−αβn∑i=1E|X(1)ni|β≤C∞∑n=1nαp−1−αβE|X(1)n|β≤C∞∑n=1nαp−1−αβCV{|X(1)n|β}=C∞∑n=1nαp−1−αβ∫nαqβ0V{|X|β>x}dx≤C∞∑n=1nαp−1−αβ∫nαq0V{|X|>x}xβ−1dx≤C∞∑n=1nαp−1−αβ∫nαq0V{|X|>x}xp−1nαq(β−p)dx≤C∞∑n=1nαp−1−αβ+αqβ−αqpCV{|X|p}<∞, | (4.8) |
II12≤C∞∑n=1nαp−2−αβ(n∑i=1E|X(1)n|2)β/2≤C∞∑n=1nαp−2−αβ+β/2(CV{|X(1)n|2})β/2≤C∞∑n=1nαp−2−αβ+β/2(∫nαq0V{|X|>x}xdx)β/2≤{C∑∞n=1nαp−2−αβ+β/2(CV{|X|2})β/2, if p≥2;C∑∞n=1nαp−2−αβ+β/2(∫nαq0V{|X|>x}xp−1nαq(2−p)dx)β/2, if 1≤p<2,≤{C∑∞n=1nαp−2−αβ+β/2(CV{|X|2})β/2<∞, if p≥2;C∑∞n=1n(αp−1)(1−β/2)−1(CV(|X|p))β/2<∞, if 1≤p<2, | (4.9) |
and
II13≤C∞∑n=1nαp−2−αβ(n∑i=1[|EX(1)n|+|E(−X(1)n)|])β≤C∞∑n=1nαp−2−αβ+β(E|X(1)n−X|)β≤C∞∑n=1nαp−2−αβ+β(E|X|p)βnαq(p−1)β≤C∞∑n=1nαp−2−αβ+β−αq(p−1)β(CV(|X|p))β<∞. | (4.10) |
Therefore, combining (4.7)–(4.10) results in II1<∞.
Next, we will establish that II2<∞. Let gμ(x) be a non-increasing Lipschitz function such that I{x≤μ}≤gμ(x)≤I{x≤1}, μ∈(0,1). Obviously, I{x>μ}>1−gμ(x)>I{x>1}. For fixed n≥1, for 1≤i≤n, write
X(4)ni=(Xi−nαq)I(nαq<Xi≤nα+nαq)+nαI(Xi>nα+nαq), |
and
X(4)n=(X−nαq)I(nαq<X≤nα+nαq)+nαI(X>nα+nαq). |
We see that
(max1≤j≤n|i∑j=1X(2)ni|>εnα3)⊂(max1≤i≤n|Xi|>nα)⋃(max1≤j≤n|i∑j=1X(4)ni|>εnα3), |
which results in
II2≤∞∑n=1nαp−2n∑i=1V{|Xi|>nα}+∞∑n=1nαp−2V{max1≤j≤n|i∑j=1X(4)ni|>εnα3}=:II21+II22. | (4.11) |
By CV{|X|p}<∞, we conclude that
II21≤C∞∑n=1nαp−2n∑i=1E[1−gμ(|Xi|)]=C∞∑n=1nαp−1E[1−gμ(|X|)]≤C∞∑n=1nαp−1V{|X|>μnα}≤C∫∞0xαp−1V{|X|>μxα}dx≤CCV(|X|p)<∞. | (4.12) |
Observing that 1αp<q<1, from the definition of X(2)ni, follows that
n−αmax1≤j≤n|j∑i=1EX(4)ni|≤Cn1−αE|X(4)n|≤Cn1−αCV(|X(4)n|)≤Cn1−α[∫nαq0V{|X|I{|X|>nαq}>x}dx+∫∞nαqV{|X|>x}dx]≤Cn1−α+αqE|X|pnαpq+Cn1−α∫∞nαqV{|X|>x}xp−1nαq(p−1)dx≤Cn1−α+αq−αpqCV{|X|p}→0 as n→∞. | (4.13) |
By X(4)ni>0, (4.11)–(4.13), we see that
II2≤C∞∑n=1nαp−2V{|n∑i=1[X(4)ni−EX(4)ni]|>εnα6}. | (4.14) |
For fixed n≥1, we know that {X(4)ni−EX(4)ni,1≤i≤n} are negatively dependent random variables under sub-linear expectations. By Markov's inequality under sub-linear expectations, Cr-inequality, Lemma 2.2, we obtain
II2≤C∞∑n=1nαp−2−αβE(|n∑i=1[X(4)ni−EX(4)ni]|β)≤C∞∑n=1nαp−2−αβ[n∑i=1E|X(4)ni|β+(n∑i=1E(X(4)ni)2)β/2+(n∑i=1[|EX(4)ni|+|E(−X(4)ni)|])β]=:II21+II22+II23. | (4.15) |
By Cr inequality, Lemma 2.3, we have
II21≤C∞∑n=1nαp−2−αβn∑i=1E|X(4)n|β≤C∞∑n=1nαp−1−αβCV{|X(4)n|β}≤C∞∑n=1nαp−1−αβCV{|X|βI{nαq<X≤nα+nαq}+nαqβI{X>nα+nαq}}≤C∞∑n=1nαp−1−αβ∫2nα0V{|X|>x}xβ−1dx≤C∞∑n=1nαp−1−αβn∑k=1∫2kα2(k−1)αV{|X|>x}xβ−1dx≤C∞∑k=1V{|X|>2(k−1)α}kαβ−1∞∑n=knαp−1−αβ≤C∞∑k=1V{|X|>2(k−1)α}kαp−1≤C∫∞0V{|X|>2xα}xαp−1dx≤CCV{|X|p}<∞. | (4.16) |
As in the proof of (4.9) and (4.16), we can deduce that II22<∞.
By Lemma 2.1, we see that
II23≤C∞∑n=1nαp−1−αβnβ(E|X(4)n|)β≤C∞∑n=1nαp−1−αβ+β(E|X|pnαq(p−1))β≤C∞∑n=1nαp−1−αβ+β−αq(p−1)(CV{|X|p})β<∞. | (4.17) |
By (4.15)–(4.17), we deduce that II2<∞.
As in the proof of II2<∞, we also can obtain II3<∞. Therefore, combining (4.5), II1<∞, II2<∞, and II3<∞ results in (3.1). This finishes the proof.
Proof of Corollary 3.1. By CV{|X|p}<∞, and Theorem 3.1, we deduce that for all ε>0,
∞∑n=1nαp−2V(max1≤j≤n|j∑i=1Xi|>εnα)<∞. | (4.18) |
By (4.18), we conclude that for any ε>0,
∞>∞∑n=1nαp−2V(max1≤j≤n|j∑i=1Xi|>εnα)=∞∑k=02k+1−1∑n=2knαp−2V(max1≤j≤n|j∑i=1Xi|>εnα)≥{∑∞k=0(2k)αp−22kV(max1≤j≤2k|∑ji=1Xi|>ε2(k+1)α), if αp≥2,∑∞k=0(2k+1)αp−22kV(max1≤j≤2k|∑ji=1Xi|>ε2(k+1)α), if 1<αp<2,≥{∑∞k=0V(max1≤j≤2k|∑ji=1Xi|>ε2(k+1)α), if αp≥2,∑∞k=012V(max1≤j≤2k|∑ji=1Xi|>ε2(k+1)α), if 1<αp<2, |
which, combined with Borel-Cantell lemma under sub-linear expectations, yields that
V(lim supn→∞max1≤j≤2k|∑ji=1Xi|2(k+1)α>0)=0. | (4.19) |
For all positive integers n, ∃ a positive integer k satisfying 2k−1≤n<2k, we see that
n−α|n∑i=1Xi|≤max2k−1≤n≤2kn−α|n∑i=1Xi|≤22αmax1≤j≤2k|∑ji=1Xi|2(k+1)α, |
which yields (3.2). This completes the proof.
Proof of Theorem 3.2. For fixed n≥1, for 1≤i≤n, write
Yni=−nαI{Xi<−nα}+XiI{|Xi|≤nα}+nαI{Xi>nα}, |
Zni=Xi−Yni=(Xi−nα)I{Xi>nα}+(Xi+nα)I{Xi<−nα}, |
and
Yn=−nαI{X<−nα}+XI{|X|≤nα}+nαI{X>nα}, |
Zn=X−Yn=(X−nα)I{X>nα}+(X+nα)I{X<−nα}. |
From Lemma 2.4 follows that for any β>1,
∞∑n=1nαp−2−αE(max1≤j≤n|j∑i=1Xi|−εnα)+≤C∞∑n=1nαp−2−αβE(max1≤j≤n|j∑i=1(Yni−EYni)|β)+∞∑n=1nαp−2−αE(max1≤j≤n|j∑i=1(Zni−EZni)|)=:III1+III2. | (4.20) |
Noticing that Zn≤(|X|−nα)I(|X|>nα)≤|X|I(|X|>nα), by Lemma 2.3, we see that
III2≤C∞∑n=1nαp−2−αn∑i=1E|Zni|≤C∞∑n=1nαp−1−αE|Zn|≤C∞∑n=1nαp−1−αCV{|Zn|}≤C∞∑n=1nαp−1−αCV{|X|I(|X|>nα)}≤C∞∑n=1nαp−1−α[∫nα0V{|X|>nα}dx+∫∞nαV{|X|>x}dx]≤C∞∑n=1nαp−1V{|X|>nα}+C∞∑n=1nαp−1−α∞∑k=n∫(k+1)αkαV{|X|>x}dx≤CCV{|X|p}+C∞∑k=1V{|X|>kα}kα−1k∑n=1nαp−1−α≤{CCV{|X|p}+C∑∞k=1V{|X|>kα}kα−1log(k), if p=1,CCV{|X|p}+C∑∞k=1V{|X|>kα}kαp−1, if p>1,≤{CCV{|X|log|X|}<∞, if p=1,CCV{|X|p}<∞, if p>1. | (4.21) |
Now, we will establish III1<∞. Observing that θ>p≥1, we can choose β=θ. We analysize the following two cases.
Case 1. 1<θ≤2. From (2.2) of Lemma 2.2, Lemma 2.1, E(Y)=E(−Y)=0, and Markov's inequality under sub-linear expectations follows that
III1=C∞∑n=1nαp−2−αθE(max1≤j≤n|j∑i=1(Yni−EYni)|θ)≤C∞∑n=1nαp−2−αθlogθn[n∑i=1E|Yni|θ+(n∑i=1[|E(Yni)|+|E(−Yni)|])θ]=C∞∑n=1nαp−2−αθlogθn[n∑i=1E|Yn|θ+(n∑i=1[|E(Yn)|+|E(−Yn)|])θ]≤C∞∑n=1nαp−1−αθlogθnCV{|Yn|θ}+C∞∑n=1nαp−2−αθ+θlogθn(E|Yn−X|)θ≤C∞∑n=1nαp−1−αθlogθn∫nα0V{|X|>x}xθ−1dx+C∞∑n=1nαp−2−αθ+θlogθn(CV{|Yn−X|})θ≤C∞∑n=1nαp−1−αθlogθnn∑k=1∫kα(k−1)αV{|X|>x}xθ−1dx+C∞∑n=1nαp−2−αθ+θlogθn(CV{|X|I{|X|>nα}})θ≤C∞∑k=1V{|X|>(k−1)α}kαθ−1∞∑n=knαp−1−αθ+C∞∑n=1nαp−2−αθ+θlogθn(∫∞0V{|X|I{|X|>nα}>y}dy)θ≤C∞∑k=1V{|X|>(k−1)α}kαp−1logθk+C∞∑n=1nαp−2−αθ+θlogθn(nαE{|X|plogθ|X|}nαplogθn)θ+C∞∑n=1nαp−2−αθ+θlogθn(∫∞nαV{|X|plogθ|X|>yplogθy}d(yplogθy)/(nα(p−1)logθn))θ≤C∫∞0V{|X|>xα}xαp−1logθxdx+C(CV{|X|plogθ|X|})θ+C∞∑n=1nαp−2+θ−αpθlogθ−θ2n(CV{|X|plogθ|X|})θ≤CCV{|X|plogθ|X|}+C(CV{|X|plogθ|X|})θ<∞. | (4.22) |
Case 2. θ>2. Observe that θ>αp−1α−12, we conclude that αp−2−αθ+θ2<−1. As in the proof of (4.22), by Lemma 2.2, and Cr inequality, we see that
III1=C∞∑n=1nαp−2−αθE(max1≤j≤n|j∑i=1(Yni−E(Yni))|θ)≤C∞∑n=1nαp−2−αθ[n∑i=1E|Yni|θ+(n∑i=1E|Yni|2)θ/2+(n∑i=1[|E(Yni)|+|E(−Yni)|])θ]=:III11+III12+III13. | (4.23) |
By Lemma 2.3, we see that
III11≤C∞∑n=1nαp−1−αθE|Yn|θ≤C∞∑n=1nαp−1−αθCV{|Yn|θ}≤C∞∑n=1nαp−1−αθ∫nα0V{|X|>x}xθ−1dx=C∞∑n=1nαp−1−αθn∑k=1∫kα(k−1)αV{|X|>x}xθ−1dx≤C∞∑k=1V{|X|>(k−1)α}kαθ−1∞∑n=knαp−1−αθ≤C∞∑k=1V{|X|>(k−1)α}kαp−1≤C∫∞0V{|X|>xα}xαp−1dx≤CCV{|X|p}<∞. |
By Lemma 2.1, we deduce that
III12≤C∞∑n=1nαp−2−αθ(n∑i=1E|Yn|2)θ/2≤{C∑∞n=1nαp−2−αθ+θ/2(E|X|2)θ/2, if p≥2,C∑∞n=1nαp−2−αθ+θ/2(E|X|pnα(2−p))θ/2, if 1≤p<2,≤{CCV{|X|2}<∞, if p≥2,C∑∞n=1nαp−2+θ/2−αpθ/2(CV{|X|p})θ/2<∞, if 1≤p<2. |
And the proof of III13<∞ is similar to that of (4.22). This finishes the proof.
We have obtained new results about complete convergence and complete moment convergence for maximum partial sums of negatively dependent random variables under sub-linear expectations. Results obtained in our article extend those for negatively dependent random variables under classical probability space, and Theorems 3.1, 3.2 here are different from Theorems 3.1, 3.2 of Xu et al. [20], and the former can not be deduced from the latter. Corollary 3.1 complements Theorem 3.1 in Zhang [9] in the case p≥2, Corollaries 3.2, 3.3 complement Theorem 3.3 in Zhang [4] in the case p>1 in some sense.
This study was supported by Science and Technology Research Project of Jiangxi Provincial Department of Education of China (No. GJJ2201041), Academic Achievement Re-cultivation Project of Jingdezhen Ceramic University (No. 215/20506135), Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (No. 102/01003002031).
All authors state no conflicts of interest in this article.
[1] |
Ahmad S, Schroeder RG (2003) The impact of human resource management practices on operational performance: recognizing country and industry differences. J Oper Manage 21: 19-43. doi: 10.1016/S0272-6963(02)00056-6
![]() |
[2] |
Ahlstrom D, Bruton G, Chan ES (2001) HRM of foreign firms in China: The challenge of managing host country personnel. Bus Horiz 44: 59-68. doi: 10.1016/S0007-6813(01)80036-7
![]() |
[3] |
Ali M, Lei S, Wei XY (2018) The mediating role of the employee relations climate in the relationship between strategic HRM and organizational performance in Chinese banks. J Innovation Knowl 3: 115-122. doi: 10.1016/j.jik.2016.12.003
![]() |
[4] |
Arther MB (1994) The boundaryless career. J Organ Behav 15: 295-306. doi: 10.1002/job.4030150402
![]() |
[5] |
Bisharat H, Obeidat BY, Alrowwad A, et al. (2017) The effect of human resource management practices on organizational commitment in chain pharmacies in Jordan. Int J Bus Manage 12: 50-67. doi: 10.5539/ijbm.v12n1p50
![]() |
[6] | Browning V, Delahaye BL (2011) Enhancing workplace learning through collaborative HRD, In Readings in HRM and sustainability, Australia: Tilde University Press, 36-50. |
[7] |
Carey S, Lawson B, Krause DR (2011) Social capital configuration, legal bonds and performance in buyer-supplier relationships. J Oper Manage 29: 277-288. doi: 10.1016/j.jom.2010.08.003
![]() |
[8] |
Celma D, Martinez-Garcia E, Raya JM (2018) Socially responsible HR practices and their effects on employees' wellbeing: Empirical evidence from Catalonia, Spain. Eur Res Manage Bus Econ 24: 82-89. doi: 10.1016/j.iedeen.2017.12.001
![]() |
[9] | Chaturvedi (2015) Economics and Discussion. Available from: http://www.economicsdiscussion.net/human-resource-management/recruitment-and-selection-process/31594. |
[10] |
Chen J, Eldridge D (2010) Are "standardized performance appraisal practices" really preferred? A case study in China. Chinese Manage Stud 4: 244-257. doi: 10.1108/17506141011074138
![]() |
[11] |
Cousins PD, Handfield RB, Lawson B, et al. (2006) Creating supply chain relational capital: The impact of formal and informal socialization processes. J Oper Manage 24: 851-863. doi: 10.1016/j.jom.2005.08.007
![]() |
[12] |
Darrag M, Mohamed A, Aziz HA (2010) Investigating recruitment practices and problems of multinational companies (MNCs) operating in Egypt. Educ Bus Society Contemp Middle Eastern Issues 3: 99-116. doi: 10.1108/17537981011047943
![]() |
[13] |
Das D (2017) Development and validation of a scale for measuring Sustainable Supply Chain Management practices and performance. J Clean Prod 164: 1344-1362. doi: 10.1016/j.jclepro.2017.07.006
![]() |
[14] | De Kok J, Uhlaner LM, Thurik R (2003) Human resource management with small firms; facts and explanations, London: Edward Elgar publishing. |
[15] |
Derous E, De Fruyt F (2016) Developments in recruitment and selection research. Int J Select Asses 24: 1-3. doi: 10.1111/ijsa.12123
![]() |
[16] |
Dupuis JP (2014) New approaches in cross-cultural management research: The importance of context and meaning in the perception of management styles. Int J Cross Cultural Manage 14: 67-84. doi: 10.1177/1470595813501476
![]() |
[17] |
Dyer JH, Singh H (1998) The relational view: Cooperative strategy and sources of interorganizational competitive advantage. Acad Manage Rev 231: 660-679. doi: 10.5465/amr.1998.1255632
![]() |
[18] |
Ehnert I (2009) Sustainability and human resource management: reasoning and applications on corporate websites. Eur J Int Manage 3: 419-438. doi: 10.1504/EJIM.2009.028848
![]() |
[19] |
Fornell C, Larker D (1981) Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J Mark Res 18: 39-50. doi: 10.1177/002224378101800104
![]() |
[20] | Huselid MA, Jackson SE, Schuler RS (1997) Technical and strategic human resources management effectiveness as determinants of firm performance. Acad Manage J 40: 171-188. |
[21] |
Inkpen AC, Tsang EW (2005) Social capital, networks, and knowledge transfer. Acad Manage Rev 30: 146-165. doi: 10.5465/amr.2005.15281445
![]() |
[22] |
Jamali D, Lund-Thomsen P, Jeppesen S (2017) SMEs and CSR in developing countries. Bus Society 56: 11-22. doi: 10.1177/0007650315571258
![]() |
[23] |
Kale P, Singh H, Perlmutter H (2000) Learning and protection of proprietary assets in strategic alliances: Building relational capital. Strat Manage J 21: 217-237. doi: 10.1002/(SICI)1097-0266(200003)21:3<217::AID-SMJ95>3.0.CO;2-Y
![]() |
[24] | Kam BH, Tsahuridu EE, Ding MJ (2010) Does human resource management contribute to the development of logistics and supply chain capabilities? an empirical study of logistics service providers in China. Res Pract Human Resour Manage 18: 15-34. |
[25] | Kline SJ, Rosenberg N (2010) An overview of innovation, In Studies On Science And The Innovation Process: Selected Works of Nathan Rosenberg, England: John Wiley & Sons Ltd, 173-203. |
[26] | Kline RB (2015) Principles and practice of structural equation modeling, 4th eds., London: Guilford publications. |
[27] |
Kotey B, Slade P (2005) Formal human resource management practices in small growing firms. J Small Bus Manage 4: 16-40. doi: 10.1111/j.1540-627X.2004.00123.x
![]() |
[28] |
Krause DR, Handfield RB, Tyler BB (2007) The relationships between supplier development, commitment, social capital accumulation and performance improvement. J Oper Manage 25: 528-545. doi: 10.1016/j.jom.2006.05.007
![]() |
[29] | Lamba S, Choudhary N (2013) Impact of HRM practices on organizational commitment of employees. Int J Adv Res Tech 2: 407-423. |
[30] | Lee SY (2007) Structural equation modeling: A Bayesian approach, 3rd eds., New York: Springer, 49-129. |
[31] | Likhitkar P, Verma P (2017) Impact of green HRM practices on organization sustainability and employee retention. Int J Innovative Res Multidiscip Field 3: 152-157. |
[32] |
Loganathan C, Dharmaraj A (2017) A Study on Impact of HRM Practices and Policies on Employee's Organizational Commitment in Textile Spinning Mills in Tamil Nadu, India. Indian J Sci Technol 10: 1-11. doi: 10.17485/ijst/2017/v10i15/114239
![]() |
[33] |
Lytras MD, Pablos POD (2008) The role of a "make" or internal human resource management system in Spanish manufacturing companies: Empirical evidence. Human Factors Ergon Manuf Serv Industries 18: 464-479. doi: 10.1002/hfm.20117
![]() |
[34] | Madison TF, Ward S, Royalty K (2012) Corporate social responsibility, organizational commitment, and employer-sponsored volunteerism. Int J Bus Soc Sci 3: 1-14. |
[35] |
Maheshwari S, Vohra V (2015) Identifying critical HR practices impacting employee perception and commitment during organizational change. J Organ Change Manage 28: 872-894. doi: 10.1108/JOCM-03-2014-0066
![]() |
[36] |
Menon ST (2012) Human resource practices, supply chain performance, and wellbeing. Int J Manpower 33: 769-785. doi: 10.1108/01437721211268311
![]() |
[37] |
Mishra P (2017) Green human resource management: A framework for sustainable organizational development in an emerging economy. Int J Organ Anal 25: 762-788. doi: 10.1108/IJOA-11-2016-1079
![]() |
[38] | Moore KR (1998) Trust and relationship commitment in logistics alliances: a buyer perspective. Int J Purchasing Mater Manage 34: 24-37. |
[39] |
Morgan RM, Hunt S (1999) Relationship-based competitive advantage: the role of relationship marketing in marketing strategy. J Bus Res 46: 281-290. doi: 10.1016/S0148-2963(98)00035-6
![]() |
[40] |
Nahapiet J, Ghoshal S (1998) Social capital, intellectual capital, and the organizational advantage. Acad Manage Rev 23: 242-266. doi: 10.5465/amr.1998.533225
![]() |
[41] | Naz F, Aftab J, Awais M (2016) Impact of human resource management practices (HRM) on performance of SMEs in Multan, Pakistan. Int J Manage Accounting Econ 3: 699-708. |
[42] | Nielsen P, Rasmussen P, Fong CY, et al. (2011) HRM practices and knowledge sharing: an empirical study. Int J Manpower 12: 704-723. |
[43] | Nishii LH, Wright PM (2007) Variability within organizations: Implications for strategic human resource management, London: oxford press, 599-600. |
[44] |
Obeidat BY, Abdallah AB (2014) The relationships among human resource management practices, organizational commitment, and knowledge management processes: A structural equation modeling approach. Int J Bus Manage 9: 1-9. doi: 10.5539/ijbm.v9n3p9
![]() |
[45] |
Parmigiani A, Klassen RD, Russo MV (2011) Efficiency meets accountability: Performance implications of supply chain configuration, control, and capabilities. J Oper Manage 29: 212-223. doi: 10.1016/j.jom.2011.01.001
![]() |
[46] |
Paşaoğlu D (2015) Analysis of the relationship between human resources management practices and organizational commitment from a strategic perspective: Findings from the banking industry. Proc-Social Behav Sci 207: 315-324. doi: 10.1016/j.sbspro.2015.10.101
![]() |
[47] |
Randev KK, Jha JK (2019) Sustainable Human Resource Management: A Literature-based Introduction. NHRD Net J 12: 241-252. doi: 10.1177/2631454119873495
![]() |
[48] |
Renwick DW, Jabbour CJ, Muller-Camen M, et al. (2016) Contemporary developments in Green (environmental) HRM scholarship. Int J Human Res Manage 27: 114-128. doi: 10.1080/09585192.2015.1105844
![]() |
[49] |
Savaneviciene A, Kersiene K (2015) How are HRM practices transferred in MNCs? Lithuania case. Procedia Econ Financ 26: 982-990. doi: 10.1016/S2212-5671(15)00920-X
![]() |
[50] |
Şendoğdu AA, Kocabacak A, Güven Ş (2013) The relationship between human resource management practices and organizational commitment: A field study. Proc- Social Behav Sci 99: 818-827. doi: 10.1016/j.sbspro.2013.10.553
![]() |
[51] |
Shabbir A, Malik SA (2016) Measuring patients' healthcare service quality perceptions, satisfaction, and loyalty in public and private sector hospitals in Pakistan. Int J Qual Reliab Manage 33: 538-557. doi: 10.1108/IJQRM-06-2014-0074
![]() |
[52] |
Sripirabaa B, Krishnaveni R (2009) Performance management systems in an Indian manufacturing sector. Manage Res News 32: 942-952. doi: 10.1108/01409170910994150
![]() |
[53] |
Stavrou ET, Brewster C (2005) The configurational approach to linking strategic human resource management bundles with business performance: myth or reality? Manage Revue 161: 186-201. doi: 10.5771/0935-9915-2005-2-186
![]() |
[54] |
Syed MW, Li JZ, Junaid M, et al. (2019) An Empirical Examination of Sustainable Supply Chain Risk and Integration Practices: A Performance-Based Evidence from Pakistan. Sustainability 11: 5334. doi: 10.3390/su11195334
![]() |
[55] |
Tang G, Chen Y, Jiang Y, et al. (2018) Green human resource management practices: scale development and validity. Asia Pacific Journal Human Resour 56: 31-55. doi: 10.1111/1744-7941.12147
![]() |
[56] |
Tang G, Wei LQ, Snape E, et al. (2015) How effective human resource management promotes corporate entrepreneurship: Evidence from China. Int J Human Resour Manage 26: 1586-1601. doi: 10.1080/09585192.2014.953973
![]() |
[57] |
Villena VH, Revilla E, Choi TY (2011) The dark side of buyer-supplier relationships: A social capital perspective. J Opera Manage 29: 561-576. doi: 10.1016/j.jom.2010.09.001
![]() |
[58] | Voegtlin C, Greenwood M (2016) Corporate social responsibility and human resource management: A systematic review and conceptual analysis. Human Res Manage Rev 26: 181-197. |
[59] |
Weerts K, Vermeulen W, Witjes S (2018) On corporate sustainability integration research: Analysing corporate leaders' experiences and academic learnings from an organisational culture perspective. J Clean Prod 203: 1201-1215. doi: 10.1016/j.jclepro.2018.07.173
![]() |
[60] | Wells A (2011) Metacognitive therapy for anxiety and depression, London, Guilford press. |
[61] | Westerman JW, Rao MB, Vanka S, et al. (2020) Sustainable human resource management and the triple bottom line: Multi-stakeholder strategies, concepts, and engagement. Human Res Manage Rev 100742: 1053-4822. |
[62] | Whelan T, Fink C (2016) The comprehensive business case for sustainability. Harvard Bus Rev 21: 1-12. |
1. | Mingzhou Xu, Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 17067, 10.3934/math.2023871 | |
2. | Mingzhou Xu, Xuhang Kong, Complete qth moment convergence of moving average processes for m-widely acceptable random variables under sub-linear expectations, 2024, 214, 01677152, 110203, 10.1016/j.spl.2024.110203 | |
3. | Mingzhou Xu, Kun Cheng, Wangke Yu, Convergence of linear processes generated by negatively dependent random variables under sub-linear expectations, 2023, 2023, 1029-242X, 10.1186/s13660-023-02990-6 | |
4. | Mingzhou Xu, On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations, 2024, 9, 2473-6988, 3369, 10.3934/math.2024165 | |
5. | Mingzhou Xu, Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 19442, 10.3934/math.2023992 | |
6. | Lunyi Liu, Qunying Wu, Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 22319, 10.3934/math.20231138 | |
7. | Yuyan Wei, Xili Tan, Peiyu Sun, Shuang Guo, Weak and strong law of large numbers for weakly negatively dependent random variables under sublinear expectations, 2025, 10, 2473-6988, 7540, 10.3934/math.2025347 |