
Citation: Radi A. Jishi. Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications[J]. AIMS Materials Science, 2016, 3(1): 149-159. doi: 10.3934/matersci.2016.1.149
[1] | Mohammad Na'aim Abd Rahim, Mohd Shukor Salleh, Saifudin Hafiz Yahaya, Sivarao Subramonian, Azrin Hani Abdul Rashid, Syarifah Nur Aqida Syed Ahmad, Salah Salman Al-Zubaidi . Microstructural investigation and mechanical properties of Al2O3-MWCNTs reinforced aluminium composite. AIMS Materials Science, 2025, 12(2): 318-335. doi: 10.3934/matersci.2025017 |
[2] | Ahmed Ali Farhan Ogaili, Ehsan S. Al-Ameen, Mohammed Salman Kadhim, Muhanad Nazar Mustafa . Evaluation of mechanical and electrical properties of GFRP composite strengthened with hybrid nanomaterial fillers. AIMS Materials Science, 2020, 7(1): 93-102. doi: 10.3934/matersci.2020.1.93 |
[3] | Dorel Feldman . Poly(vinyl alcohol) nanocomposites: Recent contributions to engineering and medicine. AIMS Materials Science, 2021, 8(1): 119-129. doi: 10.3934/matersci.2021008 |
[4] | Harikrishnan Pulikkalparambil, Jyotishkumar Parameswaranpillai, Jinu Jacob George, Krittirash Yorseng, Suchart Siengchin . Physical and thermo-mechanical properties of bionano reinforced poly(butylene adipate-co-terephthalate), hemp/CNF/Ag-NPs composites. AIMS Materials Science, 2017, 4(3): 814-831. doi: 10.3934/matersci.2017.3.814 |
[5] | Hendra Suherman, Irmayani . Optimization of compression moulding parameters of multiwall carbon nanotube/synthetic graphite/epoxy nanocomposites with respect to electrical conductivity. AIMS Materials Science, 2019, 6(4): 621-634. doi: 10.3934/matersci.2019.4.621 |
[6] | Chunyi Tang, Matthew Mullen, William B. Euler . Influence of solvent and molecular weight in wrinkle formation in spin-cast polystyrene thin films. AIMS Materials Science, 2020, 7(1): 60-74. doi: 10.3934/matersci.2020.1.60 |
[7] | Neerajkumar Wayzode, Vinod Suryawanshi . Mechanical properties of graphene nanoplatelets reinforced glass/epoxy composites manufactured using resin film infusion process. AIMS Materials Science, 2023, 10(4): 693-709. doi: 10.3934/matersci.2023038 |
[8] | Wisawat Keaswejjareansuk, Xiang Wang, Richard D. Sisson, Jianyu Liang . Electrospinning process control for fiber-structured poly(Bisphenol A-co-Epichlorohydrin) membrane. AIMS Materials Science, 2020, 7(2): 130-143. doi: 10.3934/matersci.2020.2.130 |
[9] | Thomas J. Lee, Andrew H. Morgenstern, Thomas A. Höft, Brittany B. Nelson-Cheeseman . Dispersion of particulate in solvent cast magnetic thermoplastic polyurethane elastomer composites. AIMS Materials Science, 2019, 6(3): 354-362. doi: 10.3934/matersci.2019.3.354 |
[10] | Huda A. Al-Salihi, Hadia Kadhim Judran . Effect of Al2O3 reinforcement nanoparticles on the tribological behaviour and mechanical properties of Al6061 alloy. AIMS Materials Science, 2020, 7(4): 486-498. doi: 10.3934/matersci.2020.4.486 |
There are many phenomena in this world that need statistical description to be more understandable to the reader, but there is no specific statistical distribution that describes all of them. Therefore, many researchers have recently tried to develop new families by adding one, two or three parameters, e.g., [1,2,3,4,5]. By adding two additional parameters $ \beta $ and $ \gamma $, Cordeiro et al. [6] introduced the generalized Weibull distribution family. We continue this line of research by proposing a novel family, namely, a generalized Weibull-modified Weibull model. A model was developed that can fit real data because the model has great flexibility in representing nonlinear dynamics. The model is useful for studying data science through statistical modeling and it has been applied to engineering data. Its application in engineering shows that the developed model is adaptable and flexible in terms of ability to represent complex data. For any cumulative function (CDF) $ W(x) $ and probability density function (PDF) $ w(x) $, the CDF and the PDF of the proposed family are respectively given by
$ ϝ(x;β,γ)=1−exp[−β(−log[1−W(x)])γ],x∈R;β,γ>0, $
|
(1.1) |
and
$ f(x;β,γ)=βγw(x)1−W(x)(−log[1−W(x)])γ−1exp(−β(−log(1−W(x)))γ),x∈R;β,γ>0. $
|
(1.2) |
Type-Ⅰ and Type-Ⅱ-censorship schemes are the two most common and popular censorship schemes. Type-Ⅰ and type-Ⅱ censorship schemes were merged by Epstein [7] in the hybrid censorship scheme. For a more brief review of censoring schemes, we refer the reader to [8–14]. Balakrishnan et al. [15] have proposed a unified hybrid censoring method. Huang and Yang [16] have considered a combined hybrid censoring sample. Emam and Sultan [17] combined the unified hybrid censoring sampling method and the combined hybrid censoring sampling method into a unified approach known as C-UHCS$ (m, r; T_{1}, T_{2}) $, which refers to the combined-unified hybrid censoring method. The likelihood function of C-UHCS$ (k, r; T_1, T_2) $ is
$ L(Ω|xk)=n!(n−k)![1−F(T)]n−kk∏i=1f(xi), $
|
(1.3) |
where $ k $ and $ T $ can be chosen as:
$ L^{(C)}\left(\Omega|{\textbf{x}}\right)$ | $L^{(U)}\left(\Omega|{\textbf{x}}\right) $ | |||
Cases | $ k $ | $ T $ | $ k $ | $ T $ |
1 : $ \ 0 < T_{1} < X_{k:n} < T_{2} < X_{r:n} $ | $ m $ | $ X_{m:n} $ | $ D_{2} $ | $ T_{2} $ |
2 : $ \ 0 < T_{1} < X_{k:n} < X_{r:n} < T_{2} $ | $ m $ | $ X_{m:n} $ | $ r $ | $ X_{r:n} $ |
3 : $ \ 0 < T_{1} < T_{2} < X_{k:n} < X_{r:n} $ | $ D_{2} $ | $ T_{2} $ | $ m $ | $ X_{m:n} $ |
4 : $ \ 0 < X_{k:n} < X_{r:n} < T_{1} < T_{2} $ | $ r $ | $ X_{r:n} $ | $ D_{1} $ | $ T_{1} $ |
5 : $ \ 0 < X_{k:n} < T_{1} < X_{r:n} < T_{2} $ | $ D_{1} $ | $ T_{1} $ | $ r $ | $ X_{r:n} $ |
6 : $ \ 0 < X_{k:n} < T_{1} < T_{2} < X_{r:n} $ | $ D_{1} $ | $ T_{1} $ | $ D_{2} $ | $ T_{2} $ |
Then, for a parameter space $ \Omega $, the likelihood function of C-UHCS$ (m, r; T_1, T_2) $, which represents all possible likelihood functions under different values of $ k $, $ T $, and $ {\textbf{x}}_{k} = (x_{1}, x_{2}, ..., x_{k}) $, can be written as
$ L(Ω|xk)=n!(n−k)!(k∏i=1f(xi))(1−F(T))n−k. $
|
(1.4) |
The authors believe that this problem deserves investigation. The main motivations for using the GMW-X family in practice are as follows: 1) It is an excellent way to enter additional parameters to create an extended version of the basic model. 2) It can improve the properties of the traditional distributions. 3) It can create symmetric, right-skewed and left-skewed distributions. 4) It can provide a consistently better fit than other models. This was a good incentive to study the problem, and this was supported by the numerical results, which confirmed the superiority of the new model over many of the basic and competing models.
The rest of this work is presented here as follows. The generalized Weibull-modified Weibull distribution (GWMWD) is presented in Section 2. The bivariate extension of the generalized Weibull-modified Weibull model is discussed in Section 3. Based on C-UHCS$ (m, r; T_{1}, T_{2}) $, Section 4 is devoted to applying the maximum likelihood approach to the GWMWD. Section 5 presents the Monte Carlo procedure. Section 6 applies the GWMWD to a data set of 50 electronic component failures. Section 7 shows some conclusions.
Let X be a random variable (R.V.) with the modified Weibull distribution $ (\omega, \theta, \nu) $ distribution suggested by Sarhan and Zaindin [18]; then, its CDF is
$ W(x;ω,δ,ν)=1−exp(−ωx−δxν),x>0, $
|
(2.1) |
and its PDF is given by
$ w(x;ω,δ,ν)=(ω+δνxν−1)exp(−ωx−δxν),x>0, $
|
(2.2) |
where $ \omega\geq 0 $ is a scale parameter, while $ \delta\geq 0 $ and $ \nu > 0 $ are shape parameters such that $ \nu+\delta > 0 $.
The generalized Weibull distribution family generalizes the generalized Weibull normal distribution when $ \beta = \gamma = 1 $, the generalized Weibull Gumbel distribution when the generalized Weibull family $ \beta\gamma = 1 $, and the generalized Weibull logistic distribution. The GWMWD is defined from (1.1) by replacing $ W(x) $ and $ w(x) $ with $ W(x; \omega, \delta, \nu) $ and $ w(x; \omega, \delta, \nu) $, respectively. The CDF and PDF of GWMWD, respectively, are
$ ϝ(x;β,γ,ω,δ,ν)=1−e−β(xω+xνδ)γ,x>0;β,γ,ω,δ,ν>0, $
|
(2.3) |
and
$ f(x;β,γ,ω,δ,ν)=e−β(xω+xνδ)γβγ(ω+xν−1δν)(xω+xνδ)γ−1,x>0;β,γ,ω,δ,ν>0. $
|
(2.4) |
The survival function (SF) and hazard rate function (HRF) via the GWMWD of time $ t $, respectively, are
$ S(t;β,γ,ω,δ,ν)=e−β(tω+tνδ)γ, $
|
(2.5) |
and
$ H(t;β,γ,ω,δ,ν)=βγ(tω+tνδ)γ−1(ω+tν−1δν). $
|
(2.6) |
In particular, the GWMWD generalizes the generalized Weibull-Weibull distribution (when $ \omega = 0 $), the generalized Weibull-Rayleigh distribution (when $ \omega = 0 $ and $ \nu = 2 $), the generalized linear Weibull exponential distribution (when $ \nu = 2 $ and $ \delta = \omega/2 $, $ \omega > 0 $), and the generalized Weibull exponential distribution (for $ \nu = 0 $). In what follows, an R.V. X with the GWMWD PDF (2.3) is written as $ X \sim GWMWD(\beta, \gamma, \omega, \delta, \nu) $.
Some possible behaviors of the CDF, PDF, and HRF for GWMWD $ (\beta, \gamma, \omega, \delta, \nu) $ are shown in Figure 1. The left panel shows GWMWD (10.2, 10.9, 0.50, 12.9, 4.20), GWMWD(0.20, 0.90, 0.50, 1.90, 0.20), GWMWD (10.20, 6.90, 0.50, 1.90, 0.20), GWMWD (1.20, 3.90, 0.65, 0.90, 0.20), and GWMWD (0.20, 12.9, 0.30, 1.10, 0.01), while the right panel shows GWMWD (10.2, 10.9, 0.50, 12.9, 4.20), GWMWD (7.20, 8.90, 1.50, 12.9, 4.20), GWMWD (8.20, 7.90, 3.90, 10.9, 3.50), GWMWD (8.20, 6.90, 7.50, 12.9, 4.20), and GWMWD (1.20, 9.90, 2.50, 12.9, 4.20). From Figure 1, it can be seen that the CDF increases faster with increasing x for the parameters $ \beta $ and $ \delta > 1 $; then, it is constant and the graph grows exponentially, the PDF increases faster with increasing x for the parameters $ \beta $ and $ \delta > 1 $, and the proposed GWMWD has strong spurs; the HRF is constant and then increases faster with increasing x when the parameters $ \beta, \gamma, \delta $ and $ \alpha > 1 $. The PDF shape is at times very flexible. It appears to approximate a bell curve with some twist. At other times it appears to have strong tails. Because of the divergent behavior of the proposed model, it could be a good candidate for modeling semi-normal and strong-tailed data in various industrial, financial, and medical applications.
The copula model was introduced by Morgenstern [19] to represent the joint CDF of the two marginal univariate distributions. Let $ \digamma\left(x_{j} \right) $ be the CDF of $ X_{j}, j = 1, 2 $. Conway [20] introduced the joint CDF and PDF of the copula model, respectively, as
$ ϝ(x1,x2)=ϝ(x1)ϝ(x2)[1+ρ(1−ϝ(x1))(1−ϝ(x2))],−1<ρ<1, $
|
(3.1) |
and
$ f(x1,x2)=f(x1)f(x2)[1+ρ(1−2ϝ(x1))(1−2ϝ(x2))], $
|
(3.2) |
where $ \rho $ is the dependence measure between $ X_{1} $ and $ X_{2} $. Let the R.V.s $ X_1 \sim $ GWMWD $ (\beta_1, \gamma_1, \omega_1, \delta_1, \nu_1) $ and $ X_2 \sim $ GWMWD $ (\beta_2, \gamma_2, \omega_2, \delta_2, \nu_2) $; then, the corresponding joint CDF and PDF are, respectively, given by
$ ϝ(x1,x2)=(1−e−β1(x1ω1+xν11δ1)γ1)(1−e−β2(x2ω2+xν22δ2)γ2)×(1+ρe−β1(x1ω1+xν11δ1)γ1−β2(x2ω2+xν22δ2)γ2), $
|
(3.3) |
and
$ f(x1,x2)=β1β2γ1γ2e−β1(x1ω1+xν11δ1)γ1−β2(x2ω2+xν22δ2)γ2(x1ω1+xν11δ1)γ1−1×(x2ω2+xν22δ2)ω1−1(ω1+xν−111δ1ν1)(ω2+xν−122δ2ν2)×(1+ρ(1−2e−β1(x1ω1+xν11δ1)γ1β1γ1(x1ω1+xν11δ1)γ−12(ω1+xν−111δ1ν1))×(1−2e−β2(x2ω2+xν22δ2)γ2β2γ2(x2ω2+xν22δ2)γ−12(ω2+xν−122δ2ν2))). $
|
(3.4) |
Figure 2 presents the CDF for the bivariate GWMWD (0.1, 0.8, 4.4, 6.1, 3.20) and GWMWD (0.1, 0.8, 4.4, 6.1, 0.20) when the parameter $ \nu $ increases, and for $ \rho = 0.2 $.
The copula function is a way to construct bivariate distributions. Other methods can be reviewed and may be helpful to introduce some new bivariate distributions (see, Xu et al. [21] and Luo et al.[22].)
Suppose that $ \{x_{1}, x_{2}, ..., x_{k}\} $ is an observed sample from $ X \sim GWMWD (\beta, \gamma, \omega, \delta, \nu) $. The likelihood function of $ \beta, \gamma, \omega, \delta, $ and $ \nu $ becomes
$ l=n!(n−k)!e−β(n−k)(Tω+Tνδ)γ(βγ)ke−β∑ki=1(xiω+xνiδ)γk∏i=1(ω+xν−1iδν)(xiω+xνiδ)γ−1, $
|
(4.1) |
and the log-likelihood function $ (L) $ is
$ L=log[n!(n−k)!]−β(n−k)(Tω+Tνδ)γ+klog[βγ]−βk∑i=1(xiω+xνiδ)γ+k∑i=1log[ω+xν−1iδν]+(γ−1)k∑i=1log[xiω+xνiδ]. $
|
(4.2) |
Let $ Q(x) = \omega x+\delta x^{\nu} $. The first partial derivatives of (4.2) with respect to $ \beta, \gamma, \omega, \delta $ and $ \nu $ are given by
$ ∂L∂β=kβ−(n−k)Q(T)γ−k∑i=1Q(xi)γ, $
|
(4.3) |
$ ∂L∂γ=kγ−(n−k)βQ(T)γlogQ(T)+k∑i=1logQ(xi)−βk∑i=1Q(xi)γlogQ(xi), $
|
(4.4) |
$ ∂L∂ω=−(n−k)TβγQ(T)γ−1+k∑i=11ω+δνxν−1i+(γ−1)k∑i=1xiQ(xi)−βγk∑i=1xiQ(xi)γ−1, $
|
(4.5) |
$ ∂L∂δ=−(n−k)TνβγQ(T)γ−1+k∑i=1νxν−1iω+δνxν−1i+(γ−1)k∑i=1xνiQ(xi)−βγk∑i=1xνiQ(xi)γ−1, $
|
(4.6) |
$ ∂L∂ν=−(n−k)TνβγδQ(T)γ−1log[T]+δk∑i=1xν−1i+νlog[xi]xν−1iω+δνxν−1i+(γ−1)δk∑i=1log[xi]xνiQ(xi)−βγδk∑i=1log[xi]xνiQ(xi)γ−1. $
|
(4.7) |
The maximum likelihood estimators $ \hat{\beta}_{ML}, \hat{\gamma}_{ML}, \hat{\omega}_{ML}, \hat{\delta}_{ML}, $ and $ \hat{\nu}_{ML} $ of the GWMWD $ (\beta, \gamma, \omega, \delta, \nu) $ parameters are the solutions of (4.3)–(4.7). The asymptotic confidence intervals of the parameters $ \beta, \gamma, \omega, \delta $ and $ \nu $ can be calculated. $ \hat{V} = V(\hat{\beta}_{ML}, \hat{\gamma}_{ML}, \hat{\omega}_{ML}, \hat{\delta}_{ML}, \hat{\nu}_{ML}) $ is the observed variance covariance matrix, such that
$ V(β,γ,ω,δ,ν)=−[∂2L∂β2∂2L∂β∂γ∂2L∂β∂ω∂2L∂β∂δ∂2L∂β∂ν∂2L∂γ∂β∂2L∂γ2∂2L∂γ∂ω∂2L∂γ∂δ∂2L∂γ∂ν∂2L∂ω∂β∂2L∂ω∂γ∂2L∂ω2∂2L∂ω∂δ∂2L∂ω∂ν∂2L∂δ∂β∂2L∂δ∂γ∂2L∂δ∂ω∂2L∂δ2∂2L∂δ∂ν∂2L∂ν∂β∂2L∂ν∂γ∂2L∂ν∂ω∂2L∂ν∂δ∂2L∂ν2]−1, $
|
(4.8) |
where
$ ∂2L∂β2=−kβ2, $
|
(4.9) |
$ ∂2L∂β∂γ=(k−n)Q(T)γlogδ2−k∑i=1Q(xi)γlogQ(xi), $
|
(4.10) |
$ ∂2L∂β∂ω=(k−n)TγQ(T)γ−1−γk∑i=1xiQ(xi)γ−1, $
|
(4.11) |
$ ∂2L∂β∂δ=(k−n)TνγQ(T)γ−1−γk∑i=1xνiQ(xi)γ−1, $
|
(4.12) |
$ ∂2L∂β∂ν=(k−n)TνγδQ(T)γ−1log[T]−γδk∑i=1xνiQ(xi)γ−1log[xi], $
|
(4.13) |
$ ∂2L∂γ2=−kγ2(k−n)βQ(T)γlogQ(T)2−βk∑i=1Q(xi)γlog[Q(xi)]2, $
|
(4.14) |
$ ∂2L∂γ∂ω=(k−n)2T2β2γQ(T)2γ−2logQ(T)+k∑i=1xiQ(xi)−βk∑i=1xiQ(xi)γ−1(1+γlogQ(xi)), $
|
(4.15) |
$ ∂2L∂γ∂δ=(k−n)2T2νβ2γQ(T)2γ−2logQ(T)+k∑i=1xνiQ(xi)−βk∑i=1xνiQ(xi)γ−1(1+γlogQ(xi)), $
|
(4.16) |
$ ∂2L∂γ∂ν=(k−n)TνβδQ(T)γ−1log[T](1+γlogQ(T))+k∑i=1δlog[xi]xνiQ(xi)−βδk∑i=1xνiQ(xi)γ−1log[xi](1+γlogQ(xi)), $
|
(4.17) |
$ ∂2L∂ω2=(k−n)T2β(γ−1)γQ(T)γ−2+k∑i=1−1Q(xi)2−(γ−1)k∑i=1x2iQ(xi)2+βγ(1−γ)k∑i=1xi2Q(xi)γ−2, $
|
(4.18) |
$ ∂2L∂ω∂δ=(k−n)T1+νβ(γ−1)γQ(T)γ−2+k∑i=1−νxν−1i(ω+δνxν−1i)2−(γ−1)k∑i=1x1+νiQ(xi)2+βγk∑i=1xiν+1Q(xi)γ−2(1−γ), $
|
(4.19) |
$ ∂2L∂ω∂ν=(k−n)T1+νβ(γ−1)γδQ(T)γ−2log[T]−(γ−1)k∑i=1δlog[xi]x1+νiQ(xi)2−δk∑i=1(xν−1i(ω+δνxν−1i)2+νlog[xi]xν−1i(ω+δνxν−1i)2)+βγδk∑i=1xiν+1Q(xi)γ−2log[xi](1−γ), $
|
(4.20) |
$ ∂2L∂δ2=(k−n)T2νβ(γ−1)γQ(T)γ−2−k∑i=1ν2x−2+2νi(ω+δνxν−1i)2−k∑i=1(γ−1)x2νiQ(xi)2+βγk∑i=1x2νiQ(xi)γ−2(1+γ), $
|
(4.21) |
$ ∂2L∂δ∂ν=(k−n)TνβγQ(T)γ−1log[T](Tν(γ−1)δ(ωT+δTν)−1−1)+(γ−1)k∑i=1log[xi]xνiQ(xi)(1−δ xνiQ(xi))+k∑i=1xν−1iω+δνxν−1i(1+νlog[xi]−νxν−1i(δ(1−νlog[xi])ω+δνxν−1i))−βγk∑i=1xνilog[xi](Q(xi)γ−1+(γ−1)δQ(x−i)γ−2), $
|
(4.22) |
$ ∂2L∂ν2=(k−n)2T3νβ2(γ−1)γ2δ3Q(T)2γ−3(log[T]2)2+(γ−1)k∑i=1(−δ2log[xi]2x2νiQ(xi)2+δlog[xi]2xνiQ(xi))+2δlog[xi]xν−1i+δνlog[xi]2xν−1iω+δνxν−1i−δ2k∑i=1x2ν−2i(1+νlog[xi])(1(ω+νxν−1i)2+νlog[xi](ω+δνxν−1i)2)−βγδk∑i=1xνiQ(xi)γ−1log[xi](log[xi]+(xνi)−1(γ−1)). $
|
(4.23) |
An approximate $ 100(1-\epsilon)\% $ two-sided C.Is for the parameters $ \beta, \gamma, \omega, \delta $ and $ \nu $ are
$ ˆβ±zϵ/2√V(ˆβ), $
|
(4.24) |
$ ˆγ±zϵ/2√V(ˆγ), $
|
(4.25) |
$ ˆω±zϵ/2√V(ˆω), $
|
(4.26) |
$ ˆδ±zϵ/2√V(ˆδ), $
|
(4.27) |
and
$ ˆν±zϵ/2√V(ˆν), $
|
(4.28) |
respectively, where the diagonal elements of $ \hat{V} $ $ V(\hat{\beta }), $ $ V(\hat{\gamma }), $ $ V(\hat{\omega }), $ $ V(\hat{\delta }), $ and $ V(\hat{\nu }) $ are the estimated variances of $ \hat{\beta }_{ML}, ˆγML,
Let U have a uniform (0, 1) distribution. The GWMWD can be simulated by using the solution of the nonlinear equation
$ 0=1−u−exp−β(xω+xνδ)γ. $
|
(5.1) |
We simulate the GWMWD for two sets of the parameters: Set 1: $ \beta = 1.4, \gamma = 3.0, \omega = 0.7, \delta = 1.3, \nu = 0.4 $, and Set 2: $ \beta = 0.4, \gamma = 1.0, \omega = 1.7, \delta = 1.5, \nu = 1.8 $. The empirical results of the Monte Carlo simulation study are given in Table 1 for Set 1. The empirical results of the Monte Carlo simulation study are given in Table 2 for Set 2. Suppose that the data were observed for the GWMWD under the censoring scheme C-UHCS$ (m, r; T_{1}, T_{2}) $ and set the arbitrary values for termination as $ T = X_{k} $ and $ k = \frac{4}{5} n $. The simulation study is carried out as follows
Par. | n | Bias | MSEs | 90%L | 90%U | 90%W | 95%L | 95%U | 95%W |
$ \hat{\beta} $ | 25 | 1.284 | 1.955 | 0.001 | 5.89 | 5.89 | 0.001 | 6.516 | 6.516 |
50 | 1.163 | 1.479 | 0.137 | 4.989 | 4.852 | 0.001 | 5.462 | 5.462 | |
100 | 1.124 | 1.325 | 0.35 | 4.698 | 4.347 | 0.001 | 5.122 | 5.122 | |
200 | 1.099 | 1.241 | 0.464 | 4.533 | 4.069 | 0.067 | 4.93 | 4.863 | |
400 | 1.08 | 1.18 | 0.545 | 4.415 | 3.87 | 0.167 | 4.793 | 4.625 | |
600 | 1.076 | 1.169 | 0.559 | 4.394 | 3.835 | 0.185 | 4.768 | 4.583 | |
800 | 1.079 | 1.171 | 0.559 | 4.399 | 3.841 | 0.184 | 4.774 | 4.59 | |
1000 | 1.078 | 1.169 | 0.561 | 4.395 | 3.834 | 0.187 | 4.77 | 4.582 | |
$ \hat{\gamma} $ | 25 | -0.307 | 0.403 | 2.032 | 3.354 | 1.322 | 1.903 | 3.483 | 1.58 |
50 | -0.428 | 0.311 | 2.061 | 3.082 | 1.021 | 1.962 | 3.182 | 1.22 | |
100 | -0.475 | 0.288 | 2.053 | 2.997 | 0.944 | 1.961 | 3.089 | 1.129 | |
200 | -0.502 | 0.281 | 2.038 | 2.959 | 0.921 | 1.948 | 3.049 | 1.101 | |
400 | -0.51 | 0.276 | 2.038 | 2.941 | 0.904 | 1.949 | 3.03 | 1.08 | |
600 | -0.52 | 0.28 | 2.02 | 2.939 | 0.919 | 1.931 | 3.029 | 1.099 | |
800 | -0.521 | 0.279 | 2.021 | 2.937 | 0.915 | 1.932 | 3.026 | 1.094 | |
1000 | -0.524 | 0.28 | 2.018 | 2.935 | 0.918 | 1.928 | 3.025 | 1.097 | |
$ \hat{\omega} $ | 25 | 0.99 | 1.265 | 0.616 | 4.764 | 4.148 | 0.212 | 5.169 | 4.957 |
50 | 0.886 | 0.921 | 1.076 | 4.096 | 3.02 | 0.781 | 4.39 | 3.609 | |
100 | 0.827 | 0.743 | 1.308 | 3.746 | 2.438 | 1.07 | 3.984 | 2.914 | |
200 | 0.798 | 0.668 | 1.403 | 3.593 | 2.19 | 1.189 | 3.807 | 2.617 | |
400 | 0.783 | 0.629 | 1.452 | 3.515 | 2.062 | 1.251 | 3.716 | 2.465 | |
600 | 0.78 | 0.619 | 1.466 | 3.495 | 2.029 | 1.268 | 3.693 | 2.425 | |
800 | 0.777 | 0.61 | 1.476 | 3.477 | 2.002 | 1.281 | 3.673 | 2.392 | |
1000 | 0.772 | 0.601 | 1.486 | 3.457 | 1.971 | 1.294 | 3.649 | 2.355 | |
$ \hat{\delta} $ | 25 | 1.102 | 1.355 | 0.379 | 4.824 | 4.445 | -0.054 | 5.258 | 5.312 |
50 | 1.057 | 1.212 | 0.57 | 4.544 | 3.974 | 0.182 | 4.932 | 4.75 | |
100 | 1.017 | 1.086 | 0.735 | 4.298 | 3.563 | 0.387 | 4.646 | 4.258 | |
200 | 1.011 | 1.052 | 0.786 | 4.236 | 3.449 | 0.45 | 4.572 | 4.123 | |
400 | 0.986 | 0.987 | 0.867 | 4.105 | 3.238 | 0.551 | 4.421 | 3.869 | |
600 | 0.978 | 0.966 | 0.893 | 4.063 | 3.17 | 0.584 | 4.373 | 3.788 | |
800 | 0.978 | 0.965 | 0.896 | 4.06 | 3.164 | 0.588 | 4.369 | 3.781 | |
1000 | 0.977 | 0.961 | 0.902 | 4.052 | 3.151 | 0.594 | 4.36 | 3.765 | |
$ \hat{\nu} $ | 25 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 |
50 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
100 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
200 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
400 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
600 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
800 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
1000 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 |
Par. | n | Bias | MSEs | 90%L | 90%U | 90%W | 95%L | 95%U | 95%W |
$ \hat{\beta} $ | 25 | 0.498 | 0.303 | 0.401 | 1.394 | 0.994 | 0.304 | 1.491 | 1.187 |
$ \hat{\beta} $ | 25 | 0.498 | 0.303 | 0.401 | 1.394 | 0.994 | 0.304 | 1.491 | 1.187 |
50 | 0.458 | 0.226 | 0.487 | 1.229 | 0.742 | 0.415 | 1.302 | 0.887 | |
100 | 0.437 | 0.197 | 0.514 | 1.161 | 0.647 | 0.451 | 1.224 | 0.774 | |
200 | 0.426 | 0.187 | 0.519 | 1.133 | 0.613 | 0.459 | 1.193 | 0.733 | |
400 | 0.41 | 0.177 | 0.519 | 1.101 | 0.582 | 0.462 | 1.158 | 0.695 | |
600 | 0.404 | 0.175 | 0.517 | 1.091 | 0.574 | 0.461 | 1.147 | 0.686 | |
800 | 0.396 | 0.171 | 0.516 | 1.077 | 0.561 | 0.461 | 1.131 | 0.67 | |
1000 | 0.385 | 0.165 | 0.514 | 1.055 | 0.541 | 0.461 | 1.108 | 0.647 | |
$ \hat{\gamma} $ | 25 | -0.098 | 0.073 | 0.783 | 1.021 | 0.238 | 0.76 | 1.044 | 0.284 |
50 | -0.147 | 0.034 | 0.797 | 0.908 | 0.111 | 0.787 | 0.919 | 0.132 | |
100 | -0.159 | 0.03 | 0.792 | 0.89 | 0.098 | 0.782 | 0.9 | 0.117 | |
200 | -0.164 | 0.03 | 0.787 | 0.884 | 0.097 | 0.778 | 0.894 | 0.116 | |
400 | -0.16 | 0.028 | 0.794 | 0.885 | 0.091 | 0.785 | 0.894 | 0.109 | |
600 | -0.158 | 0.027 | 0.798 | 0.887 | 0.089 | 0.789 | 0.896 | 0.107 | |
800 | -0.157 | 0.027 | 0.799 | 0.888 | 0.089 | 0.79 | 0.896 | 0.106 | |
1000 | -0.154 | 0.027 | 0.802 | 0.89 | 0.088 | 0.794 | 0.898 | 0.105 | |
$ \hat{\omega} $ | 25 | -0.796 | 0.691 | 0.001 | 2.037 | 2.037 | 0.001 | 2.258 | 2.258 |
50 | -0.836 | 0.716 | 0.001 | 2.038 | 2.038 | 0.001 | 2.267 | 2.267 | |
100 | -0.855 | 0.741 | 0.001 | 2.06 | 2.06 | 0.001 | 2.297 | 2.297 | |
200 | -0.849 | 0.737 | 0.001 | 2.059 | 2.059 | 0.001 | 2.295 | 2.295 | |
400 | -0.83 | 0.723 | 0.001 | 2.057 | 2.057 | 0.001 | 2.288 | 2.288 | |
600 | -0.815 | 0.709 | 0.001 | 2.049 | 2.049 | 0.001 | 2.276 | 2.276 | |
800 | -0.802 | 0.699 | 0.001 | 2.044 | 2.044 | 0.001 | 2.268 | 2.268 | |
1000 | -0.783 | 0.683 | 0.001 | 2.037 | 2.037 | 0.001 | 2.255 | 2.255 | |
$ \hat{\delta} $ | 25 | -0.597 | 0.415 | 0.222 | 1.584 | 1.362 | 0.089 | 1.717 | 1.628 |
50 | -0.637 | 0.422 | 0.17 | 1.556 | 1.386 | 0.035 | 1.691 | 1.656 | |
100 | -0.654 | 0.436 | 0.131 | 1.561 | 1.43 | 0.001 | 1.701 | 1.709 | |
200 | -0.652 | 0.436 | 0.134 | 1.563 | 1.429 | 0.001 | 1.702 | 1.707 | |
400 | -0.657 | 0.441 | 0.12 | 1.565 | 1.445 | 0.001 | 1.706 | 1.706 | |
600 | -0.651 | 0.435 | 0.136 | 1.563 | 1.427 | 0.001 | 1.702 | 1.702 | |
800 | -0.638 | 0.428 | 0.161 | 1.564 | 1.403 | 0.024 | 1.701 | 1.677 | |
1000 | -0.627 | 0.421 | 0.183 | 1.563 | 1.38 | 0.048 | 1.698 | 1.65 | |
$ \hat{\nu} $ | 25 | -0.899 | 0.863 | 0.001 | 2.316 | 2.316 | 0.001 | 2.592 | 2.592 |
50 | -0.941 | 0.904 | 0.001 | 2.341 | 2.341 | 0.001 | 2.63 | 2.63 | |
100 | -0.953 | 0.921 | 0.001 | 2.356 | 2.356 | 0.001 | 2.651 | 2.651 | |
200 | -0.948 | 0.918 | 0.001 | 2.358 | 2.358 | 0.001 | 2.652 | 2.652 | |
400 | -0.924 | 0.897 | 0.001 | 2.347 | 2.347 | 0.001 | 2.635 | 2.635 | |
600 | -0.905 | 0.876 | 0.001 | 2.332 | 2.332 | 0.001 | 2.612 | 2.612 | |
800 | -0.894 | 2.33 | 0.001 | 2.848 | 2.848 | 0.001 | 2.6005 | 2.601 | |
1000 | -0.874 | 2.319 | 0.001 | 2.785 | 2.785 | 0.001 | 2.59 | 2.59 |
1) Random samples of size $ n = 25, 50, ..., 1000 $ were simulated from the GWMWD.
2) The model parameters were estimated via the maximum likelihood method.
3) 1000 iterations were made to obtain the MLEs, biases and MSEs of these estimators.
4) Let $ \hat{\vartheta} $ be the MLE of $ \vartheta = (\beta, \gamma, \omega, \delta, \nu) $. The MLEs, biases and MSEs are given, respectively, by
$ ˆϑ=11000M∑i=1ˆϑi, $
|
(5.2) |
$ Bias(ˆϑ)=11000M∑i=1(ˆϑi−ϑ), $
|
(5.3) |
and
$ MSE(ˆϑ)=110001000∑i=1(ˆϑi−ϑ)2, $
|
(5.4) |
5) The $ 90\% $ and $ 95\% $ approximate confidence intervals with their width were calculated.
This section is devoted for illustrating the GWMWD through the analysis of a reliability engineering application. The data set represents the failure times of 50 electronic components (per 1000 h); see Aryal and Elbatal [23]. Suppose that the data was observed from GWMWD under the censoring scheme C-UHCS$ (m, r; T_{1}, T_{2}) $, and set the arbitrary values for termination $ k = 45 $ and $ T = 10.943 $. Table 3 shows a summary of the reliability engineering data. The boxplot and Q-Q plot for the reliability engineering data are shown in Figure 4. The estimated parameters are $ \hat{\beta} = 0.058, \hat{\gamma} = 9.986, \hat{\omega} = 0.005, \hat{\delta} = 1.239 $, and $ \hat{\nu} = 0.056 $. Plots of the fitted density and distribution functions of the GWMWD model are shown in Figure 5. The likelihood probability (PP) and Kaplan-Meier survival curve are shown in Figure 6.
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
0.058 | 0.254 | 1.600 | 3.410 | 4.534 | 15.080 |
Table 4 compares the GWMWD based on some detection criteria, such as the Akaike information criterion (AIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC) and consistent Akaike information criterion (CAIC). The goodness-of-fit results of the GWMWD model are compared with some other models, including the generalized Weibull distribution (GWWD), the generalized Weibull-Rayleigh distribution (GWRD), the generalized linear Weibull exponential distribution (GLWEXPD) and the generalized Weibull exponential distribution (GWEXPD). Table 5 compares the GWMWD with the Kolmogorov-Smirnov test for one sample. The results in Tables 4 and 5 suggest that the GWMWD provides a better fit than other competing models and could be chosen as a suitable model for analyzing heavy-tailed electronic data.
Model | AIC | CAIC | BIC | HQIC |
GWMWD(0.058, 9.986, 0.005, 1.239, 0.056) | 212.9574 | 214.3211 | 222.5175 | 216.5980 |
GWWD(1.916, 0.972, 0.326, 0.635) | 213.6829 | 214.5718 | 221.3310 | 216.5953 |
GWRD(0.360, 0.246, 3.774) | 221.4256 | 221.9473 | 227.1617 | 223.609 |
GLWEXPD(0.466, 0.455, 0.715) | 213.2008 | 213.7226 | 218.9369 | 215.3852 |
GWEXPD(0.465, 0.640, 0.902, 0.007) | 216.9577 | 217.8465 | 224.6058 | 219.8701 |
Model | KS | p-value |
GWMWD(0.058, 9.986, 0.005, 1.239, 0.056) | 0.13263 | 0.3144 |
GWWD(1.916, 0.972, 0.326, 0.635) | 0.16936 | 0.2247 |
GWRD(0.360, 0.246, 3.774) | 0.14916 | 0.1952 |
GLWEXPD(0.466, 0.455, 0.715) | 0.14875 | 0.1977 |
GWEXPD(0.465, 0.640, 0.902, 0.007) | 0.17732 | 0.07589 |
A new extension of the Weibull distribution i.e., the generalized modified Weibull distribution with five parameters, is presented. The model has a high degree of flexibility to fit the data appropriately. The provided model exhibits strong tail-heavy behavior and has unimodal increasing failure rate functions. Based on a combined-unified hybrid sample, the maximum likelihood estimators of the intended model parameters and a Monte Carlo simulation study were obtained. To illustrate the applicability and potential of the intended distribution, a dataset of failure times of 50 electronic components was analyzed. The mean square errors and biases decrease with increasing sample size. It is clear that the proposed model agrees well with the estimated PDF and CDF plots. The boxplot shows that the electronic downtime data set has a highly right skewed tail. The new generalized modified Weibull distribution based on the one-sample Kolmogorov-Smirnov test provides a better fit than other competing models. The proposed model fits the Kaplan-Meier survival plot very well. The results indicate that the generalized Weibull distribution (modified Weibull distribution) is considered ideal for modeling the intended engineering data. For future studies, we hope to discuss the accelerated life testing based on the new distribution by using stress-strength models (Zhang et al. [24,25]).
The study was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R226), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors declare that they have no conflicts of interest.
[1] |
Kojima A, Teshima K, Shirai Y, et al. (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131: 6050–6051. doi: 10.1021/ja809598r
![]() |
[2] |
Etgar L, Gau P, Xue Z, et al. (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134: 17396–17399. doi: 10.1021/ja307789s
![]() |
[3] |
Ball J, Lee M, Hey A, et al. (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Env Sci 6: 1739–1743. doi: 10.1039/c3ee40810h
![]() |
[4] |
Heo H, Im S, Noh J, et al. (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7: 486–491. doi: 10.1038/nphoton.2013.80
![]() |
[5] | Kim H-S, Lee J-W, Yantara N, et al. (2013) High efficiency solid-state sensitized solar cell based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13: 2412–2417. |
[6] | Bi D, Yang L, Boschloo G, et al. (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4: 1532–1536. |
[7] |
Cai B, Xing Y, Yang Z, et al. (2013) High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Env Sci 6: 1480–1485. doi: 10.1039/c3ee40343b
![]() |
[8] |
Eperon G, Burlakov V, Docampo P, et al. (2014) Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater 24: 151–157. doi: 10.1002/adfm.201302090
![]() |
[9] | Laban W, Etgar L. (2014) Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Env Sci 6: 3249–3253. |
[10] |
Stranks S, Eperon G, Grancini G, et al. (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342: 341–344. doi: 10.1126/science.1243982
![]() |
[11] |
Lee M, Teuscher J, Miyasaka T, et al. (2012) Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 338: 643–647. doi: 10.1126/science.1228604
![]() |
[12] | Noh J, Im S, Heo J, et al. (2013) Chemical management for colorful, efficient, and stable inorganicorganic hybrid nanostructured solar cells. Nano Lett 13: 1764–1769. |
[13] |
Burschka J, Pellet N, Moon S, et al. (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499: 316–319. doi: 10.1038/nature12340
![]() |
[14] |
Liu M, Johnston M, Snaith H (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501: 395–398. doi: 10.1038/nature12509
![]() |
[15] |
Mosconi E, Amat A, Nazeeruddin M, et al. (2013) First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phys Chem C 117: 13902–13913. doi: 10.1021/jp4048659
![]() |
[16] |
Wang Y, Gould T, Dobson J, et al. (2014) Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. Phys Chem Chem Phys 16: 1424–1429. doi: 10.1039/C3CP54479F
![]() |
[17] | Umari P, Mosconi E, De Angelis, F (2014) Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep 4: Article number: 4467. |
[18] |
Even J, Pedesseau L, Jancu J, et al. (2013) Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 4: 2999–3005. doi: 10.1021/jz401532q
![]() |
[19] |
Even J, Pedesseau L, Dupertuis M, et al. (2012) Electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling. Phys Rev B 86: 205301. doi: 10.1103/PhysRevB.86.205301
![]() |
[20] |
Even J, Pedesseau L, Katan C (2014) Comments on “density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3.” Phys Chem Chem Phys 16:8697-8698 doi: 10.1039/C3CP55006K
![]() |
[21] |
Feng J, Xiao B (2014) Correction to “crystal structures, optical properties, and effective mass tensors of CH3NH3PbI3 (X=I and Br) phases predicted from HSE06.” J Phys Chem Lett 5: 1719-1720. doi: 10.1021/jz500831m
![]() |
[22] | Brivio F, Butler K, Walsh A (2014) Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys Rev B 89: 155024 |
[23] | Filippetti A, Mattoni A (2014) Hybrid perovskites for photovoltaics: insights from first principles. Phys Rev B 89: 125203 |
[24] |
Jishi R, Ta O, Sharif A (2014) Modeling of lead halide compounds for photovoltaic applications. J Phys Chem C 118: 28344–28349. doi: 10.1021/jp5050145
![]() |
[25] |
Motta C, El-Mellouhi F, Kais S, et al. (2015) Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun 6: 7026. doi: 10.1038/ncomms8026
![]() |
[26] | Baikie T, Fang Y, Kadro J, et al. (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1: 5628–5641. |
[27] |
Comin R, Walters G, Thibau E, et al. (2015) Structural, optical, and electronic studies of widebandgap lead halide perovskites. J Mater Chem C 3: 8839–8843. doi: 10.1039/C5TC01718A
![]() |
[28] | Buin A, Comin R, Xu J, et al. (2015) Halide-dependent electronic structure of organolead perovskite materials. Chem Mater 27: 4405–4412. |
[29] |
Pang S, Hu H, Zhang J, et al. (2014) NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater 26: 1485–1491. doi: 10.1021/cm404006p
![]() |
[30] | Stoumpos C, Malliakas C, Kanatzidis M (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52: 9019–9038. |
[31] | Stoumpos C, Kanatzidis G (2015) The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res 48: 2791–2802. |
[32] |
Eperon G, Stranks S, Menelaou C, et al. (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7: 982–988. doi: 10.1039/c3ee43822h
![]() |
[33] |
Koh T, Fu K, Fang Y, et al. (2014) Formamidinium-containing metal halide: an alternative material for near-IR absorption perovskite solar cells. J Phys Chem C 118: 16458–16462. doi: 10.1021/jp411112k
![]() |
[34] |
Jeon N, Noh J, Yang W, et al. (2015) Compositional engineering of perovskite materials for highperformance solar cells. Nature 517: 476–480. doi: 10.1038/nature14133
![]() |
[35] |
Tan Z, Moghaddam R, Lai M, et al. (2014) Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech 9: 687–692. doi: 10.1038/nnano.2014.149
![]() |
[36] |
Kim Y.-H, Cho H, Heo J, et al. (2015) Multicolored organic/inorganic hybrid perovskite lightemitting diodes. Adv Mater 27: 1248–1254. doi: 10.1002/adma.201403751
![]() |
[37] |
Amat A, Mosconi E, Ronca E, et al. (2014) Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett 14: 3608–3616. doi: 10.1021/nl5012992
![]() |
[38] |
Kieslich G, Sun S, Cheetham A (2015) An extended tolerance factor approach for organic-inorganic perovskites. Chem Sci 6: 3430–3433. doi: 10.1039/C5SC00961H
![]() |
[39] | Mashiyama H, Kurihara Y, Azetsu T (1998) Disordered cubic perovskite structure of CH3NH3PbX3(X = Cl, Br, I). J Korean Phys Soc 32: S156-S158. |
[40] | Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652. |
[41] | Frisch M, Trucks G, Schlegel H, et al. (2009) Gaussian 09, Gaussian, Inc: Willingford, CT. |
[42] | Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140: A1133–A1138. |
[43] | Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77: 3865–3868. |
[44] |
Bechstedt F, Fuchs F, Kresse G (2009) Ab-initio theory of semiconductor band structures: new developments and progress. Phys Status Solidi B 246: 1877–1892. doi: 10.1002/pssb.200945074
![]() |
[45] | Becke A, Johnson E (2006) A simple effective potential for exchange. J Chem Phys 124: 221101. |
[46] | Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102: 226401. |
[47] |
Becke A, Roussel M (1989) Exchange holes in inhomogeneous systems: a coordinate-space model. Phys Rev A 39: 3761–3767. doi: 10.1103/PhysRevA.39.3761
![]() |
[48] | Blaha P, Schwarz K, Madsen G, et al. (2001) WIEN2K: an augmented plane wave + local orbitals program for calculating crystal properties. |
[49] |
Monkhorst H, Pack J (1976) Special points for Brillouin-zone integrations. Phys Rev B 13: 5188–5192. doi: 10.1103/PhysRevB.13.5188
![]() |
[50] |
Perdew J, Ruzsinzky A, Csonka G, et al. (2008) Restoring the density-gradient expansion for exchange in solids. Phys Rev Lett 100: 136406. doi: 10.1103/PhysRevLett.100.136406
![]() |
[51] | Wyckoff R (1963) Crystal structures, 2nd ed. (Wiley, New York) Vol. 1. |
[52] |
Plekhanov V (2004) Lead halides: electronic properties and applications. Prog Mater Sci 49: 787–886. doi: 10.1016/S0079-6425(03)00049-5
![]() |
[53] |
Zaldo C, Sol´ e J, Di ´ eguez E, et al. (1985) Optical spectroscopy of PbCl2 particles embedded in NaCl host matrix. J Chem Phys 83: 6197–6200. doi: 10.1063/1.449859
![]() |
[54] |
Plekhanov V (1973) Optical constants of lead halides. Phys Stat Sol B 57: K55–K59. doi: 10.1002/pssb.2220570157
![]() |
[55] |
Iwanaga M, Watanabe M, Hayashi T (2000) Charge separation of excitons and the radiative recombination process in PbBr2 crystals. Phys Rev B 62: 10766–10773. doi: 10.1103/PhysRevB.62.10766
![]() |
[56] |
Matus M, Arduengo A, Dixon D (2006) The heats of formation of diazene, hydrazine, N2H3+, N2H5+, N2H, and N2H3 and the methyl derivatives CH3NNH, CH3NNCH3, and CH3HNNHCH3. J Phys Chem A 110: 10116–10121. doi: 10.1021/jp061854u
![]() |
Par. | n | Bias | MSEs | 90%L | 90%U | 90%W | 95%L | 95%U | 95%W |
$ \hat{\beta} $ | 25 | 1.284 | 1.955 | 0.001 | 5.89 | 5.89 | 0.001 | 6.516 | 6.516 |
50 | 1.163 | 1.479 | 0.137 | 4.989 | 4.852 | 0.001 | 5.462 | 5.462 | |
100 | 1.124 | 1.325 | 0.35 | 4.698 | 4.347 | 0.001 | 5.122 | 5.122 | |
200 | 1.099 | 1.241 | 0.464 | 4.533 | 4.069 | 0.067 | 4.93 | 4.863 | |
400 | 1.08 | 1.18 | 0.545 | 4.415 | 3.87 | 0.167 | 4.793 | 4.625 | |
600 | 1.076 | 1.169 | 0.559 | 4.394 | 3.835 | 0.185 | 4.768 | 4.583 | |
800 | 1.079 | 1.171 | 0.559 | 4.399 | 3.841 | 0.184 | 4.774 | 4.59 | |
1000 | 1.078 | 1.169 | 0.561 | 4.395 | 3.834 | 0.187 | 4.77 | 4.582 | |
$ \hat{\gamma} $ | 25 | -0.307 | 0.403 | 2.032 | 3.354 | 1.322 | 1.903 | 3.483 | 1.58 |
50 | -0.428 | 0.311 | 2.061 | 3.082 | 1.021 | 1.962 | 3.182 | 1.22 | |
100 | -0.475 | 0.288 | 2.053 | 2.997 | 0.944 | 1.961 | 3.089 | 1.129 | |
200 | -0.502 | 0.281 | 2.038 | 2.959 | 0.921 | 1.948 | 3.049 | 1.101 | |
400 | -0.51 | 0.276 | 2.038 | 2.941 | 0.904 | 1.949 | 3.03 | 1.08 | |
600 | -0.52 | 0.28 | 2.02 | 2.939 | 0.919 | 1.931 | 3.029 | 1.099 | |
800 | -0.521 | 0.279 | 2.021 | 2.937 | 0.915 | 1.932 | 3.026 | 1.094 | |
1000 | -0.524 | 0.28 | 2.018 | 2.935 | 0.918 | 1.928 | 3.025 | 1.097 | |
$ \hat{\omega} $ | 25 | 0.99 | 1.265 | 0.616 | 4.764 | 4.148 | 0.212 | 5.169 | 4.957 |
50 | 0.886 | 0.921 | 1.076 | 4.096 | 3.02 | 0.781 | 4.39 | 3.609 | |
100 | 0.827 | 0.743 | 1.308 | 3.746 | 2.438 | 1.07 | 3.984 | 2.914 | |
200 | 0.798 | 0.668 | 1.403 | 3.593 | 2.19 | 1.189 | 3.807 | 2.617 | |
400 | 0.783 | 0.629 | 1.452 | 3.515 | 2.062 | 1.251 | 3.716 | 2.465 | |
600 | 0.78 | 0.619 | 1.466 | 3.495 | 2.029 | 1.268 | 3.693 | 2.425 | |
800 | 0.777 | 0.61 | 1.476 | 3.477 | 2.002 | 1.281 | 3.673 | 2.392 | |
1000 | 0.772 | 0.601 | 1.486 | 3.457 | 1.971 | 1.294 | 3.649 | 2.355 | |
$ \hat{\delta} $ | 25 | 1.102 | 1.355 | 0.379 | 4.824 | 4.445 | -0.054 | 5.258 | 5.312 |
50 | 1.057 | 1.212 | 0.57 | 4.544 | 3.974 | 0.182 | 4.932 | 4.75 | |
100 | 1.017 | 1.086 | 0.735 | 4.298 | 3.563 | 0.387 | 4.646 | 4.258 | |
200 | 1.011 | 1.052 | 0.786 | 4.236 | 3.449 | 0.45 | 4.572 | 4.123 | |
400 | 0.986 | 0.987 | 0.867 | 4.105 | 3.238 | 0.551 | 4.421 | 3.869 | |
600 | 0.978 | 0.966 | 0.893 | 4.063 | 3.17 | 0.584 | 4.373 | 3.788 | |
800 | 0.978 | 0.965 | 0.896 | 4.06 | 3.164 | 0.588 | 4.369 | 3.781 | |
1000 | 0.977 | 0.961 | 0.902 | 4.052 | 3.151 | 0.594 | 4.36 | 3.765 | |
$ \hat{\nu} $ | 25 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 |
50 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
100 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
200 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
400 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
600 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
800 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
1000 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 |
Par. | n | Bias | MSEs | 90%L | 90%U | 90%W | 95%L | 95%U | 95%W |
$ \hat{\beta} $ | 25 | 0.498 | 0.303 | 0.401 | 1.394 | 0.994 | 0.304 | 1.491 | 1.187 |
$ \hat{\beta} $ | 25 | 0.498 | 0.303 | 0.401 | 1.394 | 0.994 | 0.304 | 1.491 | 1.187 |
50 | 0.458 | 0.226 | 0.487 | 1.229 | 0.742 | 0.415 | 1.302 | 0.887 | |
100 | 0.437 | 0.197 | 0.514 | 1.161 | 0.647 | 0.451 | 1.224 | 0.774 | |
200 | 0.426 | 0.187 | 0.519 | 1.133 | 0.613 | 0.459 | 1.193 | 0.733 | |
400 | 0.41 | 0.177 | 0.519 | 1.101 | 0.582 | 0.462 | 1.158 | 0.695 | |
600 | 0.404 | 0.175 | 0.517 | 1.091 | 0.574 | 0.461 | 1.147 | 0.686 | |
800 | 0.396 | 0.171 | 0.516 | 1.077 | 0.561 | 0.461 | 1.131 | 0.67 | |
1000 | 0.385 | 0.165 | 0.514 | 1.055 | 0.541 | 0.461 | 1.108 | 0.647 | |
$ \hat{\gamma} $ | 25 | -0.098 | 0.073 | 0.783 | 1.021 | 0.238 | 0.76 | 1.044 | 0.284 |
50 | -0.147 | 0.034 | 0.797 | 0.908 | 0.111 | 0.787 | 0.919 | 0.132 | |
100 | -0.159 | 0.03 | 0.792 | 0.89 | 0.098 | 0.782 | 0.9 | 0.117 | |
200 | -0.164 | 0.03 | 0.787 | 0.884 | 0.097 | 0.778 | 0.894 | 0.116 | |
400 | -0.16 | 0.028 | 0.794 | 0.885 | 0.091 | 0.785 | 0.894 | 0.109 | |
600 | -0.158 | 0.027 | 0.798 | 0.887 | 0.089 | 0.789 | 0.896 | 0.107 | |
800 | -0.157 | 0.027 | 0.799 | 0.888 | 0.089 | 0.79 | 0.896 | 0.106 | |
1000 | -0.154 | 0.027 | 0.802 | 0.89 | 0.088 | 0.794 | 0.898 | 0.105 | |
$ \hat{\omega} $ | 25 | -0.796 | 0.691 | 0.001 | 2.037 | 2.037 | 0.001 | 2.258 | 2.258 |
50 | -0.836 | 0.716 | 0.001 | 2.038 | 2.038 | 0.001 | 2.267 | 2.267 | |
100 | -0.855 | 0.741 | 0.001 | 2.06 | 2.06 | 0.001 | 2.297 | 2.297 | |
200 | -0.849 | 0.737 | 0.001 | 2.059 | 2.059 | 0.001 | 2.295 | 2.295 | |
400 | -0.83 | 0.723 | 0.001 | 2.057 | 2.057 | 0.001 | 2.288 | 2.288 | |
600 | -0.815 | 0.709 | 0.001 | 2.049 | 2.049 | 0.001 | 2.276 | 2.276 | |
800 | -0.802 | 0.699 | 0.001 | 2.044 | 2.044 | 0.001 | 2.268 | 2.268 | |
1000 | -0.783 | 0.683 | 0.001 | 2.037 | 2.037 | 0.001 | 2.255 | 2.255 | |
$ \hat{\delta} $ | 25 | -0.597 | 0.415 | 0.222 | 1.584 | 1.362 | 0.089 | 1.717 | 1.628 |
50 | -0.637 | 0.422 | 0.17 | 1.556 | 1.386 | 0.035 | 1.691 | 1.656 | |
100 | -0.654 | 0.436 | 0.131 | 1.561 | 1.43 | 0.001 | 1.701 | 1.709 | |
200 | -0.652 | 0.436 | 0.134 | 1.563 | 1.429 | 0.001 | 1.702 | 1.707 | |
400 | -0.657 | 0.441 | 0.12 | 1.565 | 1.445 | 0.001 | 1.706 | 1.706 | |
600 | -0.651 | 0.435 | 0.136 | 1.563 | 1.427 | 0.001 | 1.702 | 1.702 | |
800 | -0.638 | 0.428 | 0.161 | 1.564 | 1.403 | 0.024 | 1.701 | 1.677 | |
1000 | -0.627 | 0.421 | 0.183 | 1.563 | 1.38 | 0.048 | 1.698 | 1.65 | |
$ \hat{\nu} $ | 25 | -0.899 | 0.863 | 0.001 | 2.316 | 2.316 | 0.001 | 2.592 | 2.592 |
50 | -0.941 | 0.904 | 0.001 | 2.341 | 2.341 | 0.001 | 2.63 | 2.63 | |
100 | -0.953 | 0.921 | 0.001 | 2.356 | 2.356 | 0.001 | 2.651 | 2.651 | |
200 | -0.948 | 0.918 | 0.001 | 2.358 | 2.358 | 0.001 | 2.652 | 2.652 | |
400 | -0.924 | 0.897 | 0.001 | 2.347 | 2.347 | 0.001 | 2.635 | 2.635 | |
600 | -0.905 | 0.876 | 0.001 | 2.332 | 2.332 | 0.001 | 2.612 | 2.612 | |
800 | -0.894 | 2.33 | 0.001 | 2.848 | 2.848 | 0.001 | 2.6005 | 2.601 | |
1000 | -0.874 | 2.319 | 0.001 | 2.785 | 2.785 | 0.001 | 2.59 | 2.59 |
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
0.058 | 0.254 | 1.600 | 3.410 | 4.534 | 15.080 |
Model | AIC | CAIC | BIC | HQIC |
GWMWD(0.058, 9.986, 0.005, 1.239, 0.056) | 212.9574 | 214.3211 | 222.5175 | 216.5980 |
GWWD(1.916, 0.972, 0.326, 0.635) | 213.6829 | 214.5718 | 221.3310 | 216.5953 |
GWRD(0.360, 0.246, 3.774) | 221.4256 | 221.9473 | 227.1617 | 223.609 |
GLWEXPD(0.466, 0.455, 0.715) | 213.2008 | 213.7226 | 218.9369 | 215.3852 |
GWEXPD(0.465, 0.640, 0.902, 0.007) | 216.9577 | 217.8465 | 224.6058 | 219.8701 |
Model | KS | p-value |
GWMWD(0.058, 9.986, 0.005, 1.239, 0.056) | 0.13263 | 0.3144 |
GWWD(1.916, 0.972, 0.326, 0.635) | 0.16936 | 0.2247 |
GWRD(0.360, 0.246, 3.774) | 0.14916 | 0.1952 |
GLWEXPD(0.466, 0.455, 0.715) | 0.14875 | 0.1977 |
GWEXPD(0.465, 0.640, 0.902, 0.007) | 0.17732 | 0.07589 |
Par. | n | Bias | MSEs | 90%L | 90%U | 90%W | 95%L | 95%U | 95%W |
$ \hat{\beta} $ | 25 | 1.284 | 1.955 | 0.001 | 5.89 | 5.89 | 0.001 | 6.516 | 6.516 |
50 | 1.163 | 1.479 | 0.137 | 4.989 | 4.852 | 0.001 | 5.462 | 5.462 | |
100 | 1.124 | 1.325 | 0.35 | 4.698 | 4.347 | 0.001 | 5.122 | 5.122 | |
200 | 1.099 | 1.241 | 0.464 | 4.533 | 4.069 | 0.067 | 4.93 | 4.863 | |
400 | 1.08 | 1.18 | 0.545 | 4.415 | 3.87 | 0.167 | 4.793 | 4.625 | |
600 | 1.076 | 1.169 | 0.559 | 4.394 | 3.835 | 0.185 | 4.768 | 4.583 | |
800 | 1.079 | 1.171 | 0.559 | 4.399 | 3.841 | 0.184 | 4.774 | 4.59 | |
1000 | 1.078 | 1.169 | 0.561 | 4.395 | 3.834 | 0.187 | 4.77 | 4.582 | |
$ \hat{\gamma} $ | 25 | -0.307 | 0.403 | 2.032 | 3.354 | 1.322 | 1.903 | 3.483 | 1.58 |
50 | -0.428 | 0.311 | 2.061 | 3.082 | 1.021 | 1.962 | 3.182 | 1.22 | |
100 | -0.475 | 0.288 | 2.053 | 2.997 | 0.944 | 1.961 | 3.089 | 1.129 | |
200 | -0.502 | 0.281 | 2.038 | 2.959 | 0.921 | 1.948 | 3.049 | 1.101 | |
400 | -0.51 | 0.276 | 2.038 | 2.941 | 0.904 | 1.949 | 3.03 | 1.08 | |
600 | -0.52 | 0.28 | 2.02 | 2.939 | 0.919 | 1.931 | 3.029 | 1.099 | |
800 | -0.521 | 0.279 | 2.021 | 2.937 | 0.915 | 1.932 | 3.026 | 1.094 | |
1000 | -0.524 | 0.28 | 2.018 | 2.935 | 0.918 | 1.928 | 3.025 | 1.097 | |
$ \hat{\omega} $ | 25 | 0.99 | 1.265 | 0.616 | 4.764 | 4.148 | 0.212 | 5.169 | 4.957 |
50 | 0.886 | 0.921 | 1.076 | 4.096 | 3.02 | 0.781 | 4.39 | 3.609 | |
100 | 0.827 | 0.743 | 1.308 | 3.746 | 2.438 | 1.07 | 3.984 | 2.914 | |
200 | 0.798 | 0.668 | 1.403 | 3.593 | 2.19 | 1.189 | 3.807 | 2.617 | |
400 | 0.783 | 0.629 | 1.452 | 3.515 | 2.062 | 1.251 | 3.716 | 2.465 | |
600 | 0.78 | 0.619 | 1.466 | 3.495 | 2.029 | 1.268 | 3.693 | 2.425 | |
800 | 0.777 | 0.61 | 1.476 | 3.477 | 2.002 | 1.281 | 3.673 | 2.392 | |
1000 | 0.772 | 0.601 | 1.486 | 3.457 | 1.971 | 1.294 | 3.649 | 2.355 | |
$ \hat{\delta} $ | 25 | 1.102 | 1.355 | 0.379 | 4.824 | 4.445 | -0.054 | 5.258 | 5.312 |
50 | 1.057 | 1.212 | 0.57 | 4.544 | 3.974 | 0.182 | 4.932 | 4.75 | |
100 | 1.017 | 1.086 | 0.735 | 4.298 | 3.563 | 0.387 | 4.646 | 4.258 | |
200 | 1.011 | 1.052 | 0.786 | 4.236 | 3.449 | 0.45 | 4.572 | 4.123 | |
400 | 0.986 | 0.987 | 0.867 | 4.105 | 3.238 | 0.551 | 4.421 | 3.869 | |
600 | 0.978 | 0.966 | 0.893 | 4.063 | 3.17 | 0.584 | 4.373 | 3.788 | |
800 | 0.978 | 0.965 | 0.896 | 4.06 | 3.164 | 0.588 | 4.369 | 3.781 | |
1000 | 0.977 | 0.961 | 0.902 | 4.052 | 3.151 | 0.594 | 4.36 | 3.765 | |
$ \hat{\nu} $ | 25 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 |
50 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
100 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
200 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
400 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
600 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
800 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 | |
1000 | 0.4 | 0.16 | 0.938 | 1.462 | 0.525 | 0.886 | 1.514 | 0.627 |
Par. | n | Bias | MSEs | 90%L | 90%U | 90%W | 95%L | 95%U | 95%W |
$ \hat{\beta} $ | 25 | 0.498 | 0.303 | 0.401 | 1.394 | 0.994 | 0.304 | 1.491 | 1.187 |
$ \hat{\beta} $ | 25 | 0.498 | 0.303 | 0.401 | 1.394 | 0.994 | 0.304 | 1.491 | 1.187 |
50 | 0.458 | 0.226 | 0.487 | 1.229 | 0.742 | 0.415 | 1.302 | 0.887 | |
100 | 0.437 | 0.197 | 0.514 | 1.161 | 0.647 | 0.451 | 1.224 | 0.774 | |
200 | 0.426 | 0.187 | 0.519 | 1.133 | 0.613 | 0.459 | 1.193 | 0.733 | |
400 | 0.41 | 0.177 | 0.519 | 1.101 | 0.582 | 0.462 | 1.158 | 0.695 | |
600 | 0.404 | 0.175 | 0.517 | 1.091 | 0.574 | 0.461 | 1.147 | 0.686 | |
800 | 0.396 | 0.171 | 0.516 | 1.077 | 0.561 | 0.461 | 1.131 | 0.67 | |
1000 | 0.385 | 0.165 | 0.514 | 1.055 | 0.541 | 0.461 | 1.108 | 0.647 | |
$ \hat{\gamma} $ | 25 | -0.098 | 0.073 | 0.783 | 1.021 | 0.238 | 0.76 | 1.044 | 0.284 |
50 | -0.147 | 0.034 | 0.797 | 0.908 | 0.111 | 0.787 | 0.919 | 0.132 | |
100 | -0.159 | 0.03 | 0.792 | 0.89 | 0.098 | 0.782 | 0.9 | 0.117 | |
200 | -0.164 | 0.03 | 0.787 | 0.884 | 0.097 | 0.778 | 0.894 | 0.116 | |
400 | -0.16 | 0.028 | 0.794 | 0.885 | 0.091 | 0.785 | 0.894 | 0.109 | |
600 | -0.158 | 0.027 | 0.798 | 0.887 | 0.089 | 0.789 | 0.896 | 0.107 | |
800 | -0.157 | 0.027 | 0.799 | 0.888 | 0.089 | 0.79 | 0.896 | 0.106 | |
1000 | -0.154 | 0.027 | 0.802 | 0.89 | 0.088 | 0.794 | 0.898 | 0.105 | |
$ \hat{\omega} $ | 25 | -0.796 | 0.691 | 0.001 | 2.037 | 2.037 | 0.001 | 2.258 | 2.258 |
50 | -0.836 | 0.716 | 0.001 | 2.038 | 2.038 | 0.001 | 2.267 | 2.267 | |
100 | -0.855 | 0.741 | 0.001 | 2.06 | 2.06 | 0.001 | 2.297 | 2.297 | |
200 | -0.849 | 0.737 | 0.001 | 2.059 | 2.059 | 0.001 | 2.295 | 2.295 | |
400 | -0.83 | 0.723 | 0.001 | 2.057 | 2.057 | 0.001 | 2.288 | 2.288 | |
600 | -0.815 | 0.709 | 0.001 | 2.049 | 2.049 | 0.001 | 2.276 | 2.276 | |
800 | -0.802 | 0.699 | 0.001 | 2.044 | 2.044 | 0.001 | 2.268 | 2.268 | |
1000 | -0.783 | 0.683 | 0.001 | 2.037 | 2.037 | 0.001 | 2.255 | 2.255 | |
$ \hat{\delta} $ | 25 | -0.597 | 0.415 | 0.222 | 1.584 | 1.362 | 0.089 | 1.717 | 1.628 |
50 | -0.637 | 0.422 | 0.17 | 1.556 | 1.386 | 0.035 | 1.691 | 1.656 | |
100 | -0.654 | 0.436 | 0.131 | 1.561 | 1.43 | 0.001 | 1.701 | 1.709 | |
200 | -0.652 | 0.436 | 0.134 | 1.563 | 1.429 | 0.001 | 1.702 | 1.707 | |
400 | -0.657 | 0.441 | 0.12 | 1.565 | 1.445 | 0.001 | 1.706 | 1.706 | |
600 | -0.651 | 0.435 | 0.136 | 1.563 | 1.427 | 0.001 | 1.702 | 1.702 | |
800 | -0.638 | 0.428 | 0.161 | 1.564 | 1.403 | 0.024 | 1.701 | 1.677 | |
1000 | -0.627 | 0.421 | 0.183 | 1.563 | 1.38 | 0.048 | 1.698 | 1.65 | |
$ \hat{\nu} $ | 25 | -0.899 | 0.863 | 0.001 | 2.316 | 2.316 | 0.001 | 2.592 | 2.592 |
50 | -0.941 | 0.904 | 0.001 | 2.341 | 2.341 | 0.001 | 2.63 | 2.63 | |
100 | -0.953 | 0.921 | 0.001 | 2.356 | 2.356 | 0.001 | 2.651 | 2.651 | |
200 | -0.948 | 0.918 | 0.001 | 2.358 | 2.358 | 0.001 | 2.652 | 2.652 | |
400 | -0.924 | 0.897 | 0.001 | 2.347 | 2.347 | 0.001 | 2.635 | 2.635 | |
600 | -0.905 | 0.876 | 0.001 | 2.332 | 2.332 | 0.001 | 2.612 | 2.612 | |
800 | -0.894 | 2.33 | 0.001 | 2.848 | 2.848 | 0.001 | 2.6005 | 2.601 | |
1000 | -0.874 | 2.319 | 0.001 | 2.785 | 2.785 | 0.001 | 2.59 | 2.59 |
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
0.058 | 0.254 | 1.600 | 3.410 | 4.534 | 15.080 |
Model | AIC | CAIC | BIC | HQIC |
GWMWD(0.058, 9.986, 0.005, 1.239, 0.056) | 212.9574 | 214.3211 | 222.5175 | 216.5980 |
GWWD(1.916, 0.972, 0.326, 0.635) | 213.6829 | 214.5718 | 221.3310 | 216.5953 |
GWRD(0.360, 0.246, 3.774) | 221.4256 | 221.9473 | 227.1617 | 223.609 |
GLWEXPD(0.466, 0.455, 0.715) | 213.2008 | 213.7226 | 218.9369 | 215.3852 |
GWEXPD(0.465, 0.640, 0.902, 0.007) | 216.9577 | 217.8465 | 224.6058 | 219.8701 |
Model | KS | p-value |
GWMWD(0.058, 9.986, 0.005, 1.239, 0.056) | 0.13263 | 0.3144 |
GWWD(1.916, 0.972, 0.326, 0.635) | 0.16936 | 0.2247 |
GWRD(0.360, 0.246, 3.774) | 0.14916 | 0.1952 |
GLWEXPD(0.466, 0.455, 0.715) | 0.14875 | 0.1977 |
GWEXPD(0.465, 0.640, 0.902, 0.007) | 0.17732 | 0.07589 |