Citation: Ning Li, Yating Huo, Haojun Xie, Yuanxiong Cheng. Angiotensin II induces the secretion of ICAM-1 and MCP-1 in human airway smooth muscle cells in vitro[J]. AIMS Medical Science, 2018, 5(3): 259-267. doi: 10.3934/medsci.2018.3.259
[1] | Hong-Yi Chang, Hung-Wen Tsai, Chiao-Fang Teng, Lily Hui-Ching Wang, Wenya Huang, Ih-Jen Su . Ground glass hepatocytes provide targets for therapy or prevention of hepatitis B virus-related hepatocellular carcinoma. AIMS Medical Science, 2018, 5(2): 90-101. doi: 10.3934/medsci.2018.2.90 |
[2] | Teruo Sekimoto, Takamasa Tanaka, Tatsuya Shiraki, Renu Virmani, Aloke V. Finn . How does atherosclerotic plaque become calcified, and why?. AIMS Medical Science, 2024, 11(4): 421-438. doi: 10.3934/medsci.2024029 |
[3] | Margarida Pujol-López, Luis Ortega-Paz, Manel Garabito, Salvatore Brugaletta, Manel Sabaté, Ana Paula Dantas . miRNA Update: A Review Focus on Clinical Implications of miRNA in Vascular Remodeling. AIMS Medical Science, 2017, 4(1): 99-112. doi: 10.3934/medsci.2017.1.99 |
[4] | Nádia C. M. Okuyama, Fernando Cezar dos Santos, Kleber Paiva Trugilo, Karen Brajão de Oliveira . Involvement of CXCL12 Pathway in HPV-related Diseases. AIMS Medical Science, 2016, 3(4): 417-440. doi: 10.3934/medsci.2016.4.417 |
[5] | Luis Miguel Juárez-Salcedo, Luis Manuel González, Samir Dalia . Immunotherapy for diffuse large B-cell lymphoma: current use of immune checkpoint inhibitors therapy. AIMS Medical Science, 2023, 10(3): 259-272. doi: 10.3934/medsci.2023020 |
[6] | Wenping Lin, Kai Dai, Luokun Xie . Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective. AIMS Medical Science, 2016, 3(4): 312-328. doi: 10.3934/medsci.2016.4.312 |
[7] | Somayeh Boshtam, Mohammad Shokrzadeh, Nasrin Ghassemi-Barghi . Fluoxetine induces oxidative stress-dependent DNA damage in human hepatoma cells. AIMS Medical Science, 2023, 10(1): 69-79. doi: 10.3934/medsci.2023007 |
[8] | Sabrina K Uppal, Toni L Uhlendorf, Ruslan L Nuryyev, Jacqueline Saenz, Menaga Shanmugam, Jessica Ochoa, William Van Trigt, Cindy S Malone, Andrew P St. Julian, Oleg Kopyov, Alex Kopyov, Randy W Cohen . Human neural progenitor cells ameliorate NMDA-induced hippocampal degeneration and related functional deficits. AIMS Medical Science, 2021, 8(3): 252-268. doi: 10.3934/medsci.2021021 |
[9] | Michiro Muraki . Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS Medical Science, 2020, 7(3): 122-203. doi: 10.3934/medsci.2020011 |
[10] | Michiro Muraki . Human Fas ligand extracellular domain: current status of biochemical characterization, engineered-derivatives production, and medical applications. AIMS Medical Science, 2022, 9(4): 467-485. doi: 10.3934/medsci.2022025 |
If $ h $ and $ k $ are integers with $ k > 0 $, the classical Dedekind sums $ S(h, k) $ are defined as
$ S(h,k) = \sum\limits_{a = 1}^{k}\left(\left(\frac{a}{k}\right)\right)\left(\left(\frac{ah}{k}\right) \right), $ |
where
$ ((x)) = \left\{x−[x]−12,if x is not an integer; 0,if x is an integer. \right. $
|
The various properties of $ S(h, k) $ were investigated by many authors, one of which is reciprocity theorem (see Tom M. Apostol [1] or L. Carlitz [2]). That is, for all positive integers $ h $ and $ k $ with $ (h, k) = 1 $, we have the identity
$ S(h,k)+S(k,h) = \frac{h^{2}+k^{2}+1}{12hk}-\frac{1}{4}. $ |
Conrey et al. [3] studied the mean value distribution of $ S(h, k) $ and deduced the important asymptotic formula
$ k∑′h=1|S(h,k)|2m=fm(k)(k12)2m+O((k95+k2m−1+1m+1)log3k), $
|
where $k∑′h=1
$ ∞∑n=1fm(n)ns=2ζ2(2m)ζ(4m)⋅ζ(s+4m−1)ζ2(s+2m)ζ(s). $
|
Moreover, X. L. He and W. P. Zhang [4] gave an interesting asymptotic formula for the Dedekind sums with a weight of Hurwitz zeta-function as follows:
$ k∑′h=1ζ2(12,hk)S2(h,k)=k3144ζ(3)∏p|k(1−1p3)+O(k52exp(3logkloglogk)). $
|
Other sums analogous to the Dedekind sums are the Hardy sums. Using the notation of Berndt and Goldberg [5], they defined
$ S_{1}(h,k) = \sum\limits_{j = 1}^{k-1}(-1)^{j+1+\left[\frac{hj}{k}\right]}, $ |
where $ h $ and $ k $ are integers with $ k > 0 $.
In 2014, H. Zhang and W. P. Zhang [6] obtained some beautiful identities involving $ S_{1}(h, k) $ in the forms of
$ \sum\limits_{m = 1}^{p-1}\sum\limits_{n = 1}^{p-1}K(m,p)K(n,p)S_{1}(2m\overline{n},p), $ |
$ \sum\limits_{m = 1}^{p-1}\sum\limits_{n = 1}^{p-1}\left|K(m,p)\right|^{2}\left|K(n,p)\right|^{2}S_{1}(2m\overline{n},p), $ |
where $ K(n, p) $ denotes the reduced form of the general Kloosterman sums attached to a Dirichlet character $ \lambda $ modulo $ k $ as
$ K(r,l,λ;k)=k∑′a=1λ(a)e(ra+l¯ak), $
|
where $ e(x) = e^{2 \pi i x} $, $ \overline{a} $ denotes the solution of the congruence $ x \cdot a\equiv 1 \bmod k $.
Recently, H. F. Zhang and T. P. Zhang [7] extended the results in [6] to a more general situation as
$ \sum\limits_{m = 1}^{p-1}\sum\limits_{n = 1}^{p-1}K(m,s,\lambda;p)\overline{K(n,t,\lambda;p)}S_{1}(2m\overline{n},p), $ |
$ \sum\limits_{m = 1}^{p-1}\sum\limits_{n = 1}^{p-1}\left|K(m,s,\lambda;p)\right|^{2}\left|K(n,t,\lambda;p)\right|^{2}S_{1}(2m\overline{n},p), $ |
where $ \overline{K(n, t, \lambda; p)} $ denotes complex conjugate of $ K(n, t, \lambda; p) $.
Actually there are six forms of Hardy sums (see Berndt [8] and Goldberg [9]). A natural question is whether we can obtain similar results by replacing $ S_{1}(h, k) $ with other forms of Hardy sums. Due to some technical reasons, for most of other forms of Hardy sums, the answer is no! Thanks to the important relationships among Hardy sums and Dedekind sums built by R. Sitaramachandrarao [10], we are lucky to find the only one $ S_{3}(h, p) $ to replace, with
$ S3(h,k)=k∑j=1(−1)j((hjk)). $
|
Our starting point relies heavily on the following in [10] as:
Proposition 1. Let $ k $ be an odd positive integer, $ h $ be an integer with $ (h, k) = 1 $. Then
$ S3(h,k)=2S(h,k)−4S(2h,k). $
|
Then applying the properties of Gauss sums and the mean square value of Dirichlet $ L $-functions, we have
Theorem 1. Let $ p $ be an odd prime. Then for any Dirichlet character $ \lambda \bmod p $ and any integer $ s $, $ t $ with $ (s, p) = (t, p) = 1 $, we have
$ p−1∑m=1p−1∑n=1K(m,s,λ;p)¯K(n,t,λ;p)S3(m¯n,p)={p−12,if ¯λχ=χ0;p(p−1)2,if ¯λχ≠χ0, $
|
where $ \chi $ is an odd Dirichlet character modulo $ p $ and $ \chi_{0} $ is the principal character modulo $ p $.
Theorem 2. Let $ p $ be an odd prime with $ p\equiv 1 \bmod 4 $. Then for any Dirichlet character $ \lambda \bmod p $ and any integer $ s $, $ t $ with $ (s, p) = (t, p) = 1 $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p){=p2(p−1)2,if ¯λχ≠χ0, ¯λχ≠χ0;=p(p−1)2,if ¯λχ≠χ0, ¯λχ=χ0;≤p92+12p4−4p72−p3+5p52+p2−2p32−12p,if ¯λχ=χ0, ¯λχ=χ0;≤p5−3p4+3p3−12p2−12p,if ¯λχ=χ0, ¯λχ≠χ0. $
|
Theorem 3. Let $ p $ be an odd prime with $ p\equiv 3 \bmod 8 $. Then for any Dirichlet character $ \lambda \bmod p $ and any integer $ s $, $ t $ with $ (s, p) = (t, p) = 1 $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p){=p2(p−1)2−6p2h2p,if ¯λχ≠χ0, ¯λχ≠χ0;=p(p−1)2−6ph2p,if ¯λχ≠χ0, ¯λχ=χ0;≤p92+12p4−4p72−p3+5p52+p2−2p32−12p+6p2h2p,if ¯λχ=χ0, ¯λχ=χ0;≤p5−3p4+3p3−12p2−12p+6p3h2p,if ¯λχ=χ0, ¯λχ≠χ0, $
|
where $ h_{p} $ denotes the class number of the quadratic field $ Q\left(\sqrt{-p}\right) $.
Theorem 4. Let $ p $ be an odd prime with $ p\equiv 7 \bmod 8 $. Then for any Dirichlet character $ \lambda \bmod p $ and any integer $ s $, $ t $ with $ (s, p) = (t, p) = 1 $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p){=p2(p−1)2+2p2h2p,if ¯λχ≠χ0, ¯λχ≠χ0;=p(p−1)2+2ph2p,if ¯λχ≠χ0, ¯λχ=χ0;≤p92+12p4−4p72−p3+5p52+p2−2p32−12p+2p2h2p,if ¯λχ=χ0, ¯λχ=χ0;≤p5−3p4+3p3−12p2−12p+2p3h2p,if ¯λχ=χ0, ¯λχ≠χ0. $
|
Taking $ \lambda = \lambda_{0} $, $ s = t = 1 $ in Theorems 1–4, we immediately deduce the following results.
Corollary 1. Let $ p $ be an odd prime. Then we have the identity
$ \sum\limits_{m = 1}^{p-1}\sum\limits_{n = 1}^{p-1}K(m,p)K(n,p)S_{3}(m\overline{n},p) = \frac{p(p-1)}{2}. $ |
Corollary 2. Let $ p $ be an odd prime. Then we have
$ \sum\limits_{m = 1}^{p-1}\sum\limits_{n = 1}^{p-1}\left|K(m,p)\right|^{2}\left|K(n,p)\right|^{2}S_{3}(m\overline{n},p) = \left\{ p2(p−1)2,if p≡1mod4;p2(p−1)2−6p2h2p,if p≡3mod8;p2(p−1)2+2p2h2p,if p≡7mod8. \right. $
|
To prove the Theorems, we need the following Lemmas.
Lemma 1. Let $ k > 2 $ be an integer. Then for any integer $ a $ with $ (a, k) = 1, $ we have the identity
$ S(a,k) = \frac{1}{\pi^2k}\sum\limits_{d\mid k}\frac{d^2}{\phi(d)}\mathop{\sum\limits_{\chi \bmod d}}_{\chi(-1) = -1}\chi(a)\left|L(1,\chi)\right|^2, $ |
where $ L(1, \chi) $ denotes the Dirichlet $ L $-function corresponding to Dirichlet character $ \chi $ mod $ d $.
Proof. See Lemma 2 of [11].
Lemma 2. Let $ p $ be an odd prime, $ s $ be any integer with $ (s, p) = 1 $. Then for any non-principal character $ \chi \bmod p $ and any Dirichlet character $ \lambda \bmod p $, we have
$ \left|\sum\limits_{m = 1}^{p-1}\chi(m)K(m,s,\lambda;p)\right| = \left\{ p12,if ¯λχ=χ0;p,if ¯λχ≠χ0. \right. $
|
Proof. See Lemma 2 of reference [7].
Lemma 3. Let $ p $ be an odd prime, $ s $ be any integer with $ (s, p) = 1 $. Then for any non-principal character $ \chi \bmod p $ and any Dirichlet character $ \lambda \bmod p $, we have
$ |p−1∑m=1χ(m)|K(m,s,λ;p)|2|={p|τ(¯χ2)|,if ¯λχ≠χ0, ¯λχ≠χ0;p12|τ(¯χ2)|,if ¯λχ≠χ0, ¯λχ=χ0;p|τ(¯χ2)+(p−1)|,if ¯λχ=χ0, ¯λχ=χ0;p|−τ(¯χ2)τ(¯λχ)+(p−1)|,if ¯λχ=χ0, ¯λχ≠χ0, $
|
where $ \tau(\chi) = \sum_{a = 1}^{p}\chi(a) e\left(\frac{a}{p}\right) $ denotes the classical Gauss sums.
Proof. See Lemma 1 of reference [7].
Lemma 4. Let $ p $ be an odd prime, then we have
$ ∑χmodpχ(−1)=−1|L(1,χ)|2=π212⋅(p−1)2(p−2)p2, $
|
$ ∑χmodpχ(−1)=−1χ(2)⋅|L(1,χ)|2=π224⋅(p−1)2(p−5)p2. $
|
Proof. See Lemma 5 of reference [6].
Now we come to prove our Theorems.
Firstly, we prove Theorem 1. Applying Proposition $ 1 $ and Lemma $ 1 $, we obtain
$ p−1∑m=1p−1∑n=1K(m,s,λ;p)¯K(n,t,λ;p)S3(m¯n,p)=2pπ2(p−1)∑χmodpχ(−1)=−1p−1∑m=1χ(m)K(m,s,λ;p)⋅p−1∑n=1χ(¯n)¯K(n,t,λ;p)⋅|L(1,χ)|2−4pπ2(p−1)∑χmodpχ(−1)=−1χ(2)p−1∑m=1χ(m)K(m,s,λ;p)⋅p−1∑n=1χ(¯n)¯K(n,t,λ;p)⋅|L(1,χ)|2=2pπ2(p−1)∑χmodpχ(−1)=−1|p−1∑m=1χ(m)K(m,s,λ;p)|2|L(1,χ)|2−4pπ2(p−1)∑χmodpχ(−1)=−1χ(2)|p−1∑m=1χ(m)K(m,s,λ;p)|2|L(1,χ)|2. $
|
Then from Lemma $ 2 $ and Lemma $ 4 $, if $ \overline{\lambda}\chi = \chi_{0} $, we have
$ p−1∑m=1p−1∑n=1K(m,s,λ;p)¯K(n,t,λ;p)S3(m¯n,p)=2p2π2(p−1)∑χmodpχ(−1)=−1|L(1,χ)|2−4p2π2(p−1)∑χmodpχ(−1)=−1χ(2)|L(1,χ)|2=2p2π2(p−1)⋅π212(p−1)2(p−2)p2−4p2π2(p−1)⋅π224(p−1)2(p−5)p2=p−12. $
|
While if $ \overline{\lambda}\chi\neq\chi_{0} $, we have
$ p−1∑m=1p−1∑n=1K(m,s,λ;p)¯K(n,t,λ;p)S3(m¯n,p)=2p3π2(p−1)∑χmodpχ(−1)=−1|L(1,χ)|2−4p3π2(p−1)∑χmodpχ(−1)=−1χ(2)|L(1,χ)|2=2p3π2(p−1)⋅π212⋅(p−1)2(p−2)p2−4p3π2(p−1)⋅π224⋅(p−1)2(p−5)p2=p(p−1)2. $
|
This completes the proof of Theorem 1.
Then we prove Theorem 2. From Proposition $ 1 $ and Lemma $ 1 $, we obtain
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2pπ2(p−1)∑χmodpχ(−1)=−1|p−1∑m=1χ(m)|K(m,s,λ;p)|2|2|L(1,χ)|2−4pπ2(p−1)∑χmodpχ(−1)=−1χ(2)|p−1∑m=1χ(m)|K(m,s,λ;p)|2|2|L(1,χ)|2. $
|
Since $ p\equiv 1 \bmod 4 $, and notice that $ \left|\tau\left(\overline{\chi}^{2}\right)\right| = \sqrt{p} $. From Lemma $ 3 $ and Lemma $ 4 $, if $ \overline{\lambda\chi}\neq\chi_{0} $, $ \overline{\lambda}\chi\neq\chi_{0} $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2p4π2(p−1)∑χmodpχ(−1)=−1|L(1,χ)|2−4p4π2(p−1)∑χmodpχ(−1)=−1χ(2)|L(1,χ)|2=2p4π2(p−1)⋅π212⋅(p−1)2(p−2)p2−4p4π2(p−1)⋅π224⋅(p−1)2(p−5)p2=p2(p−1)2. $
|
Similarly, if $ \overline{\lambda\chi}\neq\chi_{0}, \ \overline{\lambda}\chi = \chi_{0} $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=p(p−1)2. $
|
If $ \overline{\lambda\chi} = \chi_{0}, \ \overline{\lambda}\chi = \chi_{0} $, we can obtain
$ |p−1∑m=1χ(m)|K(m,s,λ;p)|2|2=p2[(Re τ(¯χ2)+(p−1))2+(Im τ(¯χ2))2]=p2[p+2(p−1)Re τ(¯χ2)+(p−1)2]. $
|
So we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2p3π2(p−1)∑χmodpχ(−1)=−1[p+2(p−1)Re τ(¯χ2)+(p−1)2]|L(1,χ)|2−4p3π2(p−1)∑χmodpχ(−1)=−1χ(2)[p+2(p−1)Re τ(¯χ2)+(p−1)2]|L(1,χ)|2=2p3[p+(p−1)2]π2(p−1)∑χmodpχ(−1)=−1|L(1,χ)|2+4p3π2∑χmodpχ(−1)=−1Re (τ(¯χ2))|L(1,χ)|2−4p3[p+(p−1)2]π2(p−1)∑χmodpχ(−1)=−1χ(2)|L(1,χ)|2−8p3π2∑χmodpχ(−1)=−1χ(2)Re (τ(¯χ2))|L(1,χ)|2=p(p−1)(p2−p+1)2+4p3π2∑χmodpχ(−1)=−1Re (τ(¯χ2))|L(1,χ)|2−8p3π2∑χmodpχ(−1)=−1χ(2)Re (τ(¯χ2))|L(1,χ)|2. $
|
Noting that $ x\leq |x| $ holds for any real number $ x $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)≤|p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)|≤p(p−1)(p2−p+1)2+4p72π2∑χmodpχ(−1)=−1|L(1,χ)|2+8p72π2∑χmodpχ(−1)=−1|L(1,χ)|2=p(p−1)(p2−p+1)2+4p72π2⋅π212⋅(p−1)2(p−2)p2+8p72π2⋅π212⋅(p−1)2(p−2)p2=p92+12p4−4p72−p3+5p52+p2−2p32−12p. $
|
Similarly, if $ \overline{\lambda\chi} = \chi_{0}, \ \overline{\lambda}\chi\neq\chi_{0} $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)≤p5−3p4+3p3−12p2−12p. $
|
This completes the proof of Theorem 2.
Next we turn to prove Theorem 3. Since $ p\equiv 3 \bmod 4 $, note that $ \left(\frac{-1}{p}\right) = \chi_{2}(-1) = -1 $, $ L(1, \chi_{2}) = \frac{\pi\cdot h_{p}}{\sqrt{p}} $, and $ \tau\left(\overline{\chi}^{2}_{2}\right) = -1 $. From Lemma $ 3 $ and Lemma $ 4 $, if $ \overline{\lambda\chi}\neq\chi_{0}, \ \overline{\lambda}\chi\neq\chi_{0} $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2p4π2(p−1)∑χmodpχ(−1)=−1|L(1,χ)|2−2p4π2(p−1)|L(1,χ2)|2+2p3π2(p−1)|L(1,χ2)|2−4p4π2(p−1)∑χmodpχ(−1)=−1χ(2)|L(1,χ)|2+4p4π2(p−1)χ2(2)|L(1,χ2)|2−4p3π2(p−1)χ2(2)|L(1,χ2)|2=p2(p−1)2−2p3π2|L(1,χ2)|2+4p3π2χ2(2)|L(1,χ2)|2=p2(p−1)2−2p2h2p+4p2h2p(2p). $
|
Similarly, if $ \overline{\lambda\chi}\neq\chi_{0}, \ \overline{\lambda}\chi = \chi_{0} $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=p(p−1)2−2ph2p+4ph2p(2p). $
|
If $ \overline{\lambda\chi} = \chi_{0}, \ \overline{\lambda}\chi = \chi_{0} $, we can obtain
$ p2|τ(¯χ22)+(p−1)|2=p2[1+2(p−1)Re τ(¯χ22)+(p−1)2]. $
|
So we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2p3π2(p−1)∑χmodpχ(−1)=−1[p+2(p−1)Re τ(¯χ2)+(p−1)2]|L(1,χ)|2−2p3π2(p−1)[p+2(p−1)Re τ(¯χ22)+(p−1)2]|L(1,χ2)|2+2p3π2(p−1)[1+2(p−1)Re τ(¯χ22)+(p−1)2]|L(1,χ2)|2−4p3π2(p−1)∑χmodpχ(−1)=−1χ(2)[p+2(p−1)Re τ(¯χ2)+(p−1)2]|L(1,χ)|2+4p3π2(p−1)[p+2(p−1)Re τ(¯χ22)+(p−1)2]χ2(2)|L(1,χ2)|2−4p3π2(p−1)[1+2(p−1)Re τ(¯χ22)+(p−1)2]χ2(2)|L(1,χ2)|2=p(p−1)(p2−p+1)2+4p3π2∑χmodpχ(−1)=−1Re (τ(¯χ2))|L(1,χ)|2−8p3π2∑χmodpχ(−1)=−1χ(2)Re (τ(¯χ2))|L(1,χ)|2−2p2h2p+4p2h2p(2p). $
|
Similarly, if $ \overline{\lambda\chi} = \chi_{0}, \ \overline{\lambda}\chi\neq\chi_{0} $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=p(p−1)(2p2−2p+1)2−4p3π2∑χmodpχ(−1)=−1Re (τ(¯χ2)τ(¯λχ))|L(1,χ)|2+8p3π2∑χmodpχ(−1)=−1χ(2)Re (τ(¯χ2)τ(¯λχ))|L(1,χ)|2−2p3h2p+4p3h2p(2p). $
|
Combining the fact that
$ (2p)=(−1)p2−18={1,if p≡±1mod8;−1,if p≡±3mod8, $
|
we deduce that if $ p\equiv 3 \bmod 8 $, then
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)={p2(p−1)2−6p2h2p,if ¯λχ≠χ0, ¯λχ≠χ0;p(p−1)2−6ph2p,if ¯λχ≠χ0, ¯λχ=χ0. $
|
If $ \overline{\lambda\chi} = \chi_{0}, \ \overline{\lambda}\chi = \chi_{0} $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=p(p−1)(p2−p+1)2+4p3π2∑χmodpχ(−1)=−1Re (τ(¯χ2))|L(1,χ)|2−8p3π2∑χmodpχ(−1)=−1χ(2)Re (τ(¯χ2))|L(1,χ)|2−6p2h2p. $
|
Then
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)≤p(p−1)(p2−p+1)2+4p3π2|∑χmodpχ(−1)=−1Re (τ(¯χ2))|L(1,χ)|2|+8p3π2|∑χmodpχ(−1)=−1χ(2)Re (τ(¯χ2))|L(1,χ)|2|+6p2h2p=p92+12p4−4p72−p3+5p52+p2−2p32−12p+6p2h2p. $
|
Similarly, if $ \overline{\lambda\chi} = \chi_{0}, \ \overline{\lambda}\chi\neq\chi_{0} $, we have
$ p−1∑m=1p−1∑n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)≤p5−3p4+3p3−12p2−12p+6p3h2p. $
|
This completes the proof of Theorem 3.
Theorem 4 can be derived by the same method. This completes the proof of our Theorems.
In this paper, we obtain some exact computational formulas or upper bounds for hybrid mean value involving Hardy sums and Kloosterman sums (both classical Kloosterman sums and general Kloosterman sums) by applying the properties of Gauss sums and the mean value of Dirichlet $ L $-function. But in some cases, unluckily, it is difficult to get the exact formula. So how to get the exact formula in all cases remains open.
The authors want to show their great thanks to the anonymous referee for his/her helpful comments and suggestions.
This work is supported by the National Natural Science Foundation of China (No. 11871317, 11926325, 11926321) and the Fundamental Research Funds for the Central Universities (No. GK201802011).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | Kaiya H, Kangawa K, Miyazato M (2013) What is the general action of ghrelin for vertebrates? -comparisons of ghrelin's effects across vertebrates. Gen Comp Endocrinol 181: 187-191. |
[2] |
Braman SS (2006) The global burden of asthma. Chest 130: 4s-12s. doi: 10.1378/chest.130.1_suppl.4S
![]() |
[3] |
Croisant S (2014) Epidemiology of asthma: prevalence and burden of disease. Adv Exp Med Biol 795: 17-29. doi: 10.1007/978-1-4614-8603-9_2
![]() |
[4] |
Holgate ST (2011) Asthma: a simple concept but in reality a complex disease. Eur J Clin Invest 41: 1339-1352. doi: 10.1111/j.1365-2362.2011.02534.x
![]() |
[5] |
Webley WC, Hahn DL (2017) Infection-mediated asthma: etiology, mechanisms and treatment options, with focus on Chlamydia pneumoniae and macrolides. Respir Res 18: 98. doi: 10.1186/s12931-017-0584-z
![]() |
[6] |
Schuijs MJ, Willart MA, Hammad H, et al. (2013) Cytokine targets in airway inflammation. Curr Opin Pharmacol 13: 351-361. doi: 10.1016/j.coph.2013.03.013
![]() |
[7] |
Tliba O, Amrani Y, Panettieri RA, et al. (2008) Is airway smooth muscle the "missing link" modulating airway inflammation in asthma? Chest 133: 236-242. doi: 10.1378/chest.07-0262
![]() |
[8] |
Singh SR, Sutcliffe A, Kaur D, et al. (2014) CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration. Allergy 69: 1189-1197. doi: 10.1111/all.12444
![]() |
[9] | McKay S, Sharma HS (2002) Autocrine regulation of asthmatic airway inflammation: role of airway smooth muscle. Respir Res 3: 11. |
[10] |
Koziol-White CJ, Panettieri RA, et al. (2011) Airway smooth muscle and immunomodulation in acute exacerbations of airway disease. Immunol Rev 242: 178-185. doi: 10.1111/j.1600-065X.2011.01022.x
![]() |
[11] | Ozier A, Allard B, Bara I, et al. (2011) The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy (Cairo) 2011: 742710. |
[12] |
Zheng Y, Tang L, Huang W, et al. (2015) Anti-Inflammatory Effects of Ang-(1–7) in Ameliorating HFD-Induced Renal Injury through LDLr-SREBP2-SCAP Pathway. PLoS One 10: e0136187. doi: 10.1371/journal.pone.0136187
![]() |
[13] | Padda RS, Shi Y, Lo CS, et al. (2015) Angiotensin-(1–7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes? J Diabetes Metab 6. |
[14] |
Ruiz-Ortega M, Esteban V, Ruperez M, et al. (2006) Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens 15: 159-166. doi: 10.1097/01.mnh.0000203190.34643.d4
![]() |
[15] | Li C, He J, Zhong X, et al. (2018) CX3CL1/CX3CR1 Axis Contributes to Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation and Inflammatory Cytokine Production. Inflammation. |
[16] |
Li HY, Yang M, Li Z, et al. (2017) Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-gamma activity and reducing oxidative stress. Int J Mol Med 39: 1307-1316. doi: 10.3892/ijmm.2017.2924
![]() |
[17] |
Bihl JC, Zhang C, Zhao Y, et al. (2015) Angiotensin-(1–7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFsmall ka, CyrillicB inflammatory pathway. Vascul Pharmacol 73: 115-123. doi: 10.1016/j.vph.2015.08.007
![]() |
[18] |
Pang L, Nie M, Corbett L, et al. (2006) Mast cell beta-tryptase selectively cleaves eotaxin and RANTES and abrogates their eosinophil chemotactic activities. J Immunol 176: 3788-3795. doi: 10.4049/jimmunol.176.6.3788
![]() |
[19] |
Sutcliffe AM, Clarke DL, Bradbury DA, et al. (2009) Transcriptional regulation of monocyte chemotactic protein-1 release by endothelin-1 in human airway smooth muscle cells involves NF-kappaB and AP-1. Br J Pharmacol 157: 436-450. doi: 10.1111/j.1476-5381.2009.00143.x
![]() |
[20] |
Deacon K, Knox AJ (2015) Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 309: L237-249. doi: 10.1152/ajplung.00390.2014
![]() |
[21] |
Gangur V, Oppenheim JJ (2000) Are chemokines essential or secondary participants in allergic responses? Ann Allergy Asthma Immunol 84: 569-579. doi: 10.1016/S1081-1206(10)62403-9
![]() |
[22] |
Sousa AR, Lane SJ, Nakhosteen JA, et al. (1994) Increased expression of the monocyte chemoattractant protein-1 in bronchial tissue from asthmatic subjects. Am J Respir Cell Mol Biol 10: 142-147. doi: 10.1165/ajrcmb.10.2.8110469
![]() |
[23] |
Watson ML, Grix SP, Jordan NJ, et al. (1998) Interleukin 8 and monocyte chemoattractant protein 1 production by cultured human airway smooth muscle cells. Cytokine 10: 346-352. doi: 10.1006/cyto.1997.0350
![]() |
[24] |
Nie M, Corbett L, Knox AJ, et al. (2005) Differential regulation of chemokine expression by peroxisome proliferator-activated receptor gamma agonists: interactions with glucocorticoids and beta2-agonists. J Biol Chem 280: 2550-2561. doi: 10.1074/jbc.M410616200
![]() |
[25] | Wang YX, Ji ML, Jiang CY, et al. (2016) Upregulation of ICAM-1 and IL-1beta protein expression promotes lung injury in chronic obstructive pulmonary disease. Genet Mol Res 15. |
[26] |
Liang B, Wang X, Zhang N, et al. (2015) Angiotensin-(1–7) Attenuates Angiotensin II-Induced ICAM-1, VCAM-1, and MCP-1 Expression via the MAS Receptor Through Suppression of P38 and NF-kappaB Pathways in HUVECs. Cell Physiol Biochem 35: 2472-2482. doi: 10.1159/000374047
![]() |