Processing math: 100%
Research article Special Issues

A Microfluidic Device for Spatiotemporal Delivery of Stimuli to Cells

  • Received: 10 January 2015 Accepted: 20 March 2015 Published: 30 March 2015
  • Living cells encounter many stimuli from the immediate environment. Receptors recognize these environmental cues and transduce signals to produce cell responses. The frequency of a signal is now emerging as an important factor determining cell responses. As a componentry system in understanding temporal stimulation, microfluidic devices allow the observation of cell behaviour under dynamic stimulation and controllable environment. In this paper we describe the design, construction and characterization of a microfluidic device suitable for cell stimulation studies.

    Citation: Zubaidah Ningsih, James W.M. Chon, Andrew H.A. Clayton. A Microfluidic Device for Spatiotemporal Delivery of Stimuli to Cells[J]. AIMS Biophysics, 2015, 2(2): 58-72. doi: 10.3934/biophy.2015.2.58

    Related Papers:

    [1] Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
    [2] Qiang Li, Lili Ma . 1-parameter formal deformations and abelian extensions of Lie color triple systems. Electronic Research Archive, 2022, 30(7): 2524-2539. doi: 10.3934/era.2022129
    [3] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [4] Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058
    [5] Baoling Guan, Xinxin Tian, Lijun Tian . Induced 3-Hom-Lie superalgebras. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237
    [6] Bing Sun, Liangyun Chen, Yan Cao . On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, 2021, 29(4): 2619-2636. doi: 10.3934/era.2021004
    [7] Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214
    [8] Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157
    [9] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
    [10] Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and $ \mathcal{O} $-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264
  • Living cells encounter many stimuli from the immediate environment. Receptors recognize these environmental cues and transduce signals to produce cell responses. The frequency of a signal is now emerging as an important factor determining cell responses. As a componentry system in understanding temporal stimulation, microfluidic devices allow the observation of cell behaviour under dynamic stimulation and controllable environment. In this paper we describe the design, construction and characterization of a microfluidic device suitable for cell stimulation studies.


    The notion of a pre-Lie algebra has been introduced independently by M. Gerstenhaber in deformation theory of rings and algebras [1] and by Vinberg, under the name of left-symmetric algebra, in his theory of homogeneous convex cones [2]. Its defining identity is weaker than associativity and lead also to a Lie algebra using commutators. This algebraic structure describes some properties of cochain spaces in Hochschild cohomology of an associative algebra, rooted trees and vector fields on affine spaces. Moreover, it is playing an increasing role in algebra, geometry and physics due to their applications in nonassociative algebras, combinatorics, numerical analysis and quantum field theory, see [3,4,5,6].

    Hom-type algebras appeared naturally when studying $ q $-deformations of some algebras of vector fields, like Witt and Virasoro algebras. It turns out that the Jacobi identity is no longer satisfied, these new structures involving a bracket and a linear map satisfy a twisted version of the Jacobi identity and define a so called Hom-Lie algebras which form a wider class, see [7,8]. Hom-pre-Lie algebras were introduced in [9] as a class of Hom-Lie admissible algebras, and play important roles in the study of Hom-Lie bialgebras and Hom-Lie 2-algebras [10,11,12]. Recently Hom-pre-Lie algebras were studied from several aspects. Cohomologies of Hom-pre-Lie algebras were studied in [13]; The geometrization of Hom-pre-Lie algebras was studied in [14]; Universal $ \alpha $-central extensions of Hom-pre-Lie algebras were studied in [15]; Hom-pre-Lie bialgebras were studied in [16,17]. Furthermore, connections between (Hom-)pre-Lie algebras and various algebraic structures have been established and discussed; like with Rota-Baxter operators, $ \mathcal{O} $-operators, (Hom-)dendriform algebras, (Hom-)associative algebras and Yang-Baxter equation, see [5,18,19,20,21,22].

    The cohomology of pre-Lie algebras was defined in [23] and generalized in a straightforward way to Hom-pre-Lie algebras in [13]. Note that the cohomology given there has some restrictions: the second cohomology group can only control deformations of the multiplication, and it can not be applied to study simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. The main purpose of this paper is to define a new type of cohomology of Hom-pre-Lie algebras which is richer than the previous one. The obtained cohomology is called the full cohomology and allows to control simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. This type of cohomology was established for Hom-associative algebras and Hom-Lie algebras in [24,25], and called respectively $ \alpha $-type Hochschild cohomology and $ \alpha $-type Chevalley-Eilenberg cohomology. See [26,27,28] for more studies on deformations and extensions of Hom-Lie algebras.

    The paper is organized as follows. In Section 2, first we recall some basics of Hom-Lie algebras, Hom-pre-Lie algebras and representations, and then provide our main result defining the full cohomology of a Hom-pre-Lie algebra with coefficients in a given representation. In Section 3, we study one parameter formal deformations of a Hom-pre-Lie algebra, where both the defining multiplication and homomorphism are deformed, using formal power series. We show that the full cohomology of Hom-pre-Lie algebras controls these simultaneous deformations. Moreover, a relationship between deformations of a Hom-pre-Lie algebra and deformations of its sub-adjacent Lie algebra is established. Section 4 deals with abelian extensions of Hom-pre-Lie algebras. We show that the full cohomology fits perfectly and its second cohomology group classifies abelian extensions of a Hom-pre-Lie algebra by a given representation. The proof of the key Lemma to show that the four operators define a cochain complex is lengthy and it is given in the Appendix.

    In this section, first we recall some basic facts about Hom-Lie algebras and Hom-pre-Lie algebras. Then we introduce the full cohomology of Hom-pre-Lie algebras, which will be used to classify infinitesimal deformations and abelian extensions of Hom-pre-Lie algebras.

    Definition 2.1. (see [7]) A Hom-Lie algebra is a triple $ (\mathfrak g, [\cdot, \cdot]_{ \mathfrak g}, \phi_{ \mathfrak g}) $ consisting of a vector space $ \mathfrak g $, a skew-symmetric bilinear map $ [\cdot, \cdot]_{ \mathfrak g}:\wedge^2 \mathfrak g\longrightarrow \mathfrak g $ and a homomorphism $ \phi_{ \mathfrak g}: \mathfrak g\longrightarrow \mathfrak g $, satisfying $ \phi_{ \mathfrak g}[x, y] = [\phi_{ \mathfrak g}(x), \phi_{ \mathfrak g}(y)] $ and

    $ [ϕg(x),[y,z]g]g+[ϕg(y),[z,x]g]g+[ϕg(z),[x,y]g]g=0,x,y,zg.
    $
    (2.1)

    A Hom-Lie algebra $ (\mathfrak g, [\cdot, \cdot]_{ \mathfrak g}, \phi_{ \mathfrak g}) $ is said to be regular if $ \phi_{ \mathfrak g} $ is invertible.

    Definition 2.2. (see [29]) A representation of a Hom-Lie algebra $ (\mathfrak g, [\cdot, \cdot]_{ \mathfrak g}, \phi_{ \mathfrak g}) $ on a vector space $ V $ with respect to $ \beta\in \mathfrak {gl}(V) $ is a linear map $ \rho: \mathfrak g\longrightarrow \mathfrak {gl}(V) $, such that for all $ x, y\in \mathfrak g $, the following equalities are satisfied:

    $ ρ(ϕg(x))β=βρ(x),
    $
    (2.2)
    $ ρ([x,y]g)β=ρ(ϕg(x))ρ(y)ρ(ϕg(y))ρ(x).
    $
    (2.3)

    We denote a representation of a Hom-Lie algebra $ (\mathfrak g, [\cdot, \cdot]_{ \mathfrak g}, \phi_{ \mathfrak g}) $ by a triple $ (V, \beta, \rho) $.

    Definition 2.3. (see [9]) A Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ is a vector space $ A $ equipped with a bilinear product $ \cdot:A\otimes A\longrightarrow A $, and $ \alpha\in \mathfrak {gl}(A) $, such that for all $ x, y, z\in A $, $ \alpha(x \cdot y) = \alpha(x)\cdot \alpha(y) $ and the following equality is satisfied:

    $ (xy)α(z)α(x)(yz)=(yx)α(z)α(y)(xz).
    $
    (2.4)

    A Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ is said to be regular if $ \alpha $ is invertible.

    Let $ (A, \cdot, \alpha) $ be a Hom-pre-Lie algebra. The commutator $ [x, y]_C = x\cdot y-y\cdot x $ defines a Hom-Lie algebra $ (A, [\cdot, \cdot]_C, \alpha) $, which is denoted by $ A^C $ and called the sub-adjacent Hom-Lie algebra of $ (A, \cdot, \alpha) $.

    Definition 2.4. (see [13]) A morphism from a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ to a Hom-pre-Lie algebra $ (A', \cdot', \alpha') $ is a linear map $ f:A\longrightarrow A' $ such that for all $ x, y\in A $, the following equalities are satisfied:

    $ f(xy)=f(x)f(y),x,yA,
    $
    (2.5)
    $ fα=αf.
    $
    (2.6)

    Definition 2.5. (see [17]) A representation of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ on a vector space $ V $ with respect to $ \beta\in \mathfrak {gl}(V) $ consists of a pair $ (\rho, \mu) $, where $ \rho:A\longrightarrow \mathfrak {gl}(V) $ is a representation of the sub-adjacent Hom-Lie algebra $ A^C $ on $ V $ with respect to $ \beta\in \mathfrak {gl}(V) $, and $ \mu:A\longrightarrow \mathfrak {gl}(V) $ is a linear map, satisfying, for all $ x, y\in A $:

    $ βμ(x)=μ(α(x))β,
    $
    (2.7)
    $ μ(α(y))μ(x)μ(xy)β=μ(α(y))ρ(x)ρ(α(x))μ(y).
    $
    (2.8)

    We denote a representation of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by a quadruple $ (V, \beta, \rho, \mu) $. Furthermore, Let $ L, R:A\longrightarrow \mathfrak {gl}(A) $ be linear maps, where $ L_xy = x\cdot y, R_xy = y\cdot x $. Then $ (A, \alpha, L, R) $ is also a representation, which we call the regular representation.

    Let $ (A, \cdot, \alpha) $ be a Hom-pre-Lie algebra. In the sequel, we will also denote the Hom-pre-Lie algebra multiplication $ \cdot $ by $ \omega $.

    Let $ (V, \beta, \rho, \mu) $ be a representation of a Hom-pre-Lie algebra $ (A, \omega, \alpha) $. We define $ {\mathcal{C}}^n_\omega(A; V) $ and $ {\mathcal{C}}^n_\alpha(A; V) $ respectively by

    $ {\mathcal{C}}^n_\omega(A;V) = \mathrm{Hom}(\wedge^{n-1} A\otimes A, V), \quad {\mathcal{C}}^n_\alpha(A;V) = \mathrm{Hom}(\wedge^{n-2} A\otimes A, V), \quad \forall n\geq 2. $

    Define the set of cochains $ \tilde{ {\mathcal{C}}}^n(A; V) $ by

    $ {˜Cn(A;V)=Cnω(A;V)Cnα(A;V),n2,˜C1(A;V)=Hom(A,V).
    $
    (2.9)

    For all $ (\varphi, \psi) \in \tilde{ {\mathcal{C}}}^n(A; V), x_1, \dots, x_{n+1}\in A $, we define $ \partial_{\omega\omega}: {\mathcal{C}}^n_\omega(A; V)\longrightarrow {\mathcal{C}}^{n+1}_\omega(A; V) $ by

    $ (ωωφ)(x1,,xn+1)=ni=1(1)i+1ρ(αn1(xi))φ(x1,,^xi,,xn+1)+ni=1(1)i+1μ(αn1(xn+1))φ(x1,,^xi,,xn,xi)ni=1(1)i+1φ(α(x1),,^α(xi),α(xn),xixn+1)+1i<jn(1)i+jφ([xi,xj]C,α(x1),,^α(xi),,^α(xj),,α(xn+1)),
    $

    where the hat corresponds to deleting the element, define $ \partial_{\alpha\alpha}: {\mathcal{C}}^n_\alpha(A; V)\longrightarrow {\mathcal{C}}^{n+1}_\alpha(A; V) $ by

    $ (ααψ)(x1,,xn)=n1i=1(1)iρ(αn1(xi))ψ(x1,,^xi,,xn)+n1i=1(1)iμ(αn1(xn))ψ(x1,,^xi,,xn1,xi)n1i=1(1)iψ(α(x1),,^α(xi),,α(xn1),xixn)+1i<jn1(1)i+j1ψ([xi,xj]C,α(x1),,^α(xi),,^α(xj),,α(xn)),
    $

    define $ \partial_{\omega\alpha}: {\mathcal{C}}^n_\omega(A; V)\longrightarrow {\mathcal{C}}^{n+1}_\alpha(A; V) $ by

    $ (ωαφ)(x1,,xn)=βφ(x1,,xn)φ(α(x1),,α(xn)),
    $

    and define $ \partial_{\alpha\omega}: {\mathcal{C}}^n_\alpha(A; V)\longrightarrow {\mathcal{C}}^{n+1}_\omega(A; V) $ by

    $ (αωψ)(x1,,xn+1)=1i<jn(1)i+jρ([αn2(xi),αn2(xj)]C)ψ(x1,,^xi,,^xj,,xn+1)+1i<jn(1)i+jμ(αn2(xi)αn2(xn+1))ψ(x1,,^xi,,^xj,,xn,xj)1i<jn(1)i+jμ(αn2(xj)αn2(xn+1))ψ(x1,,^xi,,^xj,,xn,xi).
    $

    Define the operator $ \tilde{\partial}:\tilde{ {\mathcal{C}}}^n(A; V)\longrightarrow \tilde{ {\mathcal{C}}}^{n+1}(A; V) $ by

    $ ˜(φ,ψ)=(ωωφ+αωψ,ωαφ+ααψ),φCnω(A;V),ψCnα(A;V),n2,
    $
    (2.10)
    $ ˜(φ)=(ωωφ,ωαφ),φHom(A,V).
    $
    (2.11)

    The following diagram will explain the above operators:

    Lemma 2.6. With the above notations, we have

    $ ωωωω+αωωα=0,
    $
    (2.12)
    $ ωωαω+αωαα=0,
    $
    (2.13)
    $ ωαωω+ααωα=0,
    $
    (2.14)
    $ ωααω+αααα=0.
    $
    (2.15)

    Proof. The proof is given in the Appendix.

    Theorem 2.7. The operator $ \tilde{\partial}:\tilde{C}^n(A; V)\longrightarrow \tilde{C}^{n+1}(A; V) $ defined as above satisfies $ \tilde{\partial}\circ\tilde{\partial} = 0 $.

    Proof. When $ n\geq 2 $, for all $ (\varphi, \psi)\in \tilde{ {\mathcal{C}}}^n(A; V) $, by (2.10) and Lemma 2.6, we have

    $ ˜˜(φ,ψ)=˜(ωωφ+αωψ,ωαφ+ααψ)=(ωωωωφ+ωωαωψ+αωωαφ+αωααψ,ωαωωφ+ωααωψ+ααωαφ+ααααψ)=0.
    $

    When $ n = 1 $, for all $ \varphi \in \mathrm{Hom}(A, V) $, by (2.11) and Lemma 2.6, we have

    $ ˜˜(φ)=˜(ωωφ,ωαφ)=(ωωωωφ+αωωαφ,ωαωωφ+ααωαφ)=0.
    $

    This finishes the proof.

    We denote the set of closed $ n $-cochains by $ \tilde{Z}^n(A; V) $ and the set of exact $ n $-cochains by $ \tilde{B}^n(A; V) $. We denote by $ \tilde{H}^n(A; V) = \tilde{Z}^n(A; V)/\tilde{B}^n(A; V) $ the corresponding cohomology groups.

    Definition 2.8. Let $ (V, \beta, \rho, \mu) $ be a representation of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $. The cohomology of the cochain complex $ (\oplus_{n = 1}^\infty\tilde{C}^n(A; V), \partial) $ is called the full cohomology of the Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ with coefficients in the representation $ (V, \beta, \rho, \mu) $.

    We use $ \tilde{\partial}_{ \mathrm{reg}} $ to denote the coboundary operator of the Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ with coefficients in the regular representation. The corresponding cohomology group will be denoted by $ \tilde{H}^n(A; A) $.

    Remark 2.9. Compared with the cohomology theory of Hom-pre-Lie algebras studied in [13], the above full cohomology contains more informations. In the next section, we will see that the second cohomology group can control simultaneous deformations of the multiplication and the homomorphism in a Hom-pre-Lie algebra.

    In this section, we study formal deformations of Hom-pre-Lie algebras using the cohomology theory established in the last section. We show that the infinitesimal of a formal deformation is a 2-cocycle and depends only on its cohomology class. Moreover, if the cohomology group $ \tilde{H}^2(A; A) $ is trivial, then the Hom-pre-Lie algebra is rigid.

    Definition 3.1. Let $ (A, \omega, \alpha) $ be a Hom-pre-Lie algebra, $ \omega_t = \omega+\sum_{i = 1}^{+\infty} \omega_it^i:A[[t]]\otimes A[[t]]\longrightarrow A[[t]] $ be a $ \mathbb K[[t]] $-bilinear map and $ \alpha_t = \alpha+\sum_{i = 1}^{+\infty} \alpha_it^i:A[[t]]\longrightarrow A[[t]] $ be a $ \mathbb K[[t]] $-linear map, where $ \omega_i:A\otimes A\longrightarrow A $ and $ \alpha_i:A\longrightarrow A $ are linear maps. If $ (A[[t]], \omega_t, \alpha_t) $ is still a Hom-pre-Lie algebra, we say that $ \{\omega_i, \alpha_i\}_{i\geq1} $ generates a $ 1 $-parameter formal deformation of a Hom-pre-Lie algebra $ (A, \omega, \alpha) $.

    If $ \{\omega_i, \alpha_i\}_{i\geq1} $ generates a $ 1 $-parameter formal deformation of a Hom-pre-Lie algebra $ (A, \omega, \alpha) $, for all $ x, y, z\in A $ and $ n = 1, 2, \dots $, we then have

    $ i+j+k=ni,j,k0ωi(ωj(x,y),αk(z))ωi(αj(x),ωk(y,z))ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=0.
    $
    (3.1)

    Moreover, we have

    $ i+j+k=n0<i,j,kn1ωi(ωj(x,y),αk(z))ωi(αj(x),ωk(y,z))ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=(ωωωn+αωαn)(x,y,z).
    $
    (3.2)

    For all $ x, y\in A $ and $ n = 1, 2, \dots $, we have

    $ i+j+k=ni,j,k0ωi(αj(x),αk(y))i+j=ni,j0αi(ωj(x,y))=0.
    $
    (3.3)

    Moreover, we have

    $ i+j+k=n0<i,j,kn1ωi(αj(x),αk(y))i+j=ni,j>0αi(ωj(x,y))=(ωαωn+αααn)(x,y).
    $
    (3.4)

    Proposition 3.2. Let $ (\omega_t = \omega+\sum_{i = 1}^{+\infty} \omega_it^i, \alpha_t = \alpha+\sum_{i = 1}^{+\infty} \alpha_it^i) $ be a $ 1 $-parameter formal deformation of a Hom-pre-Lie algebra $ (A, \omega, \alpha) $. Then $ (\omega_1, \alpha_1) $ is a $ 2 $-cocycle of the Hom-pre-Lie algebra $ (A, \omega, \alpha) $ with coefficients in the regular representation.

    Proof. When $ n = 1 $, by (3.1), we have

    $ 0=(xy)α1(z)+ω1(x,y)α(z)+ω1(xy,α(z))α(x)ω1(y,z)α1(x)(yz)ω1(α(x),yz)(yx)α1(z)ω1(y,x)α(z)ω1(yx,α(z))+α(y)ω1(x,z)+α1(y)(xz)+ω1(α(y),xz)=(ωωω1+αωα1)(x,y,z),
    $

    and by (3.3), we have

    $ 0=ω1(α(x),α(y))+α1(x)α(y)+α(x)α1(y)α(ω1(x,y))α1(xy)=(ωαω1+ααα1)(x,y),
    $

    which implies that $ \tilde{\partial}_{ \mathrm{reg}}(\omega_1, \alpha_1) = 0 $. Thus, $ (\omega_1, \alpha_1) $ is a $ 2 $-cocycle of the Hom-pre-Lie algebra $ (A, \omega, \alpha) $.

    Definition 3.3. The $ 2 $-cocycle $ (\omega_1, \alpha_1) $ is called the infinitesimal of the $ 1 $-parameter formal deformation $ (A[[t]], \omega_t, \alpha_t) $ of the Hom-pre-Lie algebra $ (A, \omega, \alpha) $.

    Definition 3.4. Let $ (\omega_t' = \omega+\sum_{i = 1}^{+\infty} \omega_i't^i, \alpha_t' = \alpha+\sum_{i = 1}^{+\infty} \alpha_i't^i) $ and $ (\omega_t = \omega+\sum_{i = 1}^{+\infty} \omega_it^i, \alpha_t = \alpha+\sum_{i = 1}^{+\infty} \alpha_it^i) $ be two $ 1 $-parameter formal deformations of a Hom-pre-Lie algebra $ (A, \omega, \alpha) $. A formal isomorphism from $ (A[[t]], \omega_t', \alpha_t') $ to $ (A[[t]], \omega_t, \alpha_t) $ is a power series $ \Phi_t = \sum_{i = 0}^{+\infty} \varphi_it^i $, where $ \varphi_i:A\longrightarrow A $ are linear maps with $ \varphi_0 = { {\rm{Id}}} $, such that

    $ Φtωt=ωt(Φt×Φt),
    $
    (3.5)
    $ αtΦt=Φtαt.
    $
    (3.6)

    Two $ 1 $-parameter formal deformations $ (A[[t]], \omega_t', \alpha_t') $ and $ (A[[t]], \omega_t, \alpha_t) $ are said to be equivalent if there exists a formal isomorphism $ \Phi_t = \sum_{i = 0}^{+\infty} \varphi_it^i $ from $ (A[[t]], \omega_t', \alpha_t') $ to $ (A[[t]], \omega_t, \alpha_t) $.

    Theorem 3.5. Let $ (A, \omega, \alpha) $ be a Hom-pre-Lie algebra.If two $ 1 $-parameter formal deformations $ (\omega_t' = \omega+\sum_{i = 1}^{+\infty} \omega_i't^i, \alpha_t' = \alpha+\sum_{i = 1}^{+\infty} \alpha_i't^i) $ and $ (\omega_t = \omega+\sum_{i = 1}^{+\infty} \omega_it^i, \alpha_t = \alpha+\sum_{i = 1}^{+\infty} \alpha_it^i) $ are equivalent, then there infinitesimals $ (\omega_1', \alpha_1') $ and $ (\omega_1, \alpha_1) $ are in the same cohomology class of $ \tilde{H}^2(A; A) $.

    Proof. Let $ (\omega_t', \alpha_t') $ and $ (\omega_t, \alpha_t) $ be two $ 1 $-parameter formal deformations. By Proposition 3.2, we have $ (\omega_1', \alpha_1') $ and $ (\omega_1, \alpha_1) \in \tilde{Z}^2(A; A) $. Let $ \Phi_t = \sum_{i = 0}^{+\infty} \varphi_it^i $ be the formal isomorphism. Then for all $ x, y\in A $, we have

    $ ωt(x,y)=Φ1tωt(Φt(x),Φt(y))=(Idφ1t+)ωt(x+φ1(x)t+,y+φ1(y)t+)=(Idφ1t+)(xy+(xφ1(y)+φ1(x)y+ω1(x,y))t+)=xy+(xφ1(y)+φ1(x)y+ω1(x,y)φ1(xy))t+.
    $

    Thus, we have

    $ ω1(x,y)ω1(x,y)=xφ1(y)+φ1(x)yφ1(xy)=ωωφ1(x,y),
    $

    which implies that $ \omega_1'-\omega_1 = \partial_{\omega\omega}\varphi_1. $

    For all $ x\in A $, we have

    $ αt(x)=Φ1tαt(Φt(x))=(Idφ1t+)αt(x+φ1(x)t+)=(Idφ1t+)(α(x)+(α(φ1(x))+α1(x))t+)=α(x)+(α(φ1(x))+α1(x)φ1(α(x)))t+.
    $

    Thus, we have

    $ α1(x)α1(x)=α(φ1(x))φ1(α(x))=ωαφ1(x),
    $

    which implies that $ \alpha_1'-\alpha_1 = \partial_{\omega\alpha}\varphi_1. $

    Thus, we have $ (\omega_1'-\omega_1, \alpha_1'-\alpha_1)\in \tilde{B}^2(A; A) $. This finishes the proof.

    Definition 3.6. A $ 1 $-parameter formal deformation $ (A[[t]], \omega_t, \alpha_t) $ of a Hom-pre-Lie algebra $ (A, \omega, \alpha) $ is said to be trivial if it is equivalent to $ (A, \omega, \alpha) $, i.e. there exists $ \Phi_t = \sum_{i = 0}^{+\infty} \varphi_it^i $, where $ \varphi_i:A\longrightarrow A $ are linear maps with $ \varphi_0 = { {\rm{Id}}} $, such that

    $ Φtωt=ω(Φt×Φt),
    $
    (3.7)
    $ αΦt=Φtαt.
    $
    (3.8)

    Definition 3.7. Let $ (A, \omega, \alpha) $ be a Hom-pre-Lie algebra. If all $ 1 $-parameter formal deformations are trivial, we say that $ (A, \omega, \alpha) $ is rigid.

    Theorem 3.8. Let $ (A, \omega, \alpha) $ be a Hom-pre-Lie algebra. If $ \tilde{H}^2(A; A) = 0 $, then $ (A, \omega, \alpha) $ is rigid.

    Proof. Let $ (\omega_t = \omega+\sum_{i = 1}^{+\infty} \omega_it^i, \alpha_t = \alpha+\sum_{i = 1}^{+\infty} \alpha_it^i) $ be a $ 1 $-parameter formal deformation and assume that $ n\geq1 $ is the minimal number such that at least one of $ \omega_n $ and $ \alpha_n $ is not zero. By (3.2), (3.4) and $ \tilde{H}^2(A; A) = 0 $, we have $ (\omega_n, \alpha_n)\in \tilde{B}^2(A; A) $. Thus, there exists $ \varphi_n \in \tilde{ {\mathcal{C}}}^1(A; A) $ such that $ \omega_n = \partial_{\omega\omega}(-\varphi_n) $ and $ \alpha_n = \partial_{\omega\alpha}(-\varphi_n) $. Let $ \Phi_t = { {\rm{Id}}}+\varphi_nt^n $ and define a new formal deformation $ (\omega_t', \alpha_t') $ by $ \omega_t'(x, y) = \Phi_t^{-1}\circ\omega_t(\Phi_t(x), \Phi_t(y)) $ and $ \alpha_t'(x) = \Phi_t^{-1}\circ\alpha_t(\Phi_t(x)) $. Then $ (\omega_t', \alpha_t') $ and $ (\omega_t, \alpha_t) $ are equivalent. By a straightforward computation, for all $ x, y\in A $, we have

    $ ωt(x,y)=Φ1tωt(Φt(x),Φt(y))=(Idφntn+)ωt(x+φn(x)tn,y+φn(y)tn)=(Idφntn+)(xy+(xφn(y)+φn(x)y+ωn(x,y))tn+)=xy+(xφn(y)+φn(x)y+ωn(x,y)φn(xy))tn+.
    $

    Thus, we have $ \omega_1' = \omega_2' = \dots = \omega_{n-1}' = 0 $. Moreover, we obtain

    $ ωn(x,y)=φn(x)y+xφn(y)+ωn(x,y)φn(xy)=ωωφn(x,y)+ωn(x,y)=0.
    $

    For all $ x\in A $, we get

    $ αt(x)=Φ1tαt(Φt(x))=(Idφntn+)αt(x+φn(x)tn)=(Idφ1tn+)(α(x)+(α(φn(x))+αn(x))tn+)=α(x)+(α(φn(x))+αn(x)φn(α(x)))tn+.
    $

    Thus, $ \alpha_1' = \alpha_2' = \dots = \alpha_{n-1}' = 0 $, and

    $ αn(x,y)=α(φn(x))+αn(x)φn(α(x))=ωαφn(x)+αn(x)=0.
    $

    By repeating this process, we obtain that $ (A[[t]], \omega_t, \alpha_t) $ is equivalent to $ (A, \omega, \alpha) $. The proof is finished.

    At the end of this section, we recall $ 1 $-parameter formal deformations of Hom-Lie algebras, and establish the relation between $ 1 $-parameter formal deformations of Hom-pre-Lie algebras and $ 1 $-parameter formal deformations of Hom-Lie algebras.

    Definition 3.9. (see [25]) Let $ (\mathfrak g, [\cdot, \cdot]_{ \mathfrak g}, \phi_{ \mathfrak g}) $ be a Hom-Lie algebra, $ [\cdot, \cdot]_t = [\cdot, \cdot]_{ \mathfrak g}+\sum_{i = 1}^{+\infty} \bar{\omega}_it^i: \mathfrak g[[t]]\wedge \mathfrak g[[t]]\longrightarrow \mathfrak g[[t]] $ be a $ \mathbb K[[t]] $-bilinear map and $ \phi_t = \phi_{ \mathfrak g}+\sum_{i = 1}^{+\infty} \phi_it^i: \mathfrak g[[t]]\longrightarrow \mathfrak g[[t]] $ be a $ \mathbb K[[t]] $-linear map, where $ \bar{\omega}_i: \mathfrak g\otimes \mathfrak g\longrightarrow \mathfrak g $ and $ \phi_i: \mathfrak g\longrightarrow \mathfrak g $ are linear maps. If $ (\mathfrak g[[t]], [\cdot, \cdot]_t, \phi_t) $ is still a Hom-Lie algebra, we say that $ \{\bar{\omega}_i, \phi_i\}_{i\geq1} $ generates a $ 1 $-parameter formal deformation of a Hom-Lie algebra $ (\mathfrak g, [\cdot, \cdot]_{ \mathfrak g}, \phi_{ \mathfrak g}) $.

    Proposition 3.10. Let $ (\omega_t = \omega+\sum_{i = 1}^{+\infty} \omega_it^i, \alpha_t = \alpha+\sum_{i = 1}^{+\infty} \alpha_it^i) $ be a $ 1 $-parameter formal deformation of a Hom-pre-Lie algebra $ (A, \omega, \alpha) $, then

    $ \{\omega_i-\omega_i\circ \sigma, \alpha_i\}_{i\geq1} $

    generates a $ 1 $-parameter formal deformation of the sub-adjacent Hom-Lie algebra $ A^C $, where $ \sigma:A\otimes A\longrightarrow A\otimes A $ is the flip operator defined by $ \sigma(x\otimes y) = y\otimes x $ for all $ x, y\in A $.

    Proof. Let $ (A[[t]], \omega_t, \alpha_t) $ be a $ 1 $-parameter formal deformation of a Hom-pre-Lie algebra $ (A, \omega, \alpha) $. For all $ x, y\in A $, we have

    $ ωt(x,y)ωt(y,x)=ω(x,y)ω(y,x)++i=1ωi(x,y)ti+i=1ωi(y,x)ti=[x,y]C++i=1(ωiωiσ)(x,y)ti,
    $

    and

    $ αt(ωt(x,y)ωt(y,x))=ωt(αt(x),αt(y))ωt(αt(y),αt(x)).
    $

    Therefore, $ \{\omega_i-\omega_i\circ \sigma, \alpha_i\}_{i\geq1} $ generates a $ 1 $-parameter formal deformation of the sub-adjacent Hom-Lie algebra $ A^C $.

    In this section, we study abelian extensions of Hom-pre-Lie algebras using the cohomological approach. We show that abelian extensions are classified by the cohomology group $ \tilde{H}^2(A; V) $.

    Definition 4.1. Let $ (A, \cdot, \alpha) $ and $ (V, \cdot_V, \beta) $ be two Hom-pre-Lie algebras. An extension of $ (A, \cdot, \alpha) $ by $ (V, \cdot_V, \beta) $ is a short exact sequence of Hom-pre-Lie algebra morphisms:

    where $ (\hat{A}, \cdot_{\hat{A}}, \alpha_{\hat{A}}) $ is a Hom-pre-Lie algebra.

    It is called an abelian extension if $ (V, \cdot_V, \beta) $ is an abelian Hom-pre-Lie algebra, i.e. for all $ u, v\in V, u\cdot_V v = 0 $.

    Definition 4.2. A section of an extension $ (\hat{A}, \cdot_{\hat{A}}, \alpha_{\hat{A}}) $ of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \cdot_V, \beta) $ is a linear map $ s:A\longrightarrow \hat{A} $ such that $ p\circ s = {\rm{Id}}_A $.

    Let $ (\hat{A}, \cdot_{\hat{A}}, \alpha_{\hat{A}}) $ be an abelian extension of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \beta) $ and $ s:A\longrightarrow \hat{A} $ a section. For all $ x, y\in A $, define linear maps $ \theta:A\otimes A\longrightarrow V $ and $ \xi:A\longrightarrow V $ respectively by

    $ θ(x,y)=s(x)ˆAs(y)s(xy),
    $
    (4.1)
    $ ξ(x)=αˆA(s(x))s(α(x)).
    $
    (4.2)

    And for all $ x, y\in A, u\in V $, define $ \rho, \mu:A\longrightarrow \mathfrak {gl}(V) $ respectively by

    $ ρ(x)(u)=s(x)ˆAu,
    $
    (4.3)
    $ μ(x)(u)=uˆAs(x).
    $
    (4.4)

    Obviously, $ \hat{A} $ is isomorphic to $ A\oplus V $ as vector spaces. Transfer the Hom-pre-Lie algebra structure on $ \hat{A} $ to that on $ A\oplus V $, we obtain a Hom-pre-Lie algebra $ (A\oplus V, \diamond, \phi) $, where $ \diamond $ and $ \phi $ are given by

    $ (x+u)(y+v)=xy+θ(x,y)+ρ(x)(v)+μ(y)(u),x,yA,u,vV,
    $
    (4.5)
    $ ϕ(x+u)=α(x)+ξ(x)+β(u),xA,uV.
    $
    (4.6)

    Theorem 4.3. With the above notations, we have

    ${\rm{(i) }}$ $ (V, \beta, \rho, \mu) $ is a representation of the Hom-pre-Lie algebra $ (A, \cdot, \alpha) $,

    $ {\rm{(ii)}} $ $ (\theta, \xi) $ is a $ 2 $-cocycle of the Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ with coefficients in the representation $ (V, \beta, \rho, \mu) $.

    Proof. For all $ x\in A $, $ v\in V $, by the definition of a Hom-pre-Lie algebra, we have

    $ ϕ(xv)ϕ(x)ϕ(v)=β(ρ(x)(v))ρ(α(x))β(v)=0,
    $

    which implies that

    $ βρ(x)=ρ(α(x))β.
    $
    (4.7)

    Similarly, we have

    $ βμ(x)=μ(α(x))β.
    $
    (4.8)

    For all $ x, y\in A $, $ v\in V $, by the definition of a Hom-pre-Lie algebra, we have

    $ (xy)ϕ(v)ϕ(x)(yv)(yx)ϕ(v)+ϕ(y)(xv)=(xy+θ(x,y))β(v)(α(x)+ξ(x))ρ(y)(v)(yx+θ(y,x))β(v)+(α(y)+ξ(y))ρ(x)(v)=ρ(xy)β(v)ρ(α(x))ρ(y)(v)ρ(yx)β(v)+ρ(α(y))ρ(x)(v)=ρ([x,y]C)β(v)ρ(α(x))ρ(y)(v)+ρ(α(y))ρ(x)(v)=0,
    $

    which implies that

    $ ρ([x,y]C)β=ρ(α(x))ρ(y)ρ(α(y))ρ(x).
    $
    (4.9)

    Similarly, we have

    $ μ(α(y))μ(x)μ(xy)β=μ(α(y))ρ(x)ρ(α(x))μ(y).
    $
    (4.10)

    By (4.7), (4.8), (4.9), (4.10), we obtain that $ (V, \beta, \rho, \mu) $ is a representation.

    For all $ x, y\in A $, by the definition of a Hom-pre-Lie algebra, we have

    $ ϕ(xy)ϕ(x)ϕ(y)=ϕ(xy+θ(x,y))α(x)α(y)θ(α(x),α(y))ρ(α(x))ξ(y)μ(α(y))ξ(x)=ξ(xy)+β(θ(x,y))θ(α(x),α(y))ρ(α(x))ξ(y)μ(α(y))ξ(x)=ωαθ(x,y)+ααξ(x,y)=0,
    $

    which implies that

    $ ωαθ+ααξ=0.
    $
    (4.11)

    For all $ x, y, z\in A $, by the definition of a Hom-pre-Lie algebra, we have

    $ (xy)ϕ(z)ϕ(x)(yz)(yx)ϕ(z)+ϕ(y)(xz)=(xy+θ(x,y))(α(z)+ξ(z))(α(x)+ξ(x))(yz+θ(y,z))(yx+θ(y,x))(α(z)+ξ(z))+(α(y)+ξ(y))(xz+θ(x,z))=θ(xy,α(z))+μ(α(z))θ(x,y)θ(α(x),yz)ρ(α(x))θ(y,z)θ(yx,α(z))μ(α(z))θ(y,x)+θ(α(y),xz)+ρ(α(y))θ(x,z)+ρ(xy)ξ(z)μ(yz)ξ(x)ρ(yx)ξ(z)+μ(xz)ξ(y)=ωωθ(x,y,z)αωξ(x,y,z)=0,
    $

    which implies that

    $ ωωθ+αωξ=0.
    $
    (4.12)

    By Eqs (4.11) and (4.12), we obtain that $ \tilde{\partial}(\theta, \xi) = 0 $, which implies that $ (\theta, \xi) $ is a $ 2 $-cocycle of the Hom-pre-Lie algebra $ (A, \cdot, \alpha) $. The proof is finished.

    Definition 4.4. Let $ (\hat{A_1}, \cdot_{\hat{A_1}}, \alpha_{\hat{A_1}}) $ and $ (\hat{A_2}, \cdot_{\hat{A_2}}, \alpha_{\hat{A_2}}) $ be two abelian extensions of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \beta) $. They are said to be isomorphic if there exists a Hom-pre-Lie algebra isomorphism $ \zeta:(\hat{A_1}, \cdot_{\hat{A_1}}, \alpha_{\hat{A_1}})\longrightarrow (\hat{A_2}, \cdot_{\hat{A_2}}, \alpha_{\hat{A_2}}) $ such that the following diagram is commutative:

    Proposition 4.5. With the above notations, we have

    $ {\rm(i)} $ Two different sections of an abelian extension of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \beta) $ give rise to the same representation of $ (A, \cdot, \alpha) $,

    $ {\rm(ii)} $ Isomorphic abelian extensions give rise to the same representation of $ (A, \cdot, \alpha) $.

    Proof. $ {\rm(i)} $ Let $ (\hat{A}, \cdot_{\hat{A}}, \alpha_{\hat{A}}) $ be an abelian extension of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \beta) $. Choosing two different sections $ s_1, s_2:A\longrightarrow \hat{A} $, by equations (4.3), (4.4) and Theorem 4.3, we obtain two representations $ (V, \beta, \rho_1, \mu_1) $ and $ (V, \beta, \rho_2, \mu_2) $. Define $ \varphi:A\longrightarrow V $ by $ \varphi(x) = s_1(x)-s_2(x) $. Then for all $ x\in A $, we have

    $ ρ1(x)(u)ρ2(x)(u)=s1(x)ˆAus2(x)ˆAu=(φ(x)+s2(x))ˆAus2(x)ˆAu=φ(x)ˆAu=0,
    $

    which implies that $ \rho_1 = \rho_2 $. Similarly, we have $ \mu_1 = \mu_2 $. This finishes the proof.

    $ {\rm(ii)} $ Let $ (\hat{A_1}, \cdot_{\hat{A_1}}, \alpha_{\hat{A_1}}) $ and $ (\hat{A_2}, \cdot_{\hat{A_2}}, \alpha_{\hat{A_2}}) $ are two isomorphic abelian extensions of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \beta) $. Let $ s_1:A_1\longrightarrow \hat{A_1} $ and $ s_2:A_2\longrightarrow \hat{A_2} $ be two sections of $ (\hat{A_1}, \cdot_{\hat{A_1}}, \alpha_{\hat{A_1}}) $ and $ (\hat{A_2}, \cdot_{\hat{A_2}}, \alpha_{\hat{A_2}}) $ respectively. By equations (4.3), (4.4) and Theorem 4.3, we obtain that $ (V, \beta, \rho_1, \mu_1) $ and $ (V, \beta, \rho_2, \mu_2) $ are their representations respectively. Define $ s'_1:A_1\longrightarrow \hat{A_1} $ by $ s'_1 = \zeta^{-1}\circ s_2 $. Since $ \zeta:(\hat{A_1}, \cdot_{\hat{A_1}}, \alpha_{\hat{A_1}})\longrightarrow (\hat{A_2}, \cdot_{\hat{A_2}}, \alpha_{\hat{A_2}}) $ is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4, by $ p_2\circ \zeta = p_1 $, we have

    $ p1s1=p2ζζ1s2=IdA.
    $
    (4.13)

    Thus, we obtain that $ s'_1 $ is a section of $ (\hat{A_1}, \cdot_{\hat{A_1}}, \alpha_{\hat{A_1}}) $. For all $ x\in A, u\in V $, we have

    $ ρ1(x)(u)=s1(x)^A1u=(ζ1s2)(x)^A1u=ζ1(s2(x)^A2u)=ρ2(x)(u),
    $

    which implies that $ \rho_1 = \rho_2 $. Similarly, we have $ \mu_1 = \mu_2 $. This finishes the proof.

    So in the sequel, we fix a representation $ (V, \beta, \rho, \mu) $ of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ and consider abelian extensions that induce the given representation.

    Theorem 4.6. Abelian extensions of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \beta) $ are classified by $ \tilde{H}^2(A; V) $.

    Proof. Let $ (\hat{A}, \cdot_{\hat{A}}, \alpha_{\hat{A}}) $ be an abelian extension of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \beta) $. Choosing a section $ s:A\longrightarrow \hat{A} $, by Theorem 4.3, we obtain that $ (\theta, \xi)\in \tilde{Z}^2(A; V) $. Now we show that the cohomological class of $ (\theta, \xi) $ does not depend on the choice of sections. In fact, let $ s_1 $ and $ s_2 $ be two different sections. Define $ \varphi:A\longrightarrow V $ by $ \varphi(x) = s_1(x)-s_2(x) $. Then for all $ x, y\in A $, we have

    $ θ1(x,y)=s1(x)ˆAs1(y)s1(xy)=(s2(x)+φ(x))ˆA(s2(y)+φ(y))s2(xy)φ(xy)=s2(x)ˆAs2(y)+ρ(x)φ(y)+μ(y)φ(x)s2(xy)φ(xy)=θ2(x,y)+ωωφ(x,y),
    $

    which implies that $ \theta_1-\theta_2 = \partial_{\omega\omega}\varphi $.

    For all $ x\in A $, we have

    $ ξ1(x)=αˆA(s1(x))s1(α(x))=αˆA(φ(x)+s2(x))φ(α(x))s2(α(x))=αˆA(φ(x))+αˆA(s2(x))φ(α(x))s2(α(x))=ξ2(x)+β(φ(x))φ(α(x)),
    $

    which implies that $ \xi_1-\xi_2 = \partial_{\omega\alpha}\varphi $.

    Therefore, we obtain that $ (\theta_1-\theta_2, \xi_1-\xi_2)\in \tilde{B}^2(A; V) $, $ (\theta_1, \xi_1) $ and $ (\theta_2, \xi_2) $ are in the same cohomological class.

    Now we prove that isomorphic abelian extensions give rise to the same element in $ \tilde{H}^2(A; V) $. Assume that $ (\hat{A_1}, \cdot_{\hat{A_1}}, \alpha_{\hat{A_1}}) $ and $ (\hat{A_2}, \cdot_{\hat{A_2}}, \alpha_{\hat{A_2}}) $ are two isomorphic abelian extensions of a Hom-pre-Lie algebra $ (A, \cdot, \alpha) $ by $ (V, \beta) $, and $ \zeta:(\hat{A_1}, \cdot_{\hat{A_1}}, \alpha_{\hat{A_1}})\longrightarrow (\hat{A_2}, \cdot_{\hat{A_2}}, \alpha_{\hat{A_2}}) $ is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4. Assume that $ s_1:A\longrightarrow \hat{A_1} $ is a section of $ \hat{A_1} $. By $ p_2\circ \zeta = p_1 $, we have

    $ p2(ζs1)=p1s1=IdA.
    $
    (4.14)

    Thus, we obtain that $ \zeta\circ s_1 $ is a section of $ \hat{A_2} $. Define $ s_2 = \zeta\circ s_1 $. Since $ \zeta $ is an isomorphism of Hom-pre-Lie algebras and $ \zeta\mid_V = {\rm{Id}}_V $, for all $ x, y\in A $, we have

    $ θ2(x,y)=s2(x)^A2s2(y)s2(xy)=(ζs1)(x)^A2(ζs1)(y)(ζs1)(xy)=ζ(s1(x)^A1s1(y)s1(xy))=θ1(x,y),
    $

    and

    $ ξ2(x)=α^A2(s2(x))s2(α(x))=α^A2(ζ(s1(x)))ζ(s1(α(x)))=ζ(α^A1(s1(x))s1(α(x)))=ξ1(x).
    $

    Thus, isomorphic abelian extensions gives rise to the same element in $ \tilde{H}^2(A; V) $.

    Conversely, given two 2-cocycles $ (\theta_1, \xi_1) $ and $ (\theta_2, \xi_2) $, by Eqs (4.5) and (4.6), we can construct two abelian extensions $ (A\oplus V, \diamond_1, \phi_1) $ and $ (A\oplus V, \diamond_2, \phi_2) $. If $ (\theta_1, \xi_1), (\theta_2, \xi_2)\in \tilde{H}^2(A; V) $, then there exists $ \varphi:A\longrightarrow V $, such that $ \theta_1 = \theta_2+\partial_{\omega\omega}\varphi $ and $ \xi_1 = \xi_2+\partial_{\omega\alpha}\varphi $. We define $ \zeta:A\oplus V\longrightarrow A\oplus V $ by

    $ ζ(x+u)=x+u+φ(x),xA,uV.
    $
    (4.15)

    For all $ x, y\in A, u, v\in V $, by $ \theta_1 = \theta_2+\partial_{\omega\omega}\varphi $, we have

    $ ζ((x+u)1(y+v))ζ(x+u)2ζ(y+v)=ζ(xy+θ1(x,y)+ρ(x)(v)+μ(y)(u))(x+u+φ(x))2(y+v+φ(y))=θ1(x,y)+φ(xy)θ2(x,y)ρ(x)φ(y)μ(y)φ(x)=θ1(x,y)θ2(x,y)ωωφ(x,y)=0,
    $
    (4.16)

    and for all $ x\in A, u\in V $, by $ \xi_1 = \xi_2+\partial_{\omega\alpha}\varphi $, we have

    $ ζϕ1(x+u)ϕ1ζ(x+u)=ζ(α(x)+ξ1(x)+β(u))ϕ2(x+u+φ(x))=ξ1(x)+φ(α(x))ξ2(x)β(φ(x))=ξ1(x)ξ2(x)ωαφ(x)=0,
    $
    (4.17)

    which implies that $ \zeta $ is a Hom-pre-Lie algebra isomorphism from $ (A\oplus V, \diamond_1, \phi_1) $ to $ (A\oplus V, \diamond_2, \phi_2) $. Moreover, it is obvious that the diagram in Definition 4.4 is commutative. This finishes the proof.

    By straightforward computations, for all $ x_1, \dots, x_{n+2}\in A $, we have

    $ ωω(ωωφ)(x1,,xn+2)=n+1i=1(1)i+1ρ(αn(xi))(ωωφ)(x1,,^xi,,xn+2)+n+1i=1(1)i+1μ(αn(xn+2))(ωωφ)(x1,,^xi,,xn+1,xi)n+1i=1(1)i+1(ωωφ)(α(x1),,^α(xi),,α(xn+1),xixn+2)+1i<jn+1(1)i+j(ωωφ)([xi,xj]C,α(x1),,^α(xi),,^α(xj),,α(xn+2))=1j<in+1(1)i+1(1)j+1ρ(αn(xi))ρ(αn1(xj))φ(x1,,^xj,,^xi,,xn+2)
    $
    (4.18)
    $ +1i<jn+1(1)i+1(1)jρ(αn(xi))ρ(αn1(xj))φ(x1,,^xi,,^xj,,xn+2)
    $
    (4.19)
    $ +1j<in+1(1)i+1(1)j+1ρ(αn(xi))μ(αn1(xn+2))φ(x1,,^xj,,^xi,,xn+1,xj)
    $
    (4.20)
    $ +1i<jn+1(1)i+1(1)jρ(αn(xi))μ(αn1(xn+2))φ(x1,,^xi,,^xj,,xn+1,xj)
    $
    (4.21)
    $ 1j<in+1(1)i+1(1)j+1ρ(αn(xi))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),xjxn+2)
    $
    (4.22)
    $ 1i<jn+1(1)i+1(1)jρ(αn(xi))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),xjxn+2)
    $
    (4.23)
    $ +\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho(\alpha^n(x_i))\varphi([x_j, x_k]_C, \alpha(x_1), \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \dots, \alpha(x_{n+2})) $ (4.24)
    $ +1j<i<kn+1(1)i+1(1)j+k1ρ(αn(xi))φ([xj,xk]C,α(x1),,^α(xj),,^α(xi),,^α(xk),,α(xn+2))
    $
    (4.25)
    $ +1i<j<kn+1(1)i+1(1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),,^α(xi),,^α(xj),,^α(xk),,α(xn+2))
    $
    (4.26)
    $ +1j<in+1(1)i+1(1)j+1μ(αn(xn+2))ρ(αn1(xj))φ(x1,,^xj,,^xi,,xn+1,xi)
    $
    (4.27)
    $ +1i<jn+1(1)i+1(1)jμ(αn(xn+2))ρ(αn1(xj))φ(x1,,^xi,,^xj,,xn+1,xi)
    $
    (4.28)
    $ +1j<in+1(1)i+1(1)j+1μ(αn(xn+2))μ(αn1(xi))φ(x1,,^xj,,^xi,,xn+1,xj)
    $
    (4.29)
    $ +1i<jn+1(1)i+1(1)jμ(αn(xn+2))μ(αn1(xi))φ(x1,,^xi,,^xj,,xn+1,xj)
    $
    (4.30)
    $ 1j<in+1(1)i+1(1)j+1μ(αn(xn+2))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),xjxi)
    $
    (4.31)
    $ 1i<jn+1(1)i+1(1)jμ(αn(xn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),xjxi)
    $
    (4.32)
    $ +1j<k<in+1(1)i+1(1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),,^α(xj),,^α(xk),
    $
    (4.33)
    $ ,^α(xi),,α(xn+1),α(xi))+1j<i<kn+1(1)i+1(1)j+k1μ(αn(xn+2))φ([xj,xk]C,α(x1),,^α(xj),,^α(xi),
    $
    (4.34)
    $ ,^α(xk),,α(xn+1),α(xi))+1i<j<kn+1(1)i+1(1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),,^α(xi),,^α(xj),
    $
    (4.35)
    $ ,^α(xk),,α(xn+1),α(xi))1j<in+1(1)i+1(1)j+1ρ(αn(xj))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),xixn+2)
    $
    (4.36)
    $ 1i<jn+1(1)i+1(1)jρ(αn(xj))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),xixn+2)
    $
    (4.37)
    $ 1j<in+1(1)i+1(1)j+1μ(αn1(xixn+2))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),α(xj))
    $
    (4.38)
    $ 1i<jn+1(1)i+1(1)jμ(αn1(xixn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),α(xj))
    $
    (4.39)
    $ +1j<in+1(1)i+1(1)j+1φ(α2(x1),,^α2(xj),,^α2(xi),,α2(xn+1),α(xj)(xixn+2))
    $
    (4.40)
    $ +1i<jn+1(1)i+1(1)jφ(α2(x1),,^α2(xi),,^α2(xj),,α2(xn+1),α(xj)(xixn+2))
    $
    (4.41)
    $ 1j<k<in+1(1)i+1(1)j+kφ([α(xj),α(xk)]C,α2(x1),,^α2(xj),,^α2(xk),,
    $
    (4.42)
    $ ^α2(xi),,α2(xn+1),α(xixn+2))1j<i<kn+1(1)i+1(1)j+k1φ([α(xj),α(xk)]C,α2(x1),,^α2(xj),,^α2(xi),,
    $
    (4.43)
    $ ^α2(xk),,α2(xn+1),α(xixn+2))1i<j<kn+1(1)i+1(1)j+kφ([α(xj),α(xk)]C,α2(x1),,^α2(xi),,^α2(xj),,
    $
    (4.44)
    $ ^α2(xk),,α2(xn+1),α(xixn+2))+1i<jn+1(1)i+jρ(αn1[xi,xj]C)φ(α(x1),,^α(xi),,^α(xj),,α(xn+2))
    $
    (4.45)
    $ +1k<i<jn+1(1)i+j(1)kρ(αn(xk)))φ([xi,xj]C,α(x1),,^α(xk),,^α(xi),,^α(xj),,α(xn+2))
    $
    (4.46)
    $ +1i<k<jn+1(1)i+j(1)k+1ρ(αn(xk)))φ([xi,xj]C,α(x1),,^α(xi),,^α(xk),,^α(xj),,α(xn+2))
    $
    (4.47)
    $ +1i<j<kn+1(1)i+j(1)kρ(αn(xk)))φ([xi,xj]C,α(x1),,^α(xi),,^α(xj),,^α(xk),,α(xn+2))
    $
    (4.48)
    $ +1k<i<jn+1(1)i+j(1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),,^α(xk),,^α(xi),,
    $
    (4.49)
    $ ^α(xj),,α(xn+1),α(xk))+1i<k<jn+1(1)i+j(1)k+1μ(αn(xn+2)))φ([xi,xj]C,α(x1),,^α(xi),,^α(xk),,
    $
    (4.50)
    $ ^α(xj),,α(xn+1),α(xk))+1i<j<kn+1(1)i+j(1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),,^α(xi),,^α(xj),,
    $
    (4.51)
    $ ^α(xk),,α(xn+1),α(xk))+1i<jn+1(1)i+jμ(αn(xn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),[xi,xj]C)
    $
    (4.52)
    $ 1k<i<jn+1(1)i+j(1)kφ(α[xi,xj]C,α2(x1),,^α2(xk),,^α2(xi),,^α2(xj),
    $
    (4.53)
    $ ,α2(xn+1),α(xk)α(xn+2))1i<k<jn+1(1)i+j(1)k+1φ(α[xi,xj]C,α2(x1),,^α2(xi),,^α2(xk),,^α2(xj),
    $
    (4.54)
    $ ,α2(xn+1),α(xk)α(xn+2))1i<j<kn+1(1)i+j(1)kφ(α[xi,xj]C,α2(x1),,^α2(xi),,^α2(xj),,^α2(xk),
    $
    (4.55)
    $ ,α2(xn+1),α(xk)α(xn+2))1i<jn+1(1)i+jφ(α2(x1),,^α2(xi),,^α2(xj),,α2(xn+1),[xi,xj]Cα(xn+2))
    $
    (4.56)
    $ +1k<l<i<jn+1(1)i+j(1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xk),,
    $
    (4.57)
    $ ^α2(xl),,^α2(xi),,^α2(xj),,α2(xn+2))+1k<i<l<jn+1(1)i+j(1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xk),,
    $
    (4.58)
    $ ^α2(xi),,^α2(xl),,^α2(xj),,α2(xn+2))+1i<k<l<jn+1(1)i+j(1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xi),,
    $
    (4.59)
    $ ^α2(xk),,^α2(xl),,^α2(xj),,α2(xn+2))+1i<j<k<ln+1(1)i+j(1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xi),,
    $
    (4.60)
    $ ^α2(xj),,^α2(xk),,^α2(xl),,α2(xn+2))+1i<k<j<ln+1(1)i+j(1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xi),,
    $
    (4.61)
    $ ^α2(xk),,^α2(xj),,^α2(xl),,α2(xn+2))+1k<i<j<ln+1(1)i+j(1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xk),,
    $
    (4.62)
    $ ^α2(xi),,^α2(xj),,^α2(xl),,α2(xn+2))+1k<i<jn+1(1)i+j(1)kφ([[xi,xj]C,α(xk)]C,α2(x1),,^α2(xk),,^α2(xi),,^α2(xj),,α2(xn+2))
    $
    (4.63)
    $ +1i<k<jn+1(1)i+j(1)k+1φ([[xi,xj]C,α(xk)]C,α2(x1),,^α2(xi),,^α2(xk),,^α2(xj),,α2(xn+2))
    $
    (4.64)
    $ +1i<j<kn+1(1)i+j(1)kφ([[xi,xj]C,α(xk)]C,α2(x1),,^α2(xi),,^α2(xj),,^α2(xk),,α2(xn+2)).
    $
    (4.65)

    The terms (4.22) and (4.37), (4.23) and (4.36), (4.24) and (4.48), (4.25) and (4.47), (4.26) and (4.46), (4.33) and (4.51), (4.34) and (4.50), (4.35) and (4.49) cancel each other. By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.63), (4.64) and (4.65) is zero. By the antisymmetry condition, the term (4.57) and (4.60), (4.58) and (4.61), (4.59) and (4.62) cancel each other. By the definition of the sub-adjacent Lie bracket, the sum of (4.31), (4.32) and (4.52) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.40), (4.41) and (4.56) is zero. Since $ \alpha $ is an algebra morphism, the term (4.42) and (4.55), (4.43) and (4.54), (4.44) and (4.53) cancel each other.

    Since $ (V, \beta, \rho, \mu) $ is a representation of the Hom-pre-Lie algebra $ (A, \cdot, \alpha) $, the sum of (4.18) and (4.19) can be written as

    $ 1i<jn+1(1)i+j+1ρ([αn1(xi),αn1(xj)]C)βφ(x1,,^xi,,^xj,,xn+2),
    $
    (4.66)

    the sum of (4.20), (4.28) and (4.29) can be written as

    $ 1j<in+1(1)i+j+1μ(αn1(xi)αn1(xn+2))βφ(x1,,^xj,,^xi,,xn+1,xj),
    $
    (4.67)

    and the sum of (4.21), (4.27) and (4.30) can be written as

    $ 1i<jn+1(1)i+j+1μ(αn1(xi)αn1(xn+2))βφ(x1,,^xi,,^xj,,xn+1,xj).
    $
    (4.68)

    Thus, we have

    $ ωω(ωωφ)(x1,,xn+2)=1i<jn+1(1)i+j+1ρ([αn1(xi),αn1(xj)]C)βφ(x1,,^xi,,^xj,,xn+2),+1i<jn+1(1)i+j+1μ(αn1(xi)αn1(xn+2))βφ(x1,,^xi,,^xj,,xn+1,xj)1j<in+1(1)i+j+1μ(αn1(xi)αn1(xn+2))βφ(x1,,^xj,,^xi,,xn+1,xj)1i<jn+1(1)i+j+1ρ(αn1[xi,xj]C)φ(α(x1),,^α(xi),,^α(xj),,α(xn+2))1i<jn+1(1)i+j+1μ(αn1(xixn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),α(xj))+1j<in+1(1)i+j+1μ(αn1(xixn+2))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),α(xj)).
    $

    For all $ x_1, \dots, x_{n+2}\in A $, we have

    $ αω(ωαφ)(x1,,xn+2)=1i<jn+1(1)i+jρ([αn1(xi),αn1(xj)]C)(ωαφ)(x1,,^xi,,^xj,,xn+2)+1i<jn+1(1)i+jμ(αn1(xi)αn1(xn+2))(ωαφ)(x1,,^xi,,^xj,,xn+1,xj)1i<jn+1(1)i+jμ(αn1(xj)αn1(xn+2))(ωαφ)(x1,,^xi,,^xj,,xn+1,xi)=1i<jn+1(1)i+jρ([αn1(xi),αn1(xj)]C)βφ(x1,,^xi,,^xj,,xn+2),1i<jn+1(1)i+jρ([αn1(xi),αn1(xj)]C)φ(α(x1),,^α(xi),,^α(xj),,α(xn+2))+1i<jn+1(1)i+jμ(αn1(xi)αn1(xn+2))βφ(x1,,^xi,,^xj,,xn+1,xj)1i<jn+1(1)i+jμ(αn1(xi)αn1(xn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),α(xj))1i<jn+1(1)i+jμ(αn1(xj)αn1(xn+2))βφ(x1,,^xi,,^xj,,xn+1,xi)+1i<jn+1(1)i+jμ(αn1(xj)αn1(xn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),α(xi)).
    $

    Since $ \alpha $ is an algebra morphism, we obtain that $ \partial_{\omega\omega}\circ \partial_{\omega\omega}+\partial_{\alpha\omega}\circ \partial_{\omega\alpha} $ = 0.

    For all $ x_1, \dots, x_{n+2}\in A $, we have

    $ ωω(αωψ)(x1,,xn+2)=n+1i=1(1)i+1ρ(αn(xi))(αωψ)(x1,,^xi,,xn+2)+n+1i=1(1)i+1μ(αn(xn+2))(αωψ)(x1,,^xi,,xn+1,xi)n+1i=1(1)i+1(αωψ)(α(x1),,^α(xi),,α(xn+1),xixn+2)+1i<jn+1(1)i+j(αωψ)([xi,xj]C,α(x1),,^α(xi),,^α(xj),,α(xn+2))=1j<k<in+1(1)i+1(1)j+kρ(αn(xi))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xj,,^xk,^xi,,xn+2)
    $
    (4.69)
    $ +1j<i<kn+1(1)i+1(1)j+k1ρ(αn(xi))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xj,,^xi,^xk,,xn+2)
    $
    (4.70)
    $ +1i<j<kn+1(1)i+1(1)j+kρ(αn(xi))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xi,,^xj,^xk,,xn+2)
    $
    (4.71)
    $ +1j<k<in+1(1)i+1(1)j+kρ(αn(xi))μ(αn2(xj)αn2(xn+2))ψ(x1,,^xj,,^xk,^xi,,xn+1,xk)
    $
    (4.72)
    $ +1j<i<kn+1(1)i+1(1)j+k1ρ(αn(xi))μ(αn2(xj)αn2(xn+2))ψ(x1,,^xj,,^xi,^xk,,xn+1,xk)
    $
    (4.73)
    $ +1i<j<kn+1(1)i+1(1)j+kρ(αn(xi))μ(αn2(xj)αn2(xn+2))ψ(x1,,^xi,,^xj,^xk,,xn+1,xk)
    $
    (4.74)
    $ 1j<k<in+1(1)i+1(1)j+kρ(αn(xi))μ(αn2(xk)αn2(xn+2))ψ(x1,,^xj,,^xk,^xi,,xn+1,xj)
    $
    (4.75)
    $ 1j<i<kn+1(1)i+1(1)j+k1ρ(αn(xi))μ(αn2(xk)αn2(xn+2))ψ(x1,,^xj,,^xi,^xk,,xn+1,xj)
    $
    (4.76)
    $ 1i<j<kn+1(1)i+1(1)j+kρ(αn(xi))μ(αn2(xk)αn2(xn+2))ψ(x1,,^xi,,^xj,^xk,,xn+1,xj)
    $
    (4.77)
    $ +1j<k<in+1(1)i+1(1)j+kμ(αn(xn+2))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xj,,^xk,^xi,,xn+1,xi)
    $
    (4.78)
    $ +1j<i<kn+1(1)i+1(1)j+k1μ(αn(xn+2))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xj,,^xi,^xk,,xn+1,xi)
    $
    (4.79)
    $ +1i<j<kn+1(1)i+1(1)j+kμ(αn(xn+2))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xi,,^xj,^xk,,xn+1,xi)
    $
    (4.80)
    $ +1j<k<in+1(1)i+1(1)j+kμ(αn(xn+2))μ(αn2(xj)αn2(xi))ψ(x1,,^xj,,^xk,^xi,,xn+1,xk)
    $
    (4.81)
    $ +1j<i<kn+1(1)i+1(1)j+k1μ(αn(xn+2))μ(αn2(xj)αn2(xi))ψ(x1,,^xj,,^xi,^xk,,xn+1,xk)
    $
    (4.82)
    $ +1i<j<kn+1(1)i+1(1)j+kμ(αn(xn+2))μ(αn2(xj)αn2(xi))ψ(x1,,^xi,,^xj,^xk,,xn+1,xk)
    $
    (4.83)
    $ 1j<k<in+1(1)i+1(1)j+kμ(αn(xn+2))μ(αn2(xk)αn2(xi))ψ(x1,,^xj,,^xk,^xi,,xn+1,xj)
    $
    (4.84)
    $ 1j<i<kn+1(1)i+1(1)j+k1μ(αn(xn+2))μ(αn2(xk)αn2(xi))ψ(x1,,^xj,,^xi,^xk,,xn+1,xj)
    $
    (4.85)
    $ 1i<j<kn+1(1)i+1(1)j+kμ(αn(xn+2))μ(αn2(xk)αn2(xi))ψ(x1,,^xi,,^xj,^xk,,xn+1,xj)
    $
    (4.86)
    $ 1j<k<in+1(1)i+1(1)j+kρ([αn1(xj),αn1(xk)]C)ψ(α(x1),,^α(xj),,^α(xk),
    $
    (4.87)
    $ ,^α(xi),,α(xn+1),xixn+2)1j<i<kn+1(1)i+1(1)j+k1ρ([αn1(xj),αn1(xk)]C)ψ(α(x1),,^α(xj),,^α(xi),
    $
    (4.88)
    $ ,^α(xk),,α(xn+1),xixn+2)1i<j<kn+1(1)i+1(1)j+kρ([αn1(xj),αn1(xk)]C)ψ(α(x1),,^α(xi),,^α(xj),
    $
    (4.89)
    $ ,^α(xk),,α(xn+1),xixn+2)1j<k<in+1(1)i+1(1)j+kμ(αn1(xj)αn2(xixn+2))ψ(α(x1),,^α(xj),,^α(xk),
    $
    (4.90)
    $ ,^α(xi),,α(xn+1),α(xk))1j<i<kn+1(1)i+1(1)j+k1μ(αn1(xj)αn2(xixn+2))ψ(α(x1),,^α(xj),,^α(xi),
    $
    (4.91)
    $ ,^α(xk),,α(xn+1),α(xk))1i<j<kn+1(1)i+1(1)j+kμ(αn1(xj)αn2(xixn+2))ψ(α(x1),,^α(xi),,^α(xj),
    $
    (4.92)
    $ ,^α(xk),,α(xn+1),α(xk))+1j<k<in+1(1)i+1(1)j+kμ(αn1(xk)αn2(xixn+2))ψ(α(x1),,^α(xj),,^α(xk),
    $
    (4.93)
    $ ,^α(xi),,α(xn+1),α(xj))+1j<i<kn+1(1)i+1(1)j+k1μ(αn1(xk)αn2(xixn+2))ψ(α(x1),,^α(xj),,^α(xi),
    $
    (4.94)
    $ ,^α(xk),,α(xn+1),α(xj))+1i<j<kn+1(1)i+1(1)j+kμ(αn1(xk)αn2(xixn+2))ψ(α(x1),,^α(xi),,^α(xj),
    $
    (4.95)
    $ ,^α(xk),,α(xn+1),α(xj))+1k<l<i<jn+1(1)i+j(1)k+lρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.96)
    $ ^α(xl),,^α(xi),,^α(xj),,α(xn+2))+1k<i<l<jn+1(1)i+j(1)k+l1ρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.97)
    $ ^α(xi),,^α(xl),,^α(xj),,α(xn+2))+1k<i<j<ln+1(1)i+j(1)k+lρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.98)
    $ ^α(xi),,^α(xj),,^α(xl),,α(xn+2))+1i<k<l<jn+1(1)i+j(1)k+lρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.99)
    $ ^α(xk),,^α(xl),,^α(xj),,α(xn+2))+1i<k<j<ln+1(1)i+j(1)k+l1ρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.100)
    $ ^α(xk),,^α(xj),,^α(xl),,α(xn+2))+1i<j<k<ln+1(1)i+j(1)k+lρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.101)
    $ ^α(xj),,^α(xk),,^α(xl),,α(xn+2))+1k<i<jn+1(1)i+j(1)kρ([αn2[xi,xj]C,αn1(xk)]C)ψ(α(x1),,^α(xk),,^α(xi),
    $
    (4.102)
    $ ,^α(xj),,α(xn+2))+1i<k<jn+1(1)i+j(1)k+1ρ([αn2[xi,xj]C,αn1(xk)]C)ψ(α(x1),,^α(xi),,^α(xk),
    $
    (4.103)
    $ ,^α(xj),,α(xn+2))+1i<j<kn+1(1)i+j(1)kρ([αn2[xi,xj]C,αn1(xk)]C)ψ(α(x1),,^α(xi),,^α(xj),
    $
    (4.104)
    $ ,^α(xk),,α(xn+2))+1k<l<i<jn+1(1)i+j(1)k+lμ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.105)
    $ ^α(xl),,^α(xi),,^α(xj),,α(xn+1),α(xl))+1k<i<l<jn+1(1)i+j(1)k+l1μ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.106)
    $ ^α(xi),,^α(xl),,^α(xj),,α(xn+1),α(xl))+1k<i<j<ln+1(1)i+j(1)k+lμ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.107)
    $ ^α(xi),,^α(xj),,^α(xl),,α(xn+1),α(xl))+1i<k<l<jn+1(1)i+j(1)k+lμ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.108)
    $ ^α(xk),,^α(xl),,^α(xj),,α(xn+1),α(xl))+1i<k<j<ln+1(1)i+j(1)k+l1μ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.109)
    $ ^α(xk),,^α(xj),,^α(xl),,α(xn+1),α(xl))+1i<j<k<ln+1(1)i+j(1)k+lμ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.110)
    $ ^α(xj),,^α(xk),,^α(xl),,α(xn+1),α(xl))1k<l<i<jn+1(1)i+j(1)k+lμ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.111)
    $ ^α(xl),,^α(xi),,^α(xj),,α(xn+1),α(xk))1k<i<l<jn+1(1)i+j(1)k+l1μ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.112)
    $ ^α(xi),,^α(xl),,^α(xj),,α(xn+1),α(xk))1k<i<j<ln+1(1)i+j(1)k+lμ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),,
    $
    (4.113)
    $ ^α(xi),,^α(xj),,^α(xl),,α(xn+1),α(xk))1i<k<l<jn+1(1)i+j(1)k+lμ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.114)
    $ ^α(xk),,^α(xl),,^α(xj),,α(xn+1),α(xk))1i<k<j<ln+1(1)i+j(1)k+l1μ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.115)
    $ ^α(xk),,^α(xj),,^α(xl),,α(xn+1),α(xk))1i<j<k<ln+1(1)i+j(1)k+lμ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),,
    $
    (4.116)
    $ ^α(xj),,^α(xk),,^α(xl),,α(xn+1),α(xk))+1k<i<jn+1(1)i+j(1)kμ(αn2[xi,xj]Cαn1(xn+2))ψ(α(x1),,^α(xk),,^α(xi),
    $
    (4.117)
    $ ,^α(xj),,α(xn+1),α(xk))+1i<k<jn+1(1)i+j(1)k+1μ(αn2[xi,xj]Cαn1(xn+2))ψ(α(x1),,^α(xi),,^α(xk),
    $
    (4.118)
    $ ,^α(xj),,α(xn+1),α(xk))+1i<j<kn+1(1)i+j(1)kμ(αn2[xi,xj]Cαn1(xn+2))ψ(α(x1),,^α(xi),,^α(xj),
    $
    (4.119)
    $ ,^α(xk),,α(xn+1),α(xk))1k<i<jn+1(1)i+j(1)kμ(αn1(xk)αn1(xn+2))ψ(α(x1),,^α(xk),,^α(xi),
    $
    (4.120)
    $ ,^α(xj),,α(xn+1),[xi,xj]C)1i<k<jn+1(1)i+j(1)k+1μ(αn1(xk)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xk),
    $
    (4.121)
    $ ,^α(xj),,α(xn+1),[xi,xj]C)1i<j<kn+1(1)i+j(1)kμ(αn1(xk)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xj),,^α(xk),,α(xn+1),[xi,xj]C),
    $
    (4.122)

    and

    $ αω(ααψ)(x1,,xn+2)=1i<jn+1(1)i+jρ([αn1(xi),αn1(xj)]C)(ααψ)(x1,,^xi,,^xj,,xn+2)+1i<jn+1(1)i+jμ(αn1(xi)αn1(xn+2))(ααψ)(x1,,^xi,,^xj,,xn+1,xj)1i<jn+1(1)i+jμ(αn1(xj)αn1(xn+2))(ααψ)(x1,,^xi,,^xj,,xn+1,xi)=1k<i<jn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)ρ(αn1(xk))ψ(x1,,^xk,,^xi,,^xj,xn+2)
    $
    (4.123)
    $ +1i<k<jn+1(1)i+j(1)k+1ρ([αn1(xi),αn1(xj)]C)ρ(αn1(xk))ψ(x1,,^xi,,^xk,,^xj,xn+2)
    $
    (4.124)
    $ +1i<j<kn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)ρ(αn1(xk))ψ(x1,,^xi,,^xj,,^xk,,xn+2)
    $
    (4.125)
    $ +1k<i<jn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)μ(αn1(xn+2))ψ(x1,,^xk,,^xi,,^xj,xn+1,xk)
    $
    (4.126)
    $ +1i<k<jn+1(1)i+j(1)k+1ρ([αn1(xi),αn1(xj)]C)μ(αn1(xn+2))ψ(x1,,^xi,,^xk,,^xj,xn+1,xk)
    $
    (4.127)
    $ +1i<j<kn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)μ(αn1(xn+2))ψ(x1,,^xi,,^xj,,^xk,xn+1,xk)
    $
    (4.128)
    $ 1k<i<jn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)ψ(α(x1),,^α(xk),,^α(xi),
    $
    (4.129)
    $ ,^α(xj),,α(xn+1),xkxn+2)1i<k<jn+1(1)i+j(1)k+1ρ([αn1(xi),αn1(xj)]C)ψ(α(x1),,^α(xi),,^α(xk),
    $
    (4.130)
    $ ,^α(xj),,α(xn+1),xkxn+2)1i<j<kn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)ψ(α(x1),,^α(xi),,^α(xj),
    $
    (4.131)
    $ ,^α(xk),,α(xn+1),xkxn+2)+1k<l<i<jn+1(1)i+j(1)k+l1ρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.132)
    $ ,^α(xl),,^α(xi),,^α(xj),,α(xn+2))+1k<i<l<jn+1(1)i+j(1)k+lρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.133)
    $ ,^α(xi),,^α(xl),,^α(xj),,α(xn+2))+1k<i<j<ln+1(1)i+j(1)k+l1ρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.134)
    $ ,^α(xi),,^α(xj),,^α(xl),,α(xn+2))+1i<k<l<jn+1(1)i+j(1)k+l1ρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xi),
    $
    (4.135)
    $ ,^α(xk),,^α(xl),,^α(xj),,α(xn+2))+1i<k<j<ln+1(1)i+j(1)k+lρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xi),
    $
    (4.136)
    $ ,^α(xk),,^α(xj),,^α(xl),,α(xn+2))+1i<j<k<ln+1(1)i+j(1)k+l1ρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xi),
    $
    (4.137)
    $ ,^α(xj),,^α(xk),,^α(xl),,α(xn+2))+1k<i<jn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xk,,^xi,,^xj,xn+1,xj)
    $
    (4.138)
    $ +1i<k<jn+1(1)i+j(1)k+1μ(αn1(xi)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xi,,^xk,,^xj,xn+1,xj)
    $
    (4.139)
    $ +1i<j<kn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xi,,^xj,,^xk,xn+1,xj)
    $
    (4.140)
    $ +1k<i<jn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))μ(αn1(xj))ψ(x1,,^xk,,^xi,,^xj,xn+1,xk)
    $
    (4.141)
    $ +1i<k<jn+1(1)i+j(1)k+1μ(αn1(xi)αn1(xn+2))μ(αn1(xj))ψ(x1,,^xi,,^xk,,^xj,xn+1,xk)
    $
    (4.142)
    $ +1i<j<kn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))μ(αn1(xj))ψ(x1,,^xi,,^xj,,^xk,xn+1,xk)
    $
    (4.143)
    $ 1k<i<jn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))ψ(α(x1),,^α(xk),,^α(xi),
    $
    (4.144)
    $ ,^α(xj),,α(xn+1),xkxj)1i<k<jn+1(1)i+j(1)k+1μ(αn1(xi)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xk),
    $
    (4.145)
    $ ,^α(xj),,α(xn+1),xkxj)1i<j<kn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xj),
    $
    (4.146)
    $ ,^α(xk),,α(xn+1),xkxj)+1k<l<i<jn+1(1)i+j(1)k+l1μ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.147)
    $ ,^α(xl),,^α(xi),,^α(xj),,α(xn+1),α(xj))+1k<i<l<jn+1(1)i+j(1)k+lμ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.148)
    $ ,^α(xi),,^α(xl),,^α(xj),,α(xn+1),α(xj))+1k<i<j<ln+1(1)i+j(1)k+l1μ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.149)
    $ ,^α(xi),,^α(xj),,^α(xl),,α(xn+1),α(xj))+1i<k<l<jn+1(1)i+j(1)k+l1μ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi),
    $
    (4.150)
    $ ,^α(xk),,^α(xl),,^α(xj),,α(xn+1),α(xj))+1i<k<j<ln+1(1)i+j(1)k+lμ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi),
    $
    (4.151)
    $ ,^α(xk),,^α(xj),,^α(xl),,α(xn+1),α(xj))+1i<j<k<ln+1(1)i+j(1)k+l1μ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi),
    $
    (4.152)
    $ ,^α(xj),,^α(xk),,^α(xl),,α(xn+1),α(xj))1k<i<jn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xk,,^xi,,^xj,xn+1,xi)
    $
    (4.153)
    $ 1i<k<jn+1(1)i+j(1)k+1μ(αn1(xj)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xi,,^xk,,^xj,xn+1,xi)
    $
    (4.154)
    $ 1i<j<kn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xi,,^xj,,^xk,xn+1,xi)
    $
    (4.155)
    $ 1k<i<jn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))μ(αn1(xi))ψ(x1,,^xk,,^xi,,^xj,xn+1,xk)
    $
    (4.156)
    $ 1i<k<jn+1(1)i+j(1)k+1μ(αn1(xj)αn1(xn+2))μ(αn1(xi))ψ(x1,,^xi,,^xk,,^xj,xn+1,xk)
    $
    (4.157)
    $ 1i<j<kn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))μ(αn1(xi))ψ(x1,,^xi,,^xj,,^xk,xn+1,xk)
    $
    (4.158)
    $ +1k<i<jn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))ψ(α(x1),,^α(xk),,^α(xi),
    $
    (4.159)
    $ ,^α(xj),,α(xn+1),xkxi)+1i<k<jn+1(1)i+j(1)k+1μ(αn1(xj)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xk),
    $
    (4.160)
    $ ,^α(xj),,α(xn+1),xkxi)+1i<j<kn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xj),
    $
    (4.161)
    $ ,^α(xk),,α(xn+1),xkxi)1k<l<i<jn+1(1)i+j(1)k+l1μ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.162)
    $ ,^α(xl),,^α(xi),,^α(xj),,α(xn+1),α(xi))1k<i<l<jn+1(1)i+j(1)k+lμ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.163)
    $ ,^α(xi),,^α(xl),,^α(xj),,α(xn+1),α(xi))1k<i<j<ln+1(1)i+j(1)k+l1μ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk),
    $
    (4.164)
    $ ,^α(xi),,^α(xj),,^α(xl),,α(xn+1),α(xi))1i<k<l<jn+1(1)i+j(1)k+l1μ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi),
    $
    (4.165)
    $ ,^α(xk),,^α(xl),,^α(xj),,α(xn+1),α(xi))1i<k<j<ln+1(1)i+j(1)k+lμ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi),
    $
    (4.166)
    $ ,^α(xk),,^α(xj),,^α(xl),,α(xn+1),α(xi))1i<j<k<ln+1(1)i+j(1)k+l1μ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi),,^α(xj),,^α(xk),,^α(xl),,α(xn+1),α(xi)).
    $
    (4.167)

    By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.102), (4.103) and (4.104) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.90), (4.95) and (4.118) is zero, the sum of (4.91), (4.92) and (4.119) is zero, the sum of (4.93), (4.94) and (4.117) is zero. Obviously, the sum of (4.96) and (4.137) is zero, the sum of (4.97) and (4.136) is zero, the sum of (4.98) and (4.135) is zero, the sum of (4.99) and (4.134) is zero, the sum of (4.100) and (4.133) is zero, the sum of (4.101) and (4.132) is zero, the sum of (4.87) and (4.131) is zero, the sum of (4.88) and (4.130) is zero, the sum of (4.89) and (4.129) is zero, the sum of (4.105) and (4.152) is zero, the sum of (4.106) and (4.151) is zero, the sum of (4.107) and (4.150) is zero, the sum of (4.108) and (4.149) is zero, the sum of (4.109) and (4.148) is zero, the sum of (4.110) and (4.147) is zero, the sum of (4.111) and (4.167) is zero, the sum of (4.112) and (4.166) is zero, the sum of (4.113) and (4.165) is zero, the sum of (4.114) and (4.164) is zero, the sum of (4.115) and (4.163) is zero, the sum of (4.116) and (4.162) is zero. By the definition of the sub-adjacent Lie bracket, the sum of (4.120), (4.145) and (4.146) is zero, the sum of (4.121), (4.144) and (4.161) is zero, the sum of (4.122), (4.159) and (4.160) is zero. Since $ (V, \beta, \rho) $ is a representation of the sub-adjacent Hom-Lie algebra $ A^C $, the sum of (4.69), (4.70), (4.71), (4.123), (4.124) and (4.125) is zero. Since $ (V, \beta, \rho, \mu) $ is a representation of the Hom-pre-Lie algebra $ (A, \cdot, \alpha) $, the sum of (4.73), (4.74), (4.78), (4.82), (4.83), (4.128), (4.138), (4.139), (4.143) and (4.158) is zero, the sum of (4.72), (4.77), (4.79), (4.81), (4.86), (4.127), (4.140), (4.142), (4.153) and (4.157) is zero, the sum of (4.75), (4.76), (4.80), (4.84), (4.85), (4.126), (4.141), (4.154), (4.155) and (4.156) is zero. Thus, we have $ \partial_{\omega\omega}\circ \partial_{\alpha\omega}+\partial_{\alpha\omega}\circ \partial_{\alpha\alpha} = 0 $.

    Similarly, we have $ \partial_{\omega\alpha}\circ \partial_{\omega\omega}+\partial_{\alpha\alpha}\circ \partial_{\omega\alpha} = 0 $ and $ \partial_{\omega\alpha}\circ \partial_{\alpha\omega}+\partial_{\alpha\alpha}\circ \partial_{\alpha\alpha} = 0 $. This finishes the proof.

    We give warmest thanks to Yunhe Sheng for helpful comments that improve the paper. This work is supported by National Natural Science Foundation of China (Grant No. 12001226).

    The authors declare there is no conflicts of interest.

    [1] Behar M, Hao N, Dohlman HG, et al. (2008) Dose to duration encoding and signaling beyond saturation in intracellular signaling networks. PLoS Computat Biol 4: 1-11. doi: 10.1371/journal.pcbi.0040001
    [2] Brent R (2009) Cell signaling : What is the signal and what information does it carry? Federation of European Biochemical Societies 583: 4019-4024. doi: 10.1016/j.febslet.2009.11.029
    [3] Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455: 485-491. doi: 10.1038/nature07292
    [4] Domletsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392: 933-936. doi: 10.1038/31960
    [5] Zhu X, Si G, Deng N, et al. (2012) Frequency-dependent Escherichia coli chemotaxis behavior. Phys Rev Lett 108: 128101. doi: 10.1103/PhysRevLett.108.128101
    [6] Kennedy RT, Kauri LM, Dahlgren GM, et al. (2002) Metabolic oscillations in β-cells. Diabetes 51: S152-S161. doi: 10.2337/diabetes.51.2007.S152
    [7] Iqbal J, Li S, Zaidi M (2010) Complexity in signal transduction. Ann N Y Acad Sci 1192: 238-244. doi: 10.1111/j.1749-6632.2010.05388.x
    [8] Godin J, Chen C-H, Cho SH, et al. (2008) Microfluidic and photonics for Bio-System-an-a-chip : A review of advancements in technology towards a microfluidic flow cytometry chip. J Biophotonics 5: 355-376.
    [9] Mampallil D, George DS (2012) Microfluidics- A lab in your palm. Resonance 682-690.
    [10] Zhang X, Roper MG (2009) Microfluidic perfusion system for automated delivery of temporal gradients to Islets of Langerhans. Anal Chem 81: 1162-1168. doi: 10.1021/ac802579z
    [11] Zhang X, Grimley A, Bertram R et al. (2010) Microfluidic system for generation of sinusoidal glucose waveforms for entrainment of Islets Langerhans. Anal Chem 82: 6704-6711. doi: 10.1021/ac101461x
    [12] Zhang X, Dhumpa R, Roper MG et al. (2013) Maintaining stimulant waveforms in large-volume microfluidic cell chambers. Microfluid Nanofluid 15: 65-71. doi: 10.1007/s10404-012-1129-x
    [13] Schafer D, Gibson EA, Amir W, et al. (2007) Three-dimensional chemical concentration maps in a microfluidic device using two-photon absorption fluorescence imaging. Opt Lett 32: 2568-2570. doi: 10.1364/OL.32.002568
    [14] Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9: 417-426. doi: 10.1039/B806803H
    [15] Elder AD, Mattews SM, Swartling J, et al. (2006) The application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices. Opt Express 14.
    [16] Zeng Y, Jiang L, Zheng W, et al. (2011) Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging. Opt Lett 36: 2236-2238. doi: 10.1364/OL.36.002236
    [17] Lakowitz JR (2006) Principles of Fluorescence Spectroscopy, 3rd ed., New York: Springer Science+Business Media, LLC.
    [18] Magennis SW, Graham EM, Jones AC (2005) Quantitative spatial mapping of mixing in microfludic system. Angewandte Chemie International Edition 44: 6512-6516. doi: 10.1002/anie.200500558
    [19] Robinson T, Valluri P, Manning HB, et al. (2008) Three-dimensional molecular mapping in a microfluidic device using fluorescence lifetime imaging. Opt Lett 33: 1887-1889. doi: 10.1364/OL.33.001887
    [20] Hung PJ, Lee PJ, Sabounchi P, et al. (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89: 1-8. doi: 10.1002/bit.20289
  • This article has been cited by:

    1. Shuangjian Guo, Ripan Saha, On α-type (equivariant) cohomology of Hom-pre-Lie algebras, 2023, 0092-7872, 1, 10.1080/00927872.2023.2243514
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5976) PDF downloads(1104) Cited by(3)

Figures and Tables

Figures(9)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog