Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Wave propagation in fractal trees. Mathematical and numerical issues

  • Received: 01 December 2016 Revised: 01 October 2018
  • Primary: 35J05, 37E25, 65D15; Secondary: 35J20

  • We propose and analyze a mathematical model for wave propagation in infinite trees with self-similar structure at infinity. This emphasis is put on the construction and approximation of transparent boundary conditions. The performance of the constructed boundary conditions is then illustrated by numerical experiments.

    Citation: Patrick Joly, Maryna Kachanovska, Adrien Semin. Wave propagation in fractal trees. Mathematical and numerical issues[J]. Networks and Heterogeneous Media, 2019, 14(2): 205-264. doi: 10.3934/nhm.2019010

    Related Papers:

    [1] Yingchao Zhang, Yuntao Jia, Yingzhen Lin . An $ {\varepsilon} $-approximate solution of BVPs based on improved multiscale orthonormal basis. AIMS Mathematics, 2024, 9(3): 5810-5826. doi: 10.3934/math.2024282
    [2] Liangcai Mei, Boying Wu, Yingzhen Lin . Shifted-Legendre orthonormal method for high-dimensional heat conduction equations. AIMS Mathematics, 2022, 7(5): 9463-9478. doi: 10.3934/math.2022525
    [3] Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182
    [4] Xiaoyong Xu, Fengying Zhou . Orthonormal Euler wavelets method for time-fractional Cattaneo equation with Caputo-Fabrizio derivative. AIMS Mathematics, 2023, 8(2): 2736-2762. doi: 10.3934/math.2023144
    [5] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [6] Zihan Yue, Wei Jiang, Boying Wu, Biao Zhang . A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation. AIMS Mathematics, 2024, 9(3): 7040-7062. doi: 10.3934/math.2024343
    [7] A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160
    [8] Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509
    [9] Bin Fan . Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives. AIMS Mathematics, 2024, 9(3): 7293-7320. doi: 10.3934/math.2024354
    [10] Dina Abdelhamid, Wedad Albalawi, Kottakkaran Sooppy Nisar, A. Abdel-Aty, Suliman Alsaeed, M. Abdelhakem . Mixed Chebyshev and Legendre polynomials differentiation matrices for solving initial-boundary value problems. AIMS Mathematics, 2023, 8(10): 24609-24631. doi: 10.3934/math.20231255
  • We propose and analyze a mathematical model for wave propagation in infinite trees with self-similar structure at infinity. This emphasis is put on the construction and approximation of transparent boundary conditions. The performance of the constructed boundary conditions is then illustrated by numerical experiments.



    In the past few decades, more and more diffusion processes have been shown to not satisfy Fickian laws, such as signal transduction in biological cells, foraging behavior of animals, viscoelastic and viscoplastic flow, and solute migration in groundwater. However, fractional partial differential equations (FPDEs) play a very important role in describing anomalous diffusion Ref. [1,2,3], so in recent years, FPDEs have attracted extensive attention. In this paper, we study one type of time-fractional diffusion equation (TFDE), which can be obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order $ \alpha $, $ 0 < \alpha < 1 $.

    $ {Dαtu(x,t)=uxx(x,t)+f(x,t),(x,t)(0,b)×(0,T],u(x,0)=u0(x),x[0,b],u(0,t)=0),u(b,t)=0,t[0,T]. $ (1.1)

    Where $ u_0(x) $ is a smooth function and $ D^{\alpha}_t u(x, t) $ is the Caputo fractional derivative defined by Definition 2.1.

    The exact solutions of most fractional differential equations are difficult to obtain analytically, and even if they can be obtained, most of them contain special functions that are difficult to calculate. In recent years, many numerical methods have been proposed. For example, Ref. [4,5] used finite difference to solve the fractional diffusion equation. Yang et al. [6] used the finite volume method to solve the nonlinear fractional diffusion equation. Jin et al. studied the finite element method for solving the homogeneous fractional diffusion equation in [7]. Some scholars have developed meshless methods [8,9,10,11] and spectral methods [12,13,14,15] to solve fractional diffusion equations.

    The reproducing kernel space and its related theories are the ideal spatial framework for function approximation [16,17]. The function approximation in this space has uniform convergence, while the Caputo-type fractional derivative of the approximate function still has uniform convergence. Therefore, the reproducing kernel space is also the ideal spatial framework for the numerical processing of Caputo-type fractional derivatives. Numerical solutions to differential equations based on orthogonal polynomials are commonly used. For example, quartic splines and cubic splines are used, respectively, to solve numerical solutions of differential equations in Ref. [18,19,20]. In Ref. [21,22,23], based on the idea of wavelet, a multi-scale orthonormal basis is constructed in the reproducing kernel space by using piecewise polynomials, and $ {\varepsilon} $-approximate solutions of integer-order differential equations are obtained.

    For TFDE, most methods use the finite difference method to deal with time variables. Due to the non-singularity of fractional differentiation, the difference scheme at the initial time needs to be further transformed. And the results are not ideal; when the step size reaches $ 0.001 $, the error is only $ 10^{-5} $ in Ref. [10]. So, the main motivation of this paper is to obtain the $ {\varepsilon} $-approximation solution of TFDE. By constructing a multiscale orthonormal basis in the multiple reproducing kernel space, a numerical algorithm is designed to obtain the approximate solution of TFDE. In order to avoid the influence of fractional non-singularity, this paper constructs the orthonormal basis by using Legendre polynomials, which can be operated by the property of fractional differentiation. In addition, the method in this paper has a good convergence order.

    The paper is organized as follows: In Section 2, the fundamental definitions are provided, and Legendre polynomials and related spaces are introduced. In Section 3, the $ {\varepsilon} $-approximation solutions are given. In Section 4, convergence analysis and time complexity are presented for the proposed method. In Section 5, numerical solutions for several fractional diffusion equations are presented. The paper concludes by stating the advantages of the method.

    In this section, the Caputo fractional derivative and its properties are introduced. Legendre polynomials and their associated spaces are also discussed. This knowledge will be used when constructing the basis.

    Definition 2.1. The Caputo fractional derivative is defined as follows [24]:

    $ D^{\alpha}_tu(t) = \frac{1}{\Gamma(n-\alpha)}\displaystyle {\int}_0^t(t-s)^{n-\alpha-1}u^{(n)}(s)ds, \; \; \; n = [\alpha]+1, n-1 < \alpha < n. $

    For ease of calculation, a property of the Caputo differential needs to be given here.

    Property 2.1.

    $ Dα(tγ)={Γ(γ+1)Γ(γ+1α)tγα,γ0,0,γ=0. $ (2.1)

    Proof. According to the definition of Caputo differentiation, the conclusion can be obtained using integration by parts.

    Legendre polynomials are known to be orthogonal on $ L^2[-1, 1] $. Since the variables being analyzed are often defined in different intervals, it is necessary to transform Legendre polynomials on $ [0, b] $. Legendre polynomials defined on [0, b] are shown below

    $ l0(x)=1,l1(x)=2xb1,lj+1(x)=2j+1j+1(2xb1)lj(x)jj+1lj1(x),j=1,2, $

    Clearly, $ \{l_j(x)\}_{j = 0}^{\infty} $ is orthogonal on $ L^2[0, b] $, and

    $ bxli(x)lj(x)dx={b2j+1,i=j,0,ij. $

    Let $ p_j(x) = \sqrt{\frac{2j+1}{b}}l_j(x) $, $ \{p_j(x)\}_{j = 0}^{\infty} $ is an orthonormal basis on $ L^2[0, b] $.

    Consider Eq (1.1); this section gives the following reproducing kernel space. For convenience, the absolutely continuous function is denoted as AC.

    Definition 2.2. $ W_1[0, T] = \{u(t)\mid u(0) = 0, \; u \; is\; AC, u^{\prime}\in L^2[0, T]\} $, and

    $ \langle u, v\rangle_{W_1} = \displaystyle {\int}_0^T u^{\prime}v^{\prime}dt, \quad\quad u, v\in W_1[0, T]. $

    If $ b = T $ and $ T_j(t) = p_j(t) $, note that $ T_j(t) = \sum\limits_{k = 0}^{j}c_kt^k $. Let

    $ J_0T_j(t) = \displaystyle {\int}_0^tT_j(\tau)d\tau = \sum\limits_{k = 0}^jc_k\frac{t^{k+1}}{k+1}. $

    Theorem 2.1. $ \{J_0T_j(t)\}_{j = 0}^{\infty} $ is an orthonormal basis on $ W_1[0, T] $.

    Definition 2.3. $ W_2[0, b] = \{u(x)\mid u(0) = u(b) = 0, \; u \; is\; AC, u^{\prime\prime}\in L^2[0, b]\} $, and

    $ \langle u, v\rangle_{W_2} = \displaystyle {\int}_0^b u^{\prime\prime}v^{\prime\prime}dx, \quad\quad u, v\in W_2[0, b]. $

    Similarly, denote $ p_j(x) = \sum\limits_{k = 0}^{j}d_kx^k $. Integrating $ p_j(x) $ twice yields $ J^2_0p_j(x) $, if $ J^2_0p_j(x)\in W_2[0, b] $, then

    $ J^2_0p_j(x) = \sum\limits_{k = 0}^jd_k\frac{x^{k+2}-b^{k+1}x}{(k+1)(k+2)}. $

    Obviously, $ \{J^2_0p_j(x)\}_{j = 0}^{\infty} $ is an orthonormal basis on $ W_2[0, b] $.

    Put $ \Omega = [0, b]\times [0, T] $, and let's define the space $ W(\Omega) $.

    Definition 2.4. $ W(\Omega) = \{u(x, t)\mid u(x, 0) = 0, u(0, t) = u(b, t) = 0, \; \frac{\partial u}{\partial x} $ is continuous functions, $\frac{\partial^3 u}{\partial t\partial x^2}\in L^2(\Omega)\} $.

    Clearly, $ W(\Omega) $ is an inner product space, and

    $ \langle u, v\rangle_{W(\Omega)} = \iint_\Omega \frac{\partial^3 u}{\partial t\partial x^2}\frac{\partial^3 v}{\partial t\partial x^2}d\sigma, \quad\quad u, v\in W(\Omega). $

    Theorem 2.2. If $ u(x, t), v(x, t)\in W(\Omega) $, and $ v(x, t) = v_1(x)v_2(t) $, then

    $ \langle u, v\rangle_{W(\Omega)} = \langle \langle u, v_2\rangle_{W_1}, v_1\rangle_{W_2} = \langle \langle u, v_1\rangle_{W_2}, v_2\rangle_{W_1}. $

    Proof. Clearly,

    $ u,vW(Ω)=Ω3utx23vtx2dσ=Ωt(2ux2)v2t2v1x2dσ=b02x2(u,v2W1)2v1x2dx=u,v2W1,v1W2. $

    Similarly, $ \langle u, v\rangle_{W(\Omega)} = \langle \langle u, v_1\rangle_{W_2}, v_2\rangle_{W_1} $.

    Note

    $ \phi_{ij}(x, t) = J^2_0p_i(x)J_0T_j(t), \; i, j = 0, 1, 2, \cdots . $

    Theorem 2.3. $ \{\phi_{ij}(x, t)\}_{i, j = 0}^{\infty} $ is an orthonormal basis on $ W(\Omega) $.

    Proof. First of all, orthogonality. For $ \forall \phi_{ij}(x, t), \phi_{mn}(x, t) \in W(\Omega) $, according to Theorem 2.2,

    $ ϕij(x,t),ϕmn(x,t)W(Ω)=J20pi(x),J20pm(x)W2J0Tj(t),J0Tj(t)W1={1,i=m,j=n,0,others. $

    Second, completeness. $ \forall u \in W(\Omega) $, if $ \langle u, \phi_{ij}\rangle_{W(\Omega)} = 0 $ means $ u\equiv 0 $. In fact, by Theorem 2.4,

    $ u,ϕijW(Ω)=u,J20pi(x)J0Tj(t)W(Ω)=u,J20pi(x)W2,J0Tj(t)W1=u,J0Tj(t)W1,J20pi(x)W2=0. $

    Since $ \{J^2_0p_i(x)\}_{i = 0}^{\infty} $ and $ \{J_0T_j(t)\}_{j = 0}^{\infty} $ are complete systems of $ W_2[0, b] $ and $ W_1[0, T] $, respectively, $ \langle u, J^2_0p_{i}(x)\rangle_{W_2} = 0 $ and $ \langle u, J_0T_{j}(t)\rangle_{W_1} = 0 $. So $ u\equiv 0 $.

    Let $ L:W(\Omega)\to L^2(\Omega) $,

    $ Lu = D^{\alpha}_t u-u_{xx}. $

    Then Eq (1.1) is

    $ Lu=f. $ (3.1)

    Theorem 3.1. Operator $ L $ is a bounded and linear operator.

    Proof. Clearly, $ L $ is linear, and one only needs to prove boundedness. According to Cauchy Schwartz's inequality, we derive that

    $ \|Lu\|_{L^2} \leq \|D^{\alpha}_tu\|_{L^2}+\|u_{xx}\|_{L^2} . $

    Put $ K(x, t, y, s) = r(x, y)q(t, s) $ be the RK function in $ W(\Omega) $, then

    $ |uxx|=|u(x,t),2Kx2W(Ω)|=|u(x,t),2r(x,y)x2q(t,s)W(Ω)| $ (3.2)

    Similarly

    $ \begin{equation} |u_t|\leq \|\frac{\partial q(t, s)}{\partial t}r(x, y)\|_{W(\Omega)}\|u\|_{W(\Omega)}. \end{equation} $ (3.3)

    By Eq (3.2), there exists positive constants $ M_1 $ such that

    $ \begin{equation} \|u_{xx}\|^2_{L^2} = \iint_{\Omega}(u_{xx})^2d\sigma \leq \|\frac{\partial^2r(x, y)}{\partial x^2}q(t, s)\|^2_{W(\Omega)} S_{\Omega} \|u\|^2_{W(\Omega)} = M_1\|u\|^2_{W(\Omega)}, \end{equation} $ (3.4)

    where $ M_1 = \|\frac{\partial^2r(x, y)}{\partial x^2}q(t, s)\|^2_{W(\Omega)} S_{\Omega} $, $ S_{\Omega} $ represents the area of the region $ \Omega $.

    By Eq (3.3), there exist positive constants $ M_2, M_3 $, such that

    $ \begin{equation*} \begin{aligned} |D^{\alpha}_tu|& = \big|\frac{1}{\Gamma(1-\alpha)}\displaystyle {\int}_0^t (t-s)^{-\alpha}u_t(x, s)ds\big|\leq \frac{1}{\Gamma(1-\alpha)}\displaystyle {\int}_0^t (t-s)^{-\alpha}\big|u_t(x, s)\big|ds\\ &\leq \frac{1}{\Gamma(1-\alpha)}\displaystyle {\int}_0^t (t-s)^{-\alpha}\big\|\frac{\partial q(t, s)}{\partial t}r(x, y)\big\|_{W(\Omega)}\|u\|_{W(\Omega)}ds\\ &\leq \frac{\|u\|_{W(\Omega)}}{\Gamma(1-\alpha)}\big\|\frac{\partial q(t, s)}{\partial t}r(x, y)\big\|_{W(\Omega)}\displaystyle {\int}_0^t (t-s)^{-\alpha}ds\\ &\leq \frac{t^{1-\alpha}}{\Gamma(2-\alpha)}\big\|\frac{\partial q(t, s)}{\partial t}r(x, y)\big\|_{W(\Omega)}\|u\|_{W(\Omega)} = M_2 \|u\|_{W(\Omega)}, \end{aligned} \end{equation*} $

    and

    $ \begin{equation} \|D^{\alpha}_tu\|^2_{L^2} = \displaystyle{\iint}_{\Omega} (D^{\alpha}_tu)^2d\sigma \leq M^2_2 S_{\Omega}\|u\|^2_{W(\Omega)} = M_3\|u\|^2_{W(\Omega)}. \end{equation} $ (3.5)

    From Eqs (3.4) and (3.5), we can get

    $ \|Lu\|_{L^2} \leq M\|u\|_{W(\Omega)}, $

    where $ M = \sqrt{M_1}+\sqrt{M_3} $.

    Definition 3.1. $ u^{{\varepsilon}} $ is named the $ {\varepsilon} $-approximate solution for Eq (3.1), $ \forall {\varepsilon} > 0 $, if

    $ \|Lu^{{\varepsilon}}-f\|_{L^2}^2 < {\varepsilon}^2. $

    Ref. [21,22] proved the existence of $ {\varepsilon}- $approximate solutions to boundary value problems of linear ordinary differential equations. Using the same method, we can prove that the $ {\varepsilon} $-approximate solution of Eq (3.1) exists.

    Theorem 3.2. $ \forall\; {\varepsilon} > 0 $, $ \exists\; N_1, N_2 > 0 $, when $ n_1 > N_1, n_2 > N_2 $,

    $ u_{n_1n_2}^{{\varepsilon}}(x, t) = \sum\limits_{i = 0}^{n_1}\sum\limits_{j = 0}^{n_2} c_{ij}^*\phi_{ij}(x, t) $

    is the $ {\varepsilon} $-approximate solution of Eq (3.1), where $ c_{ij}^* $ satisfies

    $ \|\sum\limits_{i = 0}^{n_1}\sum\limits_{j = 0}^{n_2} c_{ij}^*L\phi_{ij}(x, t)-f(x, t)\|_{L^2}^2 = \min\limits_{c_{ij}}\|\sum\limits_{i = 0}^{n_1}\sum\limits_{j = 0}^{n_2} c_{ij}L\phi_{ij}(x, t)-f(x, t)\|_{L^2}^2. $

    Proof. Let $ u(x, t) $ be the solution of Eq (3.1),

    $ u(x, t) = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty} c_{ij}\phi_{ij}(x, t), $

    where $ c_{ij} = \langle u, \phi_{ij}\rangle_{W(\Omega)} $, and $ u_{n_1n_2}(x, t) = \sum_{i = 0}^{n_1}\sum_{j = 0}^{n_2} c_{ij}\phi_{ij}(x, t) $.

    Because $ L $ is a bounded operator, $ \forall\; {\varepsilon} > 0 $, $ \exists\; N_1, N_2 > 0 $, when $ n_1 > N_1, n_2 > N_2 $,

    $ \|u-u_{n_1n_2}\|^2_{W(\Omega)} = \|\sum\limits_{i = n_1+1}^{\infty}\sum\limits_{j = n_2+1}^{\infty} c_{ij}\phi_{ij}(x, t)\|^2_{W(\Omega)}\leq \frac{{\varepsilon}}{\|L\|^2}, $

    so

    $ \begin{equation*} \begin{aligned} \|Lu_{n_1n_2}^{{\varepsilon}}-f\|^2_{L^2}& = \|\sum\limits_{i = 0}^{n_1}\sum\limits_{j = 0}^{n_2} c_{ij}^*L\phi_{ij}-f\|^2_{L^2} = \min\limits_{d_{ij}}\|\sum\limits_{i = 0}^{n_1}\sum\limits_{j = 0}^{n_2} d_{ij}L\phi_{ij}-f\|^2_{L^2}\\ &\leq \|\sum\limits_{i = 0}^{n_1}\sum\limits_{j = 0}^{n_2} c_{ij}L\phi_{ij}-f\|^2_{L^2}\leq \|Lu_{n_1n_2}-Lu\|^2_{L^2}\\ &\leq \|L\|^2 \|u_{n_1n_2}-u\|^2_{L^2}\leq {\varepsilon}. \end{aligned} \end{equation*} $

    From Theorem 3.2, note

    $ J(c_{00}, c_{01}, c_{02}, \cdots, c_{N_1N_2}) = \|\sum\limits_{i = 0}^{n_1}\sum\limits_{j = 0}^{n_2} c_{ij}L\phi_{ij}(x, t)-f(x, t)\|_{L^2}^2, $

    $ J $ is a quadratic form about $ c = (c_{ij})_{i, j = 0}^{n_1, n_2} $, and $ c^* = (c_{ij}^*)_{i, j = 0}^{n_1, n_2} $ is the minimum value of $ J $. To find $ c^* $, just need $ \frac{\partial J}{\partial c_{ij}} = 0 $. That is

    $ \frac{\partial J}{\partial c_{ij}} = 2\sum\limits_{i = 0}^{n_1}\sum\limits_{k = 0}^{n_2} c_{ik}\langle L\phi_{ij}, L\phi_{kl}\rangle_{L^2}-2c_{ij}\langle L\phi_{ij}, f\rangle_{L^2}, $

    so

    $ \begin{equation} \sum\limits_{i = 0}^{n_1}\sum\limits_{k = 0}^{n_2} c_{ik}\langle L\phi_{ij}, L\phi_{kl}\rangle_{L^2} = \langle L\phi_{ij}, f\rangle_{L^2}. \end{equation} $ (3.6)

    Put $ N = (n_1+1)\times (n_2+1) $, and the $ N $-order matrix $ \textbf{A} $ and the $ N $-order vector $ \textbf{b} $,

    $ \begin{equation*} \begin{aligned} &\textbf{A} = \left(\langle L\phi_{ij}, L\phi_{kl}\rangle_{L^2}\right)_{N\times N}, \\ &\textbf{b} = \left(\langle L\phi_{ij}, f\rangle_{L^2}\right)_{N}, \end{aligned} \end{equation*} $

    so Eq (3.6) is

    $ \begin{equation} \textbf{A}c = \textbf{b}. \end{equation} $ (3.7)

    From Property 2.1,

    $ \begin{equation*} \begin{aligned} L\phi_{ij}& = D^{\alpha}_t\phi_{ij}-\frac{\partial^2\phi_{ij} }{\partial x^2} = J^2_0p_i(x)D^{\alpha}_tJ_0T_j(t)-p_i(x)J_0T_j(t)\\ & = J^2_0p_i(x)\sum^j_{k = 0}\frac{c_k}{k+1}\frac{\Gamma(k+2)t^{k+1-\alpha}}{\Gamma(k+2-\alpha)}-p_i(x)J_0T_j(t). \end{aligned} \end{equation*} $

    From Ref. [21], if $ L $ is reversible, then Eq (3.7) exists and is unique.

    Let $ u(x, t) $ be the exact solution to Eq (3.1), and

    $ u(x, t) = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\phi_{ij}(x, t). $

    Fourier truncation of $ u(x, t) $ is $ u_{N_1, N_2}(x, t) $, and

    $ u_{N_1N_2}(x, t) = \sum\limits_{i = 0}^{N_1}\sum\limits_{j = 0}^{N_2}c_{ij}\phi_{ij}(x, t). $

    In Ref. [25], if $ u^{(m)}(x)\in L^2[0, b] $, then

    $ \begin{equation} \|u-u_n\|_{L^2}\leq Cn^{-m}\left( \sum\limits_{k = \min\{m, n+1\}}^m\|u^{(k)}\|_{L^2}^2\right)^{\frac{1}{2}}. \end{equation} $ (4.1)

    Theorem 4.1. Assume $ \frac{\partial^{m+n}u(x, t)}{\partial t^m \partial x^n}\in L^2(\Omega) $, then

    $ \|u(x, t)-u_{N_1}(x, t)\|_{W(\Omega)}\leq C_1 N_1^{-m}, \quad \|u(x, t)-u_{N_2}(x, t)\|_{W(\Omega)}\leq C_2 N_2^{-n}, $

    where $ C_1, C_2 $ are constants.

    Proof. Recalling the definition of $ W(\Omega) $, we get

    $ \begin{equation*} \begin{aligned} \|u(x, t)-u_{N_1}(x, t)\|^2_{W(\Omega)}& = \iint_{\Omega} \frac{\partial^3(u-u_{N_1})}{\partial t \partial x^2}\frac{\partial^3(u-u_{N_1})}{\partial t \partial x^2}dxdt\\ & = \displaystyle {\int}_0^b\displaystyle {\int}_0^T \frac{\partial }{\partial t }(\frac{\partial^2(u-u_{N_1}) }{\partial x^2 })\frac{\partial }{\partial t }(\frac{\partial^2(u-u_{N_1}) }{\partial x^2 })dtdx\\ & = \displaystyle {\int}_0^b \|\frac{\partial^2u }{\partial x^2}-\frac{\partial^2u_{N_1} }{\partial x^2}\|^2_{W_1} dx. \end{aligned} \end{equation*} $

    According to Eq (4.1), it follows that

    $ \begin{equation*} \begin{aligned} \left\|\frac{\partial^2u }{\partial x^2}-\frac{\partial^2u_{N_1} }{\partial x^2}\right\|_{W_1} = \left\|\frac{\partial^3u }{\partial x^2\partial t}-\frac{\partial^3u_{N_1} }{\partial x^2\partial t}\right\|_{L^2[0, T]} \leq C(x) N_1^{-m}\left( \sum\limits_{k = \min\{m, N_1+1\}}^m \|u^{(k+1)}_{xx}\|_{L^2[0, T]}^2\right)^{1/2}, \end{aligned} \end{equation*} $

    so

    $ \begin{equation*} \begin{aligned} \; \|u(x, t)-u_{N_1}(x, t)\|^2_{W(\Omega)}&\leq \displaystyle {\int}_0^b C^2(x) N_1^{-2m}\left( \sum\limits_{k = \min\{m, N-1+1\}}^m \|u^{(k+1)}_{xx}\|_{L^2[0, T]}^2\right) dx\\ &\leq N_1^{-2m} \displaystyle {\int}_0^b C^2(x)\left( \sum\limits_{k = \min\{m, N_1+1\}}^m \|u^{(k+1)}_{xx}\|_{L^2[0, T]}^2\right) dx \leq C_0N_1^{-2m}, \end{aligned} \end{equation*} $

    where $ C_0 = {\int}_a^b C^2(x)\left(\sum\limits_{k = \min\{m, N_1+1\}}^m \|u^{(k+1)}_{xx}\|_{L^2[0, T]}^2\right) dx $. Assume $ C_1 = \sqrt{C_0} $; that is

    $ \|u(x, t)-u_{N_1}(x, t)\|_{W_1}\leq C_1 N_1^{-m}. $

    Similarly,

    $ \|u(x, t)-u_{N_2}(x, t)\|_{W(\Omega)}\leq C_2 N_2^{-n}. $

    Theorem 4.2. Assume $ \frac{\partial^{m+n}w(x, t)}{\partial t^m \partial x^n}\in L^2(\Omega) $, $ u_{N_1N_2}^{{\varepsilon}}(x, t) $ is the approximate solution of Eq (3.1), then

    $ \|u(x, t)-u_{N_1N_2}^{{\varepsilon}}(x, t)\|_{W(\Omega)}\leq C N^{-\gamma}, $

    where $ C = 2M_2\max\{C_1, C_2\} $, $ N = \min\{N_1, N_2\} $, and $ \gamma = \min\{m, n\} $.

    Proof. We know

    $ \begin{equation*} \begin{aligned} \|u(x, t)-u_{N_1, N_2}^{{\varepsilon}}(x, t)\|_{W(\Omega)}& = \|L^{-1}\|\|L\|\|u(x, t)-u_{N_1, N_2}(x, t)\|_{W(\Omega)}\\ &\leq M_2\left\|\sum\limits_{i = 0}^{N_1}\sum\limits_{j = N_1+1}^{\infty}c_{ij}\phi_{ij}(x, t)+\sum\limits_{i = N_1+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\phi_{ij}(x, t) \right\|_{W(\Omega)}\\ & = M_2\left(\sum\limits_{i = 0}^{N_1}\sum\limits_{j = N_1+1}^{\infty}c_{ij}^2+\sum\limits_{i = N_1+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}^2\right), \end{aligned} \end{equation*} $

    where $ M_2 = \|L^{-1}\|\|L\| $. Moreover,

    $ \begin{equation*} \begin{aligned} \|u(x, t)-u_{N_1}(x, t)\|_{W(\Omega)}& = \left\|\sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\phi_{ij}(x, t)-\sum\limits_{i = 0}^{N_1}\sum\limits_{j = 0}^{\infty}c_{ij}\phi_{ij}(x, t) \right\|_{W(\Omega)}\\ & = \left\|\sum\limits_{i = N_1+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\phi_{ij}(x, t) \right\|_{W(\Omega)} = \sum\limits_{i = N_1+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}^2. \end{aligned} \end{equation*} $
    $ \begin{equation*} \begin{aligned} \|u(x, t)-u_{N_2}(x, t)\|_{W(\Omega)}& = \left\|\sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\phi_{ij}(x, t)-\sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{N_2}c_{ij}\phi_{ij}(x, t) \right\|_{W(\Omega)}\\ & = \left\|\sum\limits_{i = 0}^{\infty}\sum\limits_{j = N_2+1}^{\infty}c_{ij}\phi_{ij}(x, t) \right\|_{W(\Omega)} = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = N_2+1}^{\infty}c_{ij}^2. \end{aligned} \end{equation*} $

    So

    $ \begin{equation*} \begin{aligned} \|u(x, t)-u_{N_1, N_2}^{{\varepsilon}}(x, t)\|_{W(\Omega)} &\leq M_2\left(\sum\limits_{i = 0}^{N_1}\sum\limits_{j = N_1+1}^{\infty}c_{ij}^2+\sum\limits_{i = N_1+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}^2\right)\\ &\leq M_2\left(\sum\limits_{i = 0}^{\infty}\sum\limits_{j = N_1+1}^{\infty}c_{ij}^2+\sum\limits_{i = N_1+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}^2\right)\\ & = M_2(\|u(x, t)-u_{N_2}(x, t)\|_{W(\Omega)}+\|u(x, t)-u_{N_1}(x, t)\|_{W(\Omega)})\\ &\leq M_2(C_1N_1^{-m}+C_2N_2^{-n})\\ &\leq CN^{\gamma}. \end{aligned} \end{equation*} $

    So, the proposed method is $ \gamma $-order convergence, and the convergence rate depends on $ N $.

    The proposal of an algorithm requires not only a reliable theory but also the feasibility of calculation. The huge calculation process is costly. Next, the time complexity of the algorithm will be analyzed.

    According to the analysis in Section 3, the complexity of the algorithm depends on Eqs (3.6) and (3.7). Next, the algorithm can be illustrated in four steps, as follows:

    (1) $ \textbf{A} $ of Eq (3.7). We know $ \textbf{A} = \left(\langle L\phi_{ij}, L\phi_{kl}\rangle_{L^2}\right)_{N\times N} $, and

    $ \langle L\phi_{ij}, L\phi_{kl}\rangle_{L^2} = \displaystyle {\int}_0^1J_0^2p_i(x)J_0^2p_k(x)dx\displaystyle {\int}_0^1J_0T_j(t)J_0T_l(t)dt. $

    Set the number of multiplications required to compute $ \langle L\phi_{ij}, L\phi_{kl}\rangle_{L^2} $ as $ C_1 $, where $ C_1 $ is constant. Clearly, the computing time needed for $ \textbf{A} $ is $ Num_1 = C_1N^2. $

    (2) $ \textbf{b} $ of Eq (3.7). We know $ \textbf{b} = \left(\langle L\phi_{ij}, f\rangle_{L^2}\right)_{N\times N} $, and

    $ \langle L\phi_{ij}, f\rangle_{L^2} = \displaystyle {\int}_0^1\displaystyle {\int}_0^1J_0^2p_i(x)J_0T_j(t)dtdx. $

    Set the number of multiplications required to compute $ \langle L\phi_{ij}, f\rangle_{L^2} $ as $ C_2 $, where $ C_1 $ is constant. Clearly, the computing time needed for $ \textbf{b} $ is $ Num_2 = C_2N. $

    (3) We use the Gaussian elimination method to solve Eq (3.7). From my mathematical knowledge, Gaussian elimination requires operations

    $ Num_3 = \frac{N(N+1)(2N+1))}{6}. $

    (4) To the $ {\varepsilon}- $approximation solution $ u_N^{{\varepsilon}}(x, t) $, the number of computations is $ N $.

    In summary, the multiplication times of this algorithm in the execution process are

    $ Num = Num_1+Num_2+Num_3+N = O(N^3). $

    This section discusses three numerical examples to reveal the accuracy of the proposed algorithm. Compared with Ref. [26,27,28,29], the results demonstrate that our method is remarkably effective. All the results are calculated using the mathematical software Mathematica 13.0.

    In this paper, $ N = N_1\times N_2 $ is the number of bases, and $ e_N(x) = |u(x)-u_N(x)| $ is the absolute error. $ ME_N $ denotes the maximum absolute error when the number of bases is $ N $. The convergence order can be calculated as follows:

    $ C.R. = Log_{\frac{N}{M}}\frac{\max|e_{M}|}{\max|e_{N}|}. $

    Example 5.1. Consider the test problem suggested in [26,27]

    $ \begin{equation*} \left\{ \begin{array}{l} D^{\alpha}_t u(x, t) = u_{xx}(x, t)+f(x, t), \quad (x, t) \in (0, 1)\times(0, 1], \\ u(x, 0) = 0, \quad x\in (0, 1), \\ u(0, t) = 0, u(1, t) = 0, \end{array} \right. \end{equation*} $

    where $ f(x) = \frac{3\sqrt{\pi}}{4\Gamma(2.5-\alpha)}x^4(x-1)t^{1.5-\alpha}-(20x^3-12x^2)t^{1.5} $, and the analytical solution is given by $ u(x, t) = x^4(x-1)t^{1.5} $. The numerical results are shown in Tables 1 and 2. Table 1 shows that when $ \alpha $ is 0.5 or 0.8, respectively, our results are better than those in Ref. [26,27]. Meanwhile, we also show the results when $ \alpha = 0.01 $ and $ \alpha = 0.99 $ in Table 1 and find that the results are not much different from those when a = 0.5 and a = 0.8, demonstrating the robustness of our method. Table 2 indicates that the absolute error gets better as the number of bases increases. Figures 1 and 2 shows the absolute errors when $ \alpha = 0.01 $ and $ \alpha = 0.99 $, respectively. Figures 3 and 4 show the absolute errors at different times when $ \alpha = 0.01 $ and $ \alpha = 0.99 $.

    Table 1.  The absolute error of Example 5.1.
    $ \alpha(t) $ $ ME_N $ in [26] $ ME_N $ in [27] $ ME_{36} $ $ ME_{64} $
    0.5 $ 8.82\times 10^{-4} $ $ 1.99\times 10^{-4} $ $ 1.41\times 10^{-5} $ $ 4.18\times 10^{-6} $
    0.8 $ 8.50\times 10^{-4} $ $ 1.87\times 10^{-4} $ $ 7.16\times 10^{-6} $ $ 4.61\times 10^{-6} $
    $ 0.01 $ $ 1.43\times 10^{-5} $ $ 4.09\times 10^{-6} $
    $ 0.99 $ $ 2.95\times 10^{-5} $ $ 6.03\times 10^{-6} $

     | Show Table
    DownLoad: CSV
    Table 2.  C.R. of Example 5.1.
    $ n $ $ \alpha=0.5 $ C.R. $ \alpha=0.8 $ C.R.
    9 $ 8.08\times 10^{-3} $ $ 7.75\times 10^{-3} $
    16 $ 6.07\times 10^{-4} $ 4.50 $ 6.12\times 10^{-5} $ 8.41
    25 $ 2.75\times 10^{-5} $ 6.93 $ 2.76\times 10^{-5} $ 1.78
    36 $ 1.41\times 10^{-5} $ 1.83 $ 1.41\times 10^{-5} $ 1.84
    49 $ 8.10\times 10^{-6} $ 1.80 $ 8.04\times 10^{-6} $ 1.82
    64 $ 4.18\times 10^{-6} $ 2.48 $ 4.61\times 10^{-6} $ 2.08

     | Show Table
    DownLoad: CSV
    Figure 1.  Example 5.1, $ N = 64, \; \alpha = 0.01 $.
    Figure 2.  Example 5.1, $ N = 64, \; \alpha = 0.99 $.
    Figure 3.  Example 5.1, $ N = 64, \; \alpha = 0.01, t $.
    Figure 4.  Example 5.1, $ N = 64, \; \alpha = 0.99, t $.

    Example 5.2. We consider the same FDEs as that in [28]

    $ \begin{equation*} \left\{ \begin{array}{l} D^{\alpha}_t u(x, t) = u_{xx}(x, t)+f(x, t), \quad (x, t) \in (0, 1)\times(0, 1], \\ u(x, 0) = 0, \quad x\in (0, 1), \\ u(0, t) = 0, \quad u(1, t) = 0. \end{array} \right. \end{equation*} $

    With $ f(x, t) = \frac{2}{\Gamma(3-\alpha)}t^{2-\alpha}\sin(2\pi x)+4\pi^2t^2\sin(2\pi x) $, the exact solution of the problem is given by $ u(x, t) = t^2\sin(2\pi x) $. Tables 35, respectively, show the comparison of absolute error and convergence order with Ref. [28] when $ \alpha $ is 0.2, 0.5, or 0.8. Obviously, the proposed method is superior to Ref. [28]. $ N\times L $ denotes the number of bases in Ref.[28].

    Table 3.  The $ ME_N $ and C.R. of Example 5.2, $ \alpha = 0.2, L = 10000 $.
    [28] Our method
    $ N\times L $ $ ME $ C.R. $ N_1\times N_2 $ $ ME_N $ C.R.
    $ 25\times L $ $ 2.06\times 10^{-6} $ 4.00 $ 4\times 8 $ $ 1.95\times 10^{-5} $
    $ 30\times L $ $ 1.00\times 10^{-6} $ 4.00 $ 4\times 10 $ $ 3.11\times 10^{-7} $ 18.54
    $ 35\times L $ $ 5.39\times 10^{-7} $ 4.00 $ 4\times 12 $ $ 2.72\times 10^{-9} $ 25.99
    $ 40\times L $ $ 3.15\times 10^{-7} $ 4.01 $ 4\times 14 $ $ 3.21\times 10^{-11} $ 28.79

     | Show Table
    DownLoad: CSV
    Table 4.  The $ ME_N $ and C.R. of Example 5.2, $ \alpha = 0.5, L = 20000 $.
    [28] Our method
    $ N\times L $ $ ME $ C.R. $ N_1\times N_2 $ $ ME_N $ C.R.
    $ 25\times L $ $ 2.65\times 10^{-6} $ 4.01 $ 4\times 8 $ $ 1.95\times 10^{-5} $
    $ 30\times L $ $ 9.96\times 10^{-7} $ 4.03 $ 4\times 10 $ $ 3.10\times 10^{-7} $ 18.56
    $ 35\times L $ $ 5.35\times 10^{-7} $ 4.06 $ 4\times 12 $ $ 3.72\times 10^{-9} $ 24.25
    $ 40\times L $ $ 3.11\times 10^{-7} $ 4.11 $ 4\times 14 $ $ 1.29\times 10^{-10} $ 36.74

     | Show Table
    DownLoad: CSV
    Table 5.  The $ ME_N $ and C.R. of Example 5.2, $ \alpha = 0.8, L = 60000 $.
    [28] Our method
    $ N\times L $ $ ME $ C.R. $ N_1\times N_2 $ $ ME_N $ C.R.
    $ 25\times L $ $ 2.03\times 10^{-6} $ 4.13 $ 4\times 8 $ $ 1.93\times 10^{-5} $
    $ 30\times L $ $ 9.65\times 10^{-7} $ 4.30 $ 4\times 10 $ $ 3.08\times 10^{-7} $ 18.54
    $ 35\times L $ $ 5.04\times 10^{-7} $ 4.61 $ 4\times 12 $ $ 3.08\times 10^{-9} $ 24.69
    $ 40\times L $ $ 2.85\times 10^{-7} $ 5.18 $ 4\times 14 $ $ 4.80\times 10^{-10} $ 13.11

     | Show Table
    DownLoad: CSV

    Example 5.3. Considering the following problem with $ f(x, t) = \frac{\Gamma(4+\alpha)}{6}\sin(\pi x)+\pi^2t^{3+\alpha}\sin(\pi x)+\pi t^{3+\alpha}\cos(\pi x) $ [29]:

    $ \begin{equation*} \left\{ \begin{array}{l} D^{\alpha}_t u(x, t) = u_{xx}(x, t)-u_{x}+f(x, t), \quad (x, t) \in (0, 1)\times(0, 1], \\ u(x, 0) = 0, \quad x\in (0, 1), \\ u(0, t) = 0, u(1, t) = 0. \end{array} \right. \end{equation*} $

    The exact solution of the problem is given by $ u(x, t) = t^{3+\alpha}\sin(\pi x) $. Table 6 shows the comparison of absolute error and convergence order with Ref. [29] when $ \alpha $ is 0.1. Obviously, the proposed method is superior to Ref. [29]. Figures 57 show the absolute errors when $ \alpha = 0.1 $, $ \alpha = 0.01 $ and $ \alpha = 0.99 $ respectively.

    Table 6.  The $ ME_N $ and C.R. of Example 5.3, $ \alpha = 0.1 $.
    [29] Our method
    $ N\times L $ $ ME $ C.R. $ N_1\times N_2 $ $ ME_N $ C.R.
    $ 20\times 20 $ $ 1.44\times 10^{-3} $ $ 3\times 3 $ $ 1.40\times 10^{-3} $
    $ 40\times 40 $ $ 3.66\times 10^{-4} $ 1.98 $ 5\times 5 $ $ 1.83\times 10^{-5} $ 4.01
    $ 80\times 80 $ $ 9.15\times 10^{-5} $ 1.98 $ 7\times 7 $ $ 2.89\times 10^{-6} $ 3.09
    $ 160\times 160 $ $ 2.31\times 10^{-5} $ 1.98 $ 9\times 9 $ $ 2.83\times 10^{-7} $ 4.62

     | Show Table
    DownLoad: CSV
    Figure 5.  Example 5.3, $ N = 81, \alpha = 0.1 $.
    Figure 6.  Example 5.3, $ N = 54, \alpha = 0.01 $.
    Figure 7.  Example 5.3, $ N = 54, \alpha = 0.99 $.

    In this paper, an effective numerical algorithm based on Legendre polynomials is proposed for TFDE. Based on Legendre polynomials, an orthonormal basis is constructed in the reproducing kernel spaces $ W_1[0, 1] $ and $ W_2[0, b] $. Then we define the multiple reproducing kernel space and develop the orthonormal basis in this space. The $ {\varepsilon} $-approximate solution of TFDE is obtained. From the above analysis and the numerical examples, it is clear that the presented method is successfully employed for solving TFDE. The numerical results show that our method is much more accurate than other algorithms. In this paper, because the orthonormal basis constructed in the binary reproducing kernel space contains power terms, the properties of fractional differentiation can be used to calculate fractional differentiation, so as to eliminate the influence of the non-singularity of fractional differentiation. However, the method presented in this paper is suitable for the case where the initial boundary value condition is 0, and for the non-zero case, it needs to be further simplified to the cases where the initial boundary value condition is 0. We are also trying to design methods for cases where initial boundary values are non-zero.

    Yingchao Zhang: Conceived of the study, designed the study, and proved the convergence of the algorithm; Yingzhen Lin: Reviewed the full text. All authors were involved in writing the manuscript. All authors read and approved the final manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This study was supported by the Characteristic Innovative Scientific Research Project of Guangdong Province (2023KTSCX181, 2023KTSCX183) and Basic and Applied Basic Research Project Zhuhai City (2320004002520)

    The authors have no conflicts of interest to declare.



    [1] Hamilton-Jacobi equations constrained on networks. Nonlinear Differential Equations and Applications NoDEA (2013) 20: 413-445.
    [2] Diffusion and propagation problems in some ramified domains with a fractal boundary. ESAIM: Mathematical Modelling and Numerical Analysis (2006) 40: 623-652.
    [3] Transparent boundary conditions for a class of boundary value problems in some ramified domains with a fractal boundary. C. R. Math. Acad. Sci. Paris (2006) 342: 605-610.
    [4] Transparent boundary conditions for the Helmholtz equation in some ramified domains with a fractal boundary. J. Comput. Phys. (2007) 220: 712-739.
    [5] Boundary value problems with nonhomogeneous Neumann conditions on a fractal boundary. C. R. Math. Acad. Sci. Paris (2006) 342: 611-616.
    [6] Neumann conditions on fractal boundaries. Asymptot. Anal. (2007) 53: 61-82.
    [7] Y. Achdou and N. Tchou, Boundary value problems in ramified domains with fractal boundaries, In Domain decomposition methods in science and engineering XVII, volume 60 of Lect. Notes Comput. Sci. Eng., pages 419-426. Springer, Berlin, 2008. doi: 10.1007/978-3-540-75199-1_53
    [8] Nonlinear interaction problems. Nonlinear Anal. (1993) 20: 27-61.
    [9] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, volume 96 of Monographs in Mathematics, Birkhäuser/Springer Basel AG, Basel, second edition, 2011. doi: 10.1007/978-3-0348-0087-7
    [10] Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. (2015) 129: 611-646.
    [11] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, volume 186 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013.
    [12] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
    [13] Homogenization of a model for the propagation of sound in the lungs. Multiscale Model. Simul. (2015) 13: 43-71.
    [14] S. M. Cioabă and M. Ram Murty, A First Course in Graph Theory and Combinatorics, volume 55 of Texts and Readings in Mathematics, Hindustan Book Agency, New Delhi, 2009.
    [15] Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. (1977) 31: 629-651.
    [16] A. Georgakopoulos, S. Haeseler, M. Keller, D. Lenz and R. K. Wojciechowski, Graphs of finite measure, J. Math. Pures Appl. (9), 103 (2015), 1093-1131. doi: 10.1016/j.matpur.2014.10.006
    [17] On matrix-valued Herglotz functions. Math. Nachr. (2000) 218: 61-138.
    [18] P. Joly and A. Semin, Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots, In ESAIM: Proceedings, volume 25, pages 44-67. EDP Sciences, 2008. doi: 10.1051/proc:082504
    [19] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.
    [20] J. L. Kelley, General Topology, Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.
    [21] P. Kuchment, Graph models for waves in thin structures, Waves in Random Media, 12 (2002), R1-R24. doi: 10.1088/0959-7174/12/4/201
    [22] B. B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, Calif., 1982.
    [23] Trace theorems for trees, application to the human lungs. Network and Heteregeneous Media (2009) 4: 469-500.
    [24] K. Naimark and M. Solomyak, Eigenvalue estimates for the weighted Laplacian on metric trees, Proc. London Math. Soc. (3), 80 (2000), 690-724. doi: 10.1112/S0024611500012272
    [25] Geometry of Sobolev spaces on regular trees and the Hardy inequalities. Russ. J. Math. Phys. (2001) 8: 322-335.
    [26] Elliptic operators on elementary ramified spaces. Integral Equations Operator Theory (1988) 11: 230-257.
    [27] Respiratory sounds: advances beyond the stethoscope. American journal of respiratory and critical care medicine (1997) 156: 974-987.
    [28] N. Pozin, S. Montesantos, I. Katz, M. Pichelin, I. Vignon-Clementel and C. Grandmont, A tree-parenchyma coupled model for lung ventilation simulation, Int. J. Numer. Methods Biomed. Eng., 33 (2017), e2873, 30pp. doi: 10.1002/cnm.2873
    [29] (1978) Methods of Modern Mathematical Physics. New York-London: Academic Press.
    [30] Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum. Arch. Ration. Mech. Anal. (2001) 160: 271-308.
    [31] Variational problems on multiply connected thin strips. â…¡. Convergence of the Ginzburg-Landau functional. Arch. Ration. Mech. Anal. (2001) 160: 309-324.
    [32] Low-frequency ultrasound permeates the human thorax and lung: A novel approach to non-invasive monitoring. Ultraschall in der Medizin-European Journal of Ultrasound (2010) 31: 53-62.
    [33] A. Semin, Propagation d'ondes dans des jonctions de fentes minces, PhD thesis, Université de Paris-Sud 11, 2010.
    [34] M. Solomyak, Laplace and Schrödinger operators on regular metric trees: The discrete spectrum case, In Function Spaces, Differential Operators and Nonlinear Analysis (Teistungen, 2001), pages 161-181. Birkhäuser, Basel, 2003.
    [35] On approximation of functions from Sobolev spaces on metric graphs. J. Approx. Theory (2003) 121: 199-219.
    [36] M. Solomyak, On the spectrum of the laplacian on regular metric trees, Waves in Random Media, 14 (2004), S155-S171. doi: 10.1088/0959-7174/14/1/017
    [37] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, New York, 2008. Finite and boundary elements, Translated from the 2003 German original. doi: 10.1007/978-0-387-68805-3
  • This article has been cited by:

    1. Liangying Miao, Man Xu, Zhiqian He, Existence and multiplicity of positive solutions for one-dimensional $ p $-Laplacian problem with sign-changing weight, 2023, 31, 2688-1594, 3086, 10.3934/era.2023156
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3509) PDF downloads(422) Cited by(9)

Figures and Tables

Figures(12)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog